Deep Learning: A Practitioner's Approach
By: and
Sign Up Now!
Already a Member? Log In
You must be logged into Bookshare to access this title.
Learn about membership options,
or view our freely available titles.
- Synopsis
- Although interest in machine learning has reached a high point, lofty expectations often scuttle projects before they get very far. How can machine learning—especially deep neural networks—make a real difference in your organization? This hands-on guide not only provides the most practical information available on the subject, but also helps you get started building efficient deep learning networks.Authors Adam Gibson and Josh Patterson provide theory on deep learning before introducing their open-source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you’ll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J.Dive into machine learning concepts in general, as well as deep learning in particularUnderstand how deep networks evolved from neural network fundamentalsExplore the major deep network architectures, including Convolutional and RecurrentLearn how to map specific deep networks to the right problemWalk through the fundamentals of tuning general neural networks and specific deep network architecturesUse vectorization techniques for different data types with DataVec, DL4J’s workflow toolLearn how to use DL4J natively on Spark and Hadoop
- Copyright:
- 2015
Book Details
- Book Quality:
- Publisher Quality
- ISBN-13:
- 9781491914212
- Related ISBNs:
- 9781491914236, 9781491914229, 9781491914250
- Publisher:
- O'Reilly Media
- Date of Addition:
- 09/17/19
- Copyrighted By:
- Adam Gibson, Josh Patterson
- Adult content:
- No
- Language:
- English
- Has Image Descriptions:
- No
- Categories:
- Nonfiction, Computers and Internet
- Submitted By:
- Bookshare Staff
- Usage Restrictions:
- This is a copyrighted book.