Vitushkin’s Conjecture for Removable Sets
By:
Sign Up Now!
Already a Member? Log In
You must be logged into Bookshare to access this title.
Learn about membership options,
or view our freely available titles.
- Synopsis
- Vitushkin's conjecture, a special case of Painlevé's problem, states that a compact subset of the complex plane with finite linear Hausdorff measure is removable for bounded analytic functions if and only if it intersects every rectifiable curve in a set of zero arclength measure. Chapters 1-5 of the book provide important background material on removability, analytic capacity, Hausdorff measure, arclength measure, and Garabedian duality that will appeal to many analysts with interests independent of Vitushkin's conjecture. The fourth chapter contains a proof of Denjoy's conjecture that employs Melnikov curvature. A brief postscript reports on a deep theorem of Tolsa and its relevance to going beyond Vitushkin's conjecture. This text can be used for a topics course or seminar in complex analysis. To understand it, the reader should have a firm grasp of basic real and complex analysis.
- Copyright:
- 2010
Book Details
- Book Quality:
- Publisher Quality
- ISBN-13:
- 9781441967091
- Related ISBNs:
- 9781441967084
- Publisher:
- Springer New York
- Date of Addition:
- 10/20/13
- Copyrighted By:
- Springer
- Adult content:
- No
- Language:
- English
- Has Image Descriptions:
- No
- Categories:
- Nonfiction, Mathematics and Statistics
- Submitted By:
- Bookshare Staff
- Usage Restrictions:
- This is a copyrighted book.