Deep Learning with Python
By:
Sign Up Now!
Already a Member? Log In
You must be logged into Bookshare to access this title.
Learn about membership options,
or view our freely available titles.
- Synopsis
- SummaryDeep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples.Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.About the TechnologyMachine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications.About the BookDeep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's InsideDeep learning from first principlesSetting up your own deep-learning environment Image-classification modelsDeep learning for text and sequencesNeural style transfer, text generation, and image generationAbout the ReaderReaders need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required.About the AuthorFrançois Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others.Table of ContentsPART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning?Before we begin: the mathematical building blocks of neural networks Getting started with neural networksFundamentals of machine learningPART 2 - DEEP LEARNING IN PRACTICEDeep learning for computer visionDeep learning for text and sequencesAdvanced deep-learning best practicesGenerative deep learningConclusionsappendix A - Installing Keras and its dependencies on Ubuntuappendix B - Running Jupyter notebooks on an EC2 GPU instance
- Copyright:
- 2018
Book Details
- Book Quality:
- Publisher Quality
- ISBN-13:
- 9781638352044
- Related ISBNs:
- 9781617294433
- Publisher:
- Manning Publications
- Date of Addition:
- 06/15/21
- Copyrighted By:
- Manning Publications Co.
- Adult content:
- No
- Language:
- English
- Has Image Descriptions:
- No
- Categories:
- Nonfiction, Computers and Internet
- Submitted By:
- Bookshare Staff
- Usage Restrictions:
- This is a copyrighted book.