Variational Methods for Boundary Value Problems for Systems of Elliptic Equations
By: and
Sign Up Now!
Already a Member? Log In
You must be logged into Bookshare to access this title.
Learn about membership options,
or view our freely available titles.
- Synopsis
- In this famous monograph, a distinguished mathematician presents an innovative approach to classical boundary value problems - one that may be used by mathematicians as well as by theoreticians in mechanics. The approach is based on a number of geometric properties of conformal and quasi-conformal mappings and employs the general basic scheme for solution of variational problems first suggested by Hilbert and developed by Tonnelli. The first two chapters cover variational principles of the theory of conformal mapping and behavior of a conformal transformation on the boundary. Chapters 3 and 4 explore hydrodynamic applications and quasiconformal mappings, and the final two chapters address linear systems and the simplest classes of non-linear systems. Mathematicians will take particular interest in the method of the proof of the existence and uniqueness theorems as well as the general theory of quasi-conformal mappings. Theoreticians in mechanics will find the approximate formulas for conformal and quasi-conformal
- Copyright:
- 1989
Book Details
- Book Quality:
- Publisher Quality
- ISBN-13:
- 9780486160283
- Related ISBNs:
- 9780486661704
- Publisher:
- Dover Publications
- Date of Addition:
- 02/12/18
- Copyrighted By:
- M. A. Lavrent'ev, J. R. M. Radok
- Adult content:
- No
- Language:
- English
- Has Image Descriptions:
- No
- Categories:
- Nonfiction, Mathematics and Statistics
- Submitted By:
- Bookshare Staff
- Usage Restrictions:
- This is a copyrighted book.