Browse Results

Showing 23,451 through 23,475 of 23,752 results

Optimization on Solution Sets of Common Fixed Point Problems (Springer Optimization and Its Applications #178)

by Alexander J. Zaslavski

This book is devoted to a detailed study of the subgradient projection method and its variants for convex optimization problems over the solution sets of common fixed point problems and convex feasibility problems. These optimization problems are investigated to determine good solutions obtained by different versions of the subgradient projection algorithm in the presence of sufficiently small computational errors. The use of selected algorithms is highlighted including the Cimmino type subgradient, the iterative subgradient, and the dynamic string-averaging subgradient. All results presented are new. Optimization problems where the underlying constraints are the solution sets of other problems, frequently occur in applied mathematics. The reader should not miss the section in Chapter 1 which considers some examples arising in the real world applications. The problems discussed have an important impact in optimization theory as well. The book will be useful for researches interested in the optimization theory and its applications.

The Projected Subgradient Algorithm in Convex Optimization (SpringerBriefs in Optimization)

by Alexander J. Zaslavski

This focused monograph presents a study of subgradient algorithms for constrained minimization problems in a Hilbert space. The book is of interest for experts in applications of optimization to engineering and economics. The goal is to obtain a good approximate solution of the problem in the presence of computational errors. The discussion takes into consideration the fact that for every algorithm its iteration consists of several steps and that computational errors for different steps are different, in general. The book is especially useful for the reader because it contains solutions to a number of difficult and interesting problems in the numerical optimization. The subgradient projection algorithm is one of the most important tools in optimization theory and its applications. An optimization problem is described by an objective function and a set of feasible points. For this algorithm each iteration consists of two steps. The first step requires a calculation of a subgradient of the objective function; the second requires a calculation of a projection on the feasible set. The computational errors in each of these two steps are different. This book shows that the algorithm discussed, generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if computational errors for the two steps of the algorithm are known, one discovers an approximate solution and how many iterations one needs for this. In addition to their mathematical interest, the generalizations considered in this book have a significant practical meaning.

Solutions of Fixed Point Problems with Computational Errors (Springer Optimization and Its Applications #210)

by Alexander J. Zaslavski

The book is devoted to the study of approximate solutions of fixed point problems in the presence of computational errors. It begins with a study of approximate solutions of star-shaped feasibility problems in the presence of perturbations. The goal is to show the convergence of algorithms, which are known as important tools for solving convex feasibility problems and common fixed point problems.The text also presents studies of algorithms based on unions of nonexpansive maps, inconsistent convex feasibility problems, and split common fixed point problems. A number of algorithms are considered for solving convex feasibility problems and common fixed point problems. The book will be of interest for researchers and engineers working in optimization, numerical analysis, and fixed point theory. It also can be useful in preparation courses for graduate students. The main feature of the book which appeals specifically to this audience is the study of the influence of computational errorsfor several important algorithms used for nonconvex feasibility problems.

Stability of the Turnpike Phenomenon in Discrete-Time Optimal Control Problems

by Alexander J. Zaslavski

The structure of approximate solutions of autonomous discrete-time optimal control problems and individual turnpike results for optimal control problems without convexity (concavity) assumptions are examined in this book. In particular, the book focuses on the properties of approximate solutions which are independent of the length of the interval, for all sufficiently large intervals; these results apply to the so-called turnpike property of the optimal control problems. By encompassing the so-called turnpike property the approximate solutions of the problems are determined primarily by the objective function and are fundamentally independent of the choice of interval and endpoint conditions, except in regions close to the endpoints. This book also explores the turnpike phenomenon for two large classes of autonomous optimal control problems. It is illustrated that the turnpike phenomenon is stable for an optimal control problem if the corresponding infinite horizon optimal control problem possesses an asymptotic turnpike property. If an optimal control problem belonging to the first class possesses the turnpike property, then the turnpike is a singleton (unit set). The stability of the turnpike property under small perturbations of an objective function and of a constraint map is established. For the second class of problems where the turnpike phenomenon is not necessarily a singleton the stability of the turnpike property under small perturbations of an objective function is established. Containing solutions of difficult problems in optimal control and presenting new approaches, techniques and methods this book is of interest for mathematicians working in optimal control and the calculus of variations. It also can be useful in preparation courses for graduate students.

Structure of Approximate Solutions of Optimal Control Problems

by Alexander J. Zaslavski

This title examines the structure of approximate solutions of optimal control problems considered on subintervals of a real line. Specifically at the properties of approximate solutions which are independent of the length of the interval. The results illustrated in this book look into the so-called turnpike property of optimal control problems. The author generalizes the results of the turnpike property by considering a class of optimal control problems which is identified with the corresponding complete metric space of objective functions. This establishes the turnpike property for any element in a set that is in a countable intersection which is open everywhere dense sets in the space of integrands; meaning that the turnpike property holds for most optimal control problems. Mathematicians working in optimal control and the calculus of variations and graduate students will find this book useful and valuable due to its presentation of solutions to a number of difficult problems in optimal control and presentation of new approaches, techniques and methods.

Structure of Solutions of Variational Problems

by Alexander J. Zaslavski

Structure of Solutions of Variational Problems is devoted to recent progress made in the studies of the structure of approximate solutions of variational problems considered on subintervals of a real line. Results on properties of approximate solutions which are independent of the length of the interval, for all sufficiently large intervals are presented in a clear manner. Solutions, new approaches, techniques and methods to a number of difficult problems in the calculus of variations are illustrated throughout this book. This book also contains significant results and information about the turnpike property of the variational problems. This well-known property is a general phenomenon which holds for large classes of variational problems. The author examines the following in relation to the turnpike property in individual (non-generic) turnpike results, sufficient and necessary conditions for the turnpike phenomenon as well as in the non-intersection property for extremals of variational problems. This book appeals to mathematicians working in optimal control and the calculus as well as with graduate students.

Turnpike Conditions in Infinite Dimensional Optimal Control (Springer Optimization and Its Applications #148)

by Alexander J. Zaslavski

This book provides a comprehensive study of turnpike phenomenon arising in optimal control theory. The focus is on individual (non-generic) turnpike results which are both mathematically significant and have numerous applications in engineering and economic theory. All results obtained in the book are new. New approaches, techniques, and methods are rigorously presented and utilize research from finite-dimensional variational problems and discrete-time optimal control problems to find the necessary conditions for the turnpike phenomenon in infinite dimensional spaces. The semigroup approach is employed in the discussion as well as PDE descriptions of continuous-time dynamics. The main results on sufficient and necessary conditions for the turnpike property are completely proved and the numerous illustrative examples support the material for the broad spectrum of experts. Mathematicians interested in the calculus of variations, optimal control and in applied functional analysis will find this book a useful guide to the turnpike phenomenon in infinite dimensional spaces. Experts in economic and engineering modeling as well as graduate students will also benefit from the developed techniques and obtained results.

Turnpike Phenomenon and Infinite Horizon Optimal Control

by Alexander J. Zaslavski

This book is devoted to the study of the turnpike phenomenon and describes the existence of solutions for a large variety of infinite horizon optimal control classes of problems. Chapter 1 provides introductory material on turnpike properties. Chapter 2 studies the turnpike phenomenon for discrete-time optimal control problems. The turnpike properties of autonomous problems with extended-value integrands are studied in Chapter 3. Chapter 4 focuses on large classes of infinite horizon optimal control problems without convexity (concavity) assumptions. In Chapter 5, the turnpike results for a class of dynamic discrete-time two-player zero-sum game are proven. This thorough exposition will be very useful for mathematicians working in the fields of optimal control, the calculus of variations, applied functional analysis and infinite horizon optimization. It may also be used as a primary text in a graduate course in optimal control or as supplementary text for a variety of courses in other disciplines. Researchers in other fields such as economics and game theory, where turnpike properties are well known, will also find this Work valuable.

Turnpike Phenomenon in Metric Spaces (Springer Optimization and Its Applications #201)

by Alexander J. Zaslavski

This book is devoted to the study of the turnpike phenomenon arising in optimal control theory. Special focus is placed on Turnpike results, in sufficient and necessary conditions for the turnpike phenomenon and in its stability under small perturbations of objective functions. The most important feature of this book is that it develops a large, general class of optimal control problems in metric space. Additional value is in the provision of solutions to a number of difficult and interesting problems in optimal control theory in metric spaces. Mathematicians working in optimal control, optimization, and experts in applications of optimal control to economics and engineering, will find this book particularly useful.All main results obtained in the book are new. The monograph contains nine chapters. Chapter 1 is an introduction. Chapter 2 discusses Banach space valued functions, set-valued mappings in infinite dimensional spaces, and related continuous-time dynamical systems. Some convergence results are obtained. In Chapter 3, a discrete-time dynamical system with a Lyapunov function in a metric space induced by a set-valued mapping, is studied. Chapter 4 is devoted to the study of a class of continuous-time dynamical systems, an analog of the class of discrete-time dynamical systems considered in Chapter 3. Chapter 5 develops a turnpike theory for a class of general dynamical systems in a metric space with a Lyapunov function. Chapter 6 contains a study of the turnpike phenomenon for discrete-time nonautonomous problems on subintervals of half-axis in metric spaces, which are not necessarily compact. Chapter 7 contains preliminaries which are needed in order to study turnpike properties of infinite-dimensional optimal control problems. In Chapter 8, sufficient and necessary conditions for the turnpike phenomenon for continuous-time optimal control problems on subintervals of the half-axis in metric spaces, is established. In Chapter 9, the examination continues of the turnpike phenomenon for the continuous-time optimal control problems on subintervals of half-axis in metric spaces discussed in Chapter 8.

Turnpike Theory for the Robinson–Solow–Srinivasan Model (Springer Optimization and Its Applications #166)

by Alexander J. Zaslavski

This book is devoted to the study of a class of optimal control problems arising in mathematical economics, related to the Robinson–Solow–Srinivasan (RSS) model. It will be useful for researches interested in the turnpike theory, infinite horizon optimal control and their applications, and mathematical economists. The RSS is a well-known model of economic dynamics that was introduced in the 1960s and as many other models of economic dynamics, the RSS model is determined by an objective function (a utility function) and a set-valued mapping (a technology map). The set-valued map generates a dynamical system whose trajectories are under consideration and the objective function determines an optimality criterion. The goal is to find optimal trajectories of the dynamical system, using the optimality criterion. Chapter 1 discusses turnpike properties for some classes of discrete time optimal control problems. Chapter 2 present the description of the RSS model and discuss its basic properties. Infinite horizon optimal control problems, related to the RSS model are studied in Chapter 3. Turnpike properties for the RSS model are analyzed in Chapter 4. Chapter 5 studies infinite horizon optimal control problems related to the RSS model with a nonconcave utility function. Chapter 6 focuses on infinite horizon optimal control problems with nonautonomous optimality criterions. Chapter 7 contains turnpike results for a class of discrete-time optimal control problems. Chapter 8 discusses the RSS model and compares different optimality criterions. Chapter 9 is devoted to the study of the turnpike properties for the RSS model. In Chapter 10 the one-dimensional autonomous RSS model is considered and the continuous time RSS model is studied in Chapter 11.

Turnpike Theory of Continuous-Time Linear Optimal Control Problems

by Alexander J. Zaslavski

Individual turnpike results are of great interest due to their numerous applications in engineering and in economic theory; in this book the study is focused on new results of turnpike phenomenon in linear optimal control problems. The book is intended for engineers as well as for mathematicians interested in the calculus of variations, optimal control and in applied functional analysis. Two large classes of problems are studied in more depth. The first class studied in Chapter 2 consists of linear control problems with periodic nonsmooth convex integrands. Chapters 3-5 consist of linear control problems with autonomous convex smooth integrands. Chapter 6 discusses a turnpike property for dynamic zero-sum games with linear constraints. Chapter 7 examines genericity results. In Chapter 8, the description of structure of variational problems with extended-valued integrands is obtained. Chapter 9 ends the exposition with a study of turnpike phenomenon for dynamic games with extended value integrands.

Math Games & Activities from Around the World

by Claudia Zaslavsky

More than 70 math games, puzzles, and projects from all over the world are included in this delightful book for kids.

More Math Games & Activities from Around the World

by Claudia Zaslavsky

Math, history, art, and world cultures come together in this delightful book for kids, even for those who find traditional math lessons boring. More than 70 games, puzzles, and projects encourage kids to hone their math skills as they calculate, measure, and solve problems. The games span the globe, and many have been played for thousands of years, such as three-in-a-row games like Achi from Ghana or the forbidden game of Jirig from Mongolia. Also included are imaginative board games like Lambs and Tigers from India and the Little Goat Game from Sudan, or bead and string puzzles from China, and M+bius strip puzzles from Germany. Through compelling math play, children will gain confidence and have fun as they learn about the different ways people around the world measure, count, and use patterns and symmetry in their everyday lives.

Number Sense and Nonsense: Building Math Creativity and Confidence Through Number Play

by Claudia Zaslavsky

These 80-plus math activities and number games help kids to think critically about math instead of just memorizing rules. The emphasis is on the underlying relationships between numbers and the process of manipulating them. Kids get together and play games with odd and even numbers, prime and composite numbers, factors, divisors, and multiples of numbers, common and decimal fractions. Children learn the history of numbers--finger counting, number symbols in various cultures, and different ways of calculating. The book is full of riddles, puzzles, number tricks, and calculator games. Kids develop skills in estimation and computation as they become familiar with the characteristics and behavior of numbers. They will gain math confidence and be ready to take chances, find their own errors, and challenge their peers.

Constructing Knowledge for Teaching Secondary Mathematics: Tasks to enhance prospective and practicing teacher learning (Mathematics Teacher Education #6)

by Orit Zaslavsky Peter Sullivan

Teacher education seeks to transform prospective and/or practicing teachers from neophyte possibly uncritical perspectives on teaching and learning to more knowledgeable, adaptable, analytic, insightful, observant, resourceful, reflective and confident professionals ready to address whatever challenges teaching secondary mathematics presents. This transformation occurs optimally through constructive engagement in tasks that foster knowledge for teaching secondary mathematics. Ideally such tasks provide a bridge between theory and practice, and challenge, surprise, disturb, confront, extend, or provoke examination of alternatives, drawn from the context of teaching. We define tasks as the problems or activities that, having been developed, evaluated and refined over time, are posed to teacher education participants. Such participants are expected to engage in these tasks collaboratively, energetically, and intellectually with an open mind and an orientation to future practice. The tasks might be similar to those used by classroom teachers (e.g., the analysis of a graphing problem) or idiosyncratic to teacher education (e.g., critique of videotaped practice). This edited volume includes chapters based around unifying themes of tasks used in secondary mathematics teacher education. These themes reflect goals for mathematics teacher education, and are closely related to various aspects of knowledge required for teaching secondary mathematics. They are not based on the conventional content topics of teacher education (e.g., decimals, grouping practices), but on broad goals such as adaptability, identifying similarities, productive disposition, overcoming barriers, micro simulations, choosing tools, and study of practice. This approach is innovative and appeals both to prominent authors and to our target audiences.

Quantitative Reasoning: Thinking in Numbers

by Eric Zaslow

Is college worth the cost? Should I worry about arsenic in my rice? Can we recycle pollution? Real questions of personal finance, public health, and social policy require sober, data-driven analyses. This unique text provides students with the tools of quantitative reasoning to answer such questions. The text models how to clarify the question, recognize and avoid bias, isolate relevant factors, gather data, and construct numerical analyzes for interpretation. Themes and techniques are repeated across chapters, with a progression in mathematical sophistication over the course of the book, which helps the student get comfortable with the process of thinking in numbers. This textbook includes references to source materials and suggested further reading, making it user-friendly for motivated undergraduate students. The many detailed problems and worked solutions in the text and extensive appendices help the reader learn mathematical areas such as algebra, functions, graphs, and probability. End-of-chapter problem material provides practice for students, and suggested projects are provided with each chapter. A solutions manual is available online for instructors.

The Theory of Groups (Dover Books on Mathematics)

by Hans J. Zassenhaus

Group theory represents one of the most fundamental elements of mathematics. Indispensable in nearly every branch of the field, concepts from the theory of groups also have important applications beyond mathematics, in such areas as quantum mechanics and crystallography.Hans J. Zassenhaus, a pioneer in the study of group theory, has designed this useful, well-written, graduate-level text to acquaint the reader with group-theoretic methods and to demonstrate their usefulness as tools in the solution of mathematical and physical problems. Starting with an exposition of the fundamental concepts of group theory, including an investigation of axioms, the calculus of complexes, and a theorem of Frobenius, the author moves on to a detailed investigation of the concept of homomorphic mapping, along with an examination of the structure and construction of composite groups from simple components. The elements of the theory of p-groups receive a coherent treatment, and the volume concludes with an explanation of a method by which solvable factor groups may be split off from a finite group.Many of the proofs in the text are shorter and more transparent than the usual, older ones, and a series of helpful appendixes presents material new to this edition. This material includes an account of the connections between lattice theory and group theory, and many advanced exercises illustrating both lattice-theoretical ideas and the extension of group-theoretical concepts to multiplicative domains.

The Pricing Model Revolution: How Pricing Will Change the Way We Sell and Buy On and Offline

by Danilo Zatta

An incisive and accessible blueprint to pricing your company’s products and services In The Pricing Model Revolution: How Pricing Will Change the Way We Sell and Buy On and Offline, world renowned pricing expert Danilo Zatta delivers an essential and engaging blueprint to building an enduring competitive advantage with insightful pricing models. In the book, you’ll learn to identify the best monetization approaches for your products and how to execute the one that makes the most sense for your business. From freemium to subscription, pay-per-use, and even neuropricing, the author discusses every available option and shows you how to choose. Although it's rigorous and evidence backed, The Pricing Model Revolution avoids an overly academic perspective in favour of providing you with concrete, practical guidance you can apply immediately to start generating more revenue. You’ll learn things like: How to make smart and innovative pricing a core component of your next product offering How to distinguish between every new, future-oriented monetization approach Which factors to consider when you’re choosing on a new pricing model for your most popular products An essential read for C-level executives, managers, entrepreneurs, and sales team leaders, The Pricing Model Revolution belongs on the bookshelves of every business leader seeking to learn more about one of the foundational topics driving top-line revenue and bottom-line profitability today.

Cultivating Mathematical Hearts: Culturally Responsive Mathematics Teaching in Elementary Classrooms (Corwin Mathematics Series)

by Maria del Zavala Julia Maria Aguirre

Help students see their whole selves in the math they′re learning with culturally responsive teaching. Cultivating Mathematical Hearts: Culturally Responsive Mathematics Teaching in Elementary Classrooms, aims to re-center mathematics as a humanizing endeavor because putting children and their humanity at the heart of mathematics education can result in more engaged, meaningful, and joyful learning. This book introduces a model and a tool for Culturally Responsive Mathematics Teaching, constructed to create a safe, inclusive space where all learners can come together in their own educational journey and develop a love for math that centers their experiences and comes from the heart. Implementing the Culturally Responsive Mathematics Teaching Tool (CRMT2) will help you cultivate and sustain meaningful, rich, and rigorous mathematical learning spaces for all your students–experiences that foster mathematical curiosity and joy. The book walks you through each aspect of the framework and tool, guiding you to consider how your classroom structures, lessons, tasks, and assessments: Honor the existing cultural strengths, experiences, and lived realities of all your students Elicit diverse mathematical thinking and ideas Support equitable access to rigorous mathematical learning and discourse for all students Invite a sense of agency in each student’s learning experience Promote high engagement and excitement while learning mathematics Nurture an understanding that mathematics is a powerful tool for making sense of the world By weaving these strategies into classroom lessons, teachers can humanize mathematics instruction to successfully build a love for math while providing equitable learning opportunities that empower student voice and promote success in mathematics.

Cultivating Mathematical Hearts: Culturally Responsive Mathematics Teaching in Elementary Classrooms (Corwin Mathematics Series)

by Maria del Zavala Julia Maria Aguirre

Help students see their whole selves in the math they′re learning with culturally responsive teaching. Cultivating Mathematical Hearts: Culturally Responsive Mathematics Teaching in Elementary Classrooms, aims to re-center mathematics as a humanizing endeavor because putting children and their humanity at the heart of mathematics education can result in more engaged, meaningful, and joyful learning. This book introduces a model and a tool for Culturally Responsive Mathematics Teaching, constructed to create a safe, inclusive space where all learners can come together in their own educational journey and develop a love for math that centers their experiences and comes from the heart. Implementing the Culturally Responsive Mathematics Teaching Tool (CRMT2) will help you cultivate and sustain meaningful, rich, and rigorous mathematical learning spaces for all your students–experiences that foster mathematical curiosity and joy. The book walks you through each aspect of the framework and tool, guiding you to consider how your classroom structures, lessons, tasks, and assessments: Honor the existing cultural strengths, experiences, and lived realities of all your students Elicit diverse mathematical thinking and ideas Support equitable access to rigorous mathematical learning and discourse for all students Invite a sense of agency in each student’s learning experience Promote high engagement and excitement while learning mathematics Nurture an understanding that mathematics is a powerful tool for making sense of the world By weaving these strategies into classroom lessons, teachers can humanize mathematics instruction to successfully build a love for math while providing equitable learning opportunities that empower student voice and promote success in mathematics.

Discrete Optimization in Architecture

by Machi Zawidzki

This book is comprised of two parts, both of which exploremodular systems: Pipe-Z (PZ) and Truss-Z (TZ), respectively. It presents severalmethods of creating PZ and TZ structures subjected to discrete optimization. The algorithms presented employ graph-theoretic and heuristic methods. Theunderlying idea of both systems is to create free-form structures using theminimal number of types of modular elements. PZ is more conceptual, as it formssingle-branch mathematical knots with a single type of module. Conversely, TZis a skeletal system for creating free-form pedestrian ramps and ramp networksamong any number of terminals in space. In physical space, TZ uses two types ofmodules that are mirror reflections of each other. The optimization criteriadiscussed include: the minimal number of units, maximal adherence to the givenguide paths, etc.

Discrete Optimization in Architecture

by Machi Zawidzki

This book is comprised of two parts, both of which exploremodular systems: Pipe-Z (PZ) and Truss-Z (TZ), respectively. It presents severalmethods of creating PZ and TZ structures subjected to discrete optimization. The algorithms presented employ graph-theoretic and heuristic methods. Theunderlying idea of both systems is to create free-form structures using theminimal number of types of modular elements. PZ is more conceptual, as it formssingle-branch mathematical knots with a single type of module. Conversely, TZis a skeletal system for creating free-form pedestrian ramps and ramp networksamong any number of terminals in space. In physical space, TZ uses two types ofmodules that are mirror reflections of each other. The optimization criteriadiscussed include: the minimal number of units, maximal adherence to the givenguide paths, etc.

Graph-Based Modelling in Science, Technology and Art (Mechanisms and Machine Science #107)

by Stanisław Zawiślak Jacek Rysiński

This book presents interdisciplinary, cutting-edge and creative applications of graph theory and modeling in science, technology, architecture and art. Topics are divided into three parts: the first one examines mechanical problems related to gears, planetary gears and engineering installations; the second one explores graph-based methods applied to medical analyses as well as biological and chemical modeling; and the third part includes various topics e.g. drama analysis, aiding of design activities and network visualisation. The authors represent several countries in Europe and America, and their contributions show how different, useful and fruitful the utilization of graphs in modelling of engineering systems can be. The book has been designed to serve readers interested in the subject of graph modelling and those with expertise in related areas, as well as members of the worldwide community of graph modelers.

Introductory Econometrics: Intuition, Proof, and Practice

by Jeffrey S. Zax

Introductory Econometrics: Intuition, Proof, and Practice attempts to distill econometrics into a form that preserves its essence, but that is acceptable--and even appealing--to the student's intellectual palate. This book insists on rigor when it is essential, but it emphasizes intuition and seizes upon entertainment wherever possible. Introductory Econometrics is motivated by three beliefs. First, students are, perhaps despite themselves, interested in questions that only econometrics can answer. Second, through these answers, they can come to understand, appreciate, and even enjoy the enterprise of econometrics. Third, this text, which presents select innovations in presentation and practice, can provoke readers' interest and encourage the responsible and insightful application of econometric techniques. In particular, author Jeffrey S. Zax gives readers many opportunities to practice proofs--which are challenging, but which he has found to improve student comprehension. Learning from proofs gives readers an organic understanding of the message behind the numbers, a message that will benefit them as they come across statistics in their daily lives. An ideal core text for foundational econometrics courses, this book is appropriate for any student with a solid understanding of basic algebra--and a willingness to use that tool to investigate complicated issues.

Fractional Integral Transforms: Theory and Applications

by Ahmed I. Zayed

Fractional Integral Transforms: Theory and Applications presents over twenty-five integral transforms, many of which have never before been collected in one single volume. Some transforms are classic, such as Laplace, Fourier, etc, and some are relatively new, such as the Fractional Fourier, Gyrator, Linear Canonical, Special Affine Fourier Transforms, as well as, continuous Wavelet, Ridgelet, and Shearlet transforms.The book provides an overview of the theory of fractional integral transforms with examples of such transforms, before delving deeper into the study of important fractional transforms, including the fractional Fourier transform. Applications of fractional integral transforms in signal processing and optics are highlighted. The book’s format has been designed to make it easy for readers to extract the essential information they need to learn the about the fundamental properties of each transform. Supporting proofs and explanations are given throughout.Features Brings together integral transforms never before collected into a single volume A useful resource on fractional integral transforms for researchers and graduate students in mathematical analysis, applied mathematics, physics and engineering Written in an accessible style with detailed proofs and emphasis on providing the reader with an easy access to the essential properties of important fractional integral transforms Ahmed I. Zayed is a Professor of Mathematics at the Department of Mathematical Sciences, DePaul University, Chicago, and was the Chair of the department for 20 years, from 2001 until 2021. His research interests varied over the years starting with generalized functions and distributions to sampling theory, applied harmonic analysis, special functions and integral transforms. He has published two books and edited seven research monographs. He has written 22 book chapters, published 118 research articles, and reviewed 173 publications for the Mathematical Review and 81 for the Zentralblatt für Mathematik (zbMath). He has served on the Editorial Boards of 22 scientific research journals and has refereed over 200 research papers submitted to prestigious journals, among them are IEEE, SIAM, Amer. Math. Soc., Math Physics, and Optical Soc. Journals.

Refine Search

Showing 23,451 through 23,475 of 23,752 results