Data Science for Wind Energy
By:
Sign Up Now!
Already a Member? Log In
You must be logged into Bookshare to access this title.
Learn about membership options,
or view our freely available titles.
- Synopsis
- Data Science for Wind Energy provides an in-depth discussion on how data science methods can improve decision making for wind energy applications, near-ground wind field analysis and forecast, turbine power curve fitting and performance analysis, turbine reliability assessment, and maintenance optimization for wind turbines and wind farms. A broad set of data science methods covered, including time series models, spatio-temporal analysis, kernel regression, decision trees, kNN, splines, Bayesian inference, and importance sampling. More importantly, the data science methods are described in the context of wind energy applications, with specific wind energy examples and case studies. Please also visit the author’s book site at https://aml.engr.tamu.edu/book-dswe.Features Provides an integral treatment of data science methods and wind energy applications Includes specific demonstration of particular data science methods and their use in the context of addressing wind energy needs Presents real data, case studies and computer codes from wind energy research and industrial practice Covers material based on the author's ten plus years of academic research and insights
- Copyright:
- 2019
Book Details
- Book Quality:
- Publisher Quality
- Book Size:
- 400 Pages
- ISBN-13:
- 9780429956508
- Related ISBNs:
- 9780429490972, 9780429956515, 9781138590526, 9780429956492, 9780367729097
- Publisher:
- CRC Press
- Date of Addition:
- 02/04/24
- Copyrighted By:
- Taylor & Francis Group LCC
- Adult content:
- No
- Language:
- English
- Has Image Descriptions:
- No
- Categories:
- Nonfiction, Computers and Internet
- Submitted By:
- Bookshare Staff
- Usage Restrictions:
- This is a copyrighted book.