Browse Results

Showing 24,151 through 24,175 of 100,000 results

Data Collection in Fragile States: Innovations from Africa and Beyond

by Johannes Hoogeveen Utz Pape

‘This open access book addresses an urgent issue on which little organized information exists. It reflects experience in Africa but is highly relevant to other fragile states as well.’ —Constantine Michalopoulos, John Hopkins University, USA and former Director of Economic Policy and Co-ordination at the World BankFragile countries face a triple data challenge. Up-to-date information is needed to deal with rapidly changing circumstances and to design adequate responses. Yet, fragile countries are among the most data deprived, while collecting new information in such circumstances is very challenging. This open access book presents innovations in data collection developed with decision makers in fragile countries in mind. Looking at innovations in Africa from mobile phone surveys monitoring the Ebola crisis, to tracking displaced people in Mali, this collection highlights the challenges in data collection researchers face and how they can be overcome.

Data Collection: Planning for and Collecting All Types of Data

by Patricia Pulliam Phillips Cathy A. Stawarski

Data Collection Data Collection is the second of six books in the Measurement and Evaluation Series from Pfeiffer. The proven ROI Methodology--developed by the ROI Institute--provides a practical system for evaluation planning, data collection, data analysis, and reporting. All six books in the series offer the latest tools, most current research, and practical advice for measuring ROI in a variety of settings. Data Collection offers an effective process for collecting data that is essential to the implementation of the ROI Methodology. The authors outline the techniques, processes, and critical issues involved in successful data collection. The book examines the various methods of data collection, including questionnaires, interviews, focus groups, observation, action plans, performance contracts, and monitoring records. Written for evaluators, facilitators, analysts, designers, coordinators, and managers, Data Collection is a valuable guide for collecting data that are adequate in quantity and quality to produce a complete and credible analysis.

Data Conscience: Algorithmic Siege on our Humanity

by Brandeis Hill Marshall

DATA CONSCIENCE ALGORITHMIC S1EGE ON OUR HUM4N1TY EXPLORE HOW D4TA STRUCTURES C4N HELP OR H1NDER SOC1AL EQU1TY Data has enjoyed ‘bystander’ status as we’ve attempted to digitize responsibility and morality in tech. In fact, data’s importance should earn it a spot at the center of our thinking and strategy around building a better, more ethical world. It’s use—and misuse—lies at the heart of many of the racist, gendered, classist, and otherwise oppressive practices of modern tech. In Data Conscience: Algorithmic Siege on our Humanity, computer science and data inclusivity thought leader Dr. Brandeis Hill Marshall delivers a call to action for rebel tech leaders, who acknowledge and are prepared to address the current limitations of software development. In the book, Dr. Brandeis Hill Marshall discusses how the philosophy of “move fast and break things” is, itself, broken, and requires change. You’ll learn about the ways that discrimination rears its ugly head in the digital data space and how to address them with several known algorithms, including social network analysis, and linear regression A can’t-miss resource for junior-level to senior-level software developers who have gotten their hands dirty with at least a handful of significant software development projects, Data Conscience also provides readers with: Discussions of the importance of transparency Explorations of computational thinking in practice Strategies for encouraging accountability in tech Ways to avoid double-edged data visualization Schemes for governing data structures with law and algorithms

Data Conversion: Calculating the Monetary Benefits

by Patricia Pulliam Phillips Holly Burkett

This book tackles the third major challenge and the second most difficult step in the ROI methodology: converting data to monetary values. When a particular project or program is connected to a business measure, the next logical question is: what is the monetary value of that impact? For ROI analysis, it is at this critical point where the monetary benefits are developed to compare to the costs of the program to calculate the ROI. Includes: the importance of converting data to monetary value; preliminary issues; standard values: the standard values: where to find them; using internal experts, using external databases; linking with other measures; using estimates; when to abandon conversion efforts and leave data as intangible, analyzing the intangibles; and reporting the intangibles.

Data Crush: How the Information Tidal Wave Is Driving New Business Opportunities

by Christopher Surdak

The Internet used to be a tool for telling your customers about your business. Now its real value lies in what it tells you about them. Every move your customers make online can be tracked, catalogued, and analyzed to better understand their preferences and predict their future behavior. And with mobile technology like smartphones, customers are online almost every second of every day. The companies that succeed going forward will be those that learn to leverage this torrent of information--without being drowned by it. Balancing examples from giants like Amazon, Home Depot, and Ford with newer players like Rovio, Groupon, and scores of niche-market winners, Data Crush examines the forces behind the explosive growth in data and reveals how the most innovative companies are responding to this challenge. The book clarifies the key drivers: the proliferation of "big data" generated by a never-ending range of online activities (and the mobility that enables much of it); the seemingly infinite array of digital commerce and entertainment pathways; and the rising growth of Cloud computing. These and other factors combine to create an overwhelming universe of valuable information--all constantly updated in real time with billions of mouse clicks each day. It's daunting, but with this onslaught of information comes tremendous opportunity--and Data Crush will help you make sense of it all.

Data Culture: Develop An Effective Data-Driven Organization

by Dr Shorful Islam

Organizations often start their data journey by either procuring the technology or hiring the people. However, without an effective data-driven culture in place, they can struggle to derive value from their investments.Data Culture explores how data leaders can develop and nurture a data-driven culture tailored to their organization's needs. It outlines the types of data leadership and teams needed and the key building blocks for success, such as team recruitment, building and training, leadership, process, behavioural change management, developing, sustaining and measuring a data culture, company values and everyday decision making. It also explores the nuances of how different types of data cultures work with different types of companies, what to avoid and the differences between building a data culture from scratch and changing an existing data culture from within.With this hands-on guide, senior data leader Shorful Islam takes readers through how to successfully establish or change a data culture, sharing his expertise in behavioural change psychology and two decades of experience in fostering data culture in organizations. Supported throughout by real-world examples and cases, this will be an essential read for all data leaders and anyone involved in developing a data-driven organizational culture.

Data Cultures in Higher Education: Emergent Practices and the Challenge Ahead (Higher Education Dynamics #59)

by Juliana E. Raffaghelli Albert Sangrà

This collection focuses on the role of higher education institutions concerning datafication as a complex phenomenon. It explores how the universities can develop data literac(ies) shaping tomorrow skills and “formae mentis” to face the most deleterious effects of datafication, but also to engage in creative and constructive ways with data. Notably, the book spots data practices within the two most relevant sides of academics’ professional practice, namely, research and teaching. Hence, the collection seeks to reflect on faculty’s professional learning about data infrastructures and practices.The book draws on a range of studies covering the higher education response to the several facets of data in society, from data surveillance and the algorithmic control of human behaviour to empowerment through the use of open data. The research reported ranges from literature overviews to multi-case and in-depth case studies illustrating institutional and educational responses to different problems connected to data. The ultimate intention is to provide conceptual bases and practical examples relating to universities’ faculty development policies to overcome data practices and discourses' fragmentation and contradictions: in a nutshell, to build “fair data cultures” in higher education.

Data Curious: Applying Agile Analytics for Better Business Decisions

by Carl Allchin Sarah Nabelsi

Data has been a missing part of most academic curriculums for a long time, and we're all being affected. During challenging times, creating a data-informed culture can help you pivot quickly or prevent expensive missteps. Developing a data curious organization will take advantage of the burgeoning data resources available as a result of increasing digitalization.With this book, authors Carl Allchin and Sarah Nabelsi show today's business professionals how to become data empowered. These tech-savvy business professionals will learn data literacy fundamentals—from understanding the possibilities to asking the right questions. You'll discover how to make the right technology choices and avoid pitfalls that could put your career and company at risk.Discover what an agile, empowered, data-driven organization should look likeExamine how to use data in new ways to help your business come to lifeLearn key terms and concepts around data management and analyticsUnderstand the differences between spreadsheet analysis and a data analytics pipelineGet advice for working with data scientists and explore ways to mitigate the IT department's concerns

Data Democratization with Domo: Bring together every component of your business to make better data-driven decisions using Domo

by Jeff Burtenshaw

Overcome data challenges at record speed and cloud-scale that optimize businesses by transforming raw data into dashboards and apps which democratize data consumption, supercharging results with the cloud-based solution, DomoKey FeaturesAcquire data and automate data pipelines quickly for any data volume, variety, and velocityPresent relevant stories in dashboards and custom apps that drive favorable outcomes using DomoShare information securely and govern content including Domo content embedded in other toolsBook DescriptionDomo is a power-packed business intelligence (BI) platform that empowers organizations to track, analyze, and activate data in record time at cloud scale and performance. Data Democratization with Domo begins with an overview of the Domo ecosystem. You'll learn how to get data into the cloud with Domo data connectors and Workbench; profile datasets; use Magic ETL to transform data; work with in-memory data sculpting tools (Data Views and Beast Modes); create, edit, and link card visualizations; and create card drill paths using Domo Analyzer. Next, you'll discover options to distribute content with real-time updates using Domo Embed and digital wallboards. As you advance, you'll understand how to use alerts and webhooks to drive automated actions. You'll also build and deploy a custom app to the Domo Appstore and find out how to code Python apps, use Jupyter Notebooks, and insert R custom models. Furthermore, you'll learn how to use Auto ML to automatically evaluate dozens of models for the best fit using SageMaker and produce a predictive model as well as use Python and the Domo Command Line Interface tool to extend Domo. Finally, you'll learn how to govern and secure the entire Domo platform. By the end of this book, you'll have gained the skills you need to become a successful Domo master.What you will learnUnderstand the Domo cloud data warehouse architecture and platformAcquire data with Connectors, Workbench, and Federated QueriesSculpt data using no-code Magic ETL, Data Views, and Beast ModesProfile data with the Data Dictionary, Data Profile, and Usage toolsUse a storytelling pattern to create dashboards with Domo StoriesCreate, share, and monitor custom alerts activated using webhooksCreate custom Domo apps, use the Domo CLI, and code with the Python APIAutomate model operations with Python programming and R scriptingWho this book is forThis book is for BI developers, ETL developers, and Domo users looking for a comprehensive, end-to-end guide to exploring Domo features for BI. Chief data officers, data strategists, architects, and BI managers interested in a new paradigm for integrated cloud data storage, data transformation, storytelling, content distribution, custom app development, governance, and security will find this book useful. Business analysts seeking new ways to tell relevant stories to shape business performance will also benefit from this book. A basic understanding of Domo will be helpful.

Data Driven

by Dj Patil Hilary Mason

Succeeding with data isn’t just a matter of putting Hadoop in your machine room, or hiring some physicists with crazy math skills. It requires you to develop a data culture that involves people throughout the organization. In this O’Reilly report, DJ Patil and Hilary Mason outline the steps you need to take if your company is to be truly data-driven—including the questions you should ask and the methods you should adopt.You’ll not only learn examples of how Google, LinkedIn, and Facebook use their data, but also how Walmart, UPS, and other organizations took advantage of this resource long before the advent of Big Data. No matter how you approach it, building a data culture is the key to success in the 21st century.You’ll explore:Data scientist skills—and why every company needs a SpockHow the benefits of giving company-wide access to data outweigh the costsWhy data-driven organizations use the scientific method to explore and solve data problemsKey questions to help you develop a research-specific process for tackling important issuesWhat to consider when assembling your data teamDeveloping processes to keep your data team (and company) engagedChoosing technologies that are powerful, support teamwork, and easy to use and learn

Data Driven

by Jenny Dearborn

A "how-to" guide to boosting sales through predictive andprescriptive analytics Data Driven is a uniquely practical guide to increasingsales success, using the power of data analytics. Written by one ofthe world's leading authorities on the topic, this book shows youhow to transform the corporate sales function by leveraging bigdata into better decision-making, more informed strategy, andincreased effectiveness throughout the organization. Engaging andinformative, this book tells the story of a newly hired sales chiefunder intense pressure to deliver higher performance from her team,and how data analytics becomes the ultimate driver behind the salesfunction turnaround. Each chapter features insightful commentaryand practical notes on the points the story raises, and one entirechapter is devoted solely to laying out the Prescriptive ActionModel step-by-step giving you the actionable guidance you need toput it into action in your own organization.Predictive and prescriptive analytics is poised to changecorporate sales, and companies that fail to adapt to the newrealities and adopt the new practices will be left behind. Thisbook explains why the Prescriptive Action Model is the keycorporate sales weapon of the 21st Century, and how you canimplement this dynamic new resource to bring value to yourbusiness.Exploit one of the last remaining sources of competitiveadvantageRe-engineer the sales function to optimize success ratesImplement a more effective analytics model to drive efficientchangeBoost operational effectiveness and decision making with bigdataThere are fewer competitive edges to gain than ever before. Theonly thing that's left is to execute business with maximumefficiency and make the smartest business decisions possible.Predictive analytics is the essential method behind this newstandard, and Data Driven is the practical guide tocomplete, efficient implementation.

Data Driven

by Thomas C. Redman

Your company's data has the potential to add enormous value to every facet of the organization -- from marketing and new product development to strategy to financial management. Yet if your company is like most, it's not using its data to create strategic advantage. Data sits around unused -- or incorrect data fouls up operations and decision making.In Data Driven, Thomas Redman, the "Data Doc," shows how to leverage and deploy data to sharpen your company's competitive edge and enhance its profitability. The author reveals:· The special properties that make data such a powerful asset· The hidden costs of flawed, outdated, or otherwise poor-quality data· How to improve data quality for competitive advantage· Strategies for exploiting your data to make better business decisions· The many ways to bring data to market· Ideas for dealing with political struggles over data and concerns about privacy rightsYour company's data is a key business asset, and you need to manage it aggressively and professionally. Whether you're a top executive, an aspiring leader, or a product-line manager, this eye-opening book provides the tools and thinking you need to do that.

Data Driven Approaches for Healthcare: Machine learning for Identifying High Utilizers (Chapman & Hall/CRC Big Data Series)

by Sanjay Ranka Chengliang Yang Chris Delcher Elizabeth Shenkman

Health care utilization routinely generates vast amounts of data from sources ranging from electronic medical records, insurance claims, vital signs, and patient-reported outcomes. Predicting health outcomes using data modeling approaches is an emerging field that can reveal important insights into disproportionate spending patterns. This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges uniquely posed by this problem. Key Features: Introduces basic elements of health care data, especially for administrative claims data, including disease code, procedure codes, and drug codes Provides tailored supervised and unsupervised machine learning approaches for understanding and predicting the high utilizers Presents descriptive data driven methods for the high utilizer population Identifies a best-fitting linear and tree-based regression model to account for patients’ acute and chronic condition loads and demographic characteristics

Data Driven Decisions: Systems Engineering to Understand Corporate Value and Intangible Assets

by Joshua Jahani

Expand your enterprise into new regions using systems engineering and data analysis In Data Driven Decisions: Systems Engineering to Understand Corporate Valuation and Intangible Assets, investment banker, systems engineer, and Cornell University lecturer Joshua Michael Jahani delivers an incisive and unique unveiling of how to use the tools of systems engineering to value your organization, its intangible assets, and how to gauge or prepare its readiness for an overseas or cross-border expansion. In the book, you’ll learn to implement a wide range of systems engineering tools, including context diagrams, decision matrices, Goal-Question-Metric analyses, and more. You’ll also discover the following: How to communicate corporate value measurements and their impact to owners, executives, and investors. Explorations of the relevant topics when considering an international expansion, including macroeconomics, joint ventures, market entry, corporate valuations, mergers and acquisitions, and company culture. A comprehensive framework and methodology for examining available global regions in your search for the perfect expansion target. A deep understanding of specific sectors in which intangible assets have a particular impact, including branded consumer products, ad-tech, and healthcare.A must-have resource for business owners, managers, executives, directors, and other corporate leaders, Data-Driven Decisions will also prove invaluable to consultants and other professionals who serve companies considering expansion or growth into new regions.

Data Driven Energy Centered Maintenance (Energy Management)

by Marvin T. Howell Fadi Alshakhshir

Over recent years, many new technologies have been introduced to drive the digital transformation in the building maintenance industry. The current trend in digital evolution involves data-driven decision making which opens new opportunities for an energy centered maintenance model. Artificial Intelligence and Machine Learning are helping the maintenance team to get to the next level of maintenance intelligence to provide real-time early warning of abnormal equipment performance. This edition follows the same methodology as the First. It provides detailed descriptions of the latest technologies associated with Artificial Intelligence and Machine Learning which enable data-driven decision-making processes about the equipment’s operation and maintenance. Technical topics discussed in the book include: Different Maintenance Types and The Need for Energy Centered Maintenance The Centered Maintenance Model Energy Centered Maintenance Process Measures of Equipment and Maintenance Efficiency and Effectiveness Data-Driven Energy Centered Maintenance Model: Digitally Enabled Energy Centered Maintenance Tasks Artificial Intelligence and Machine Learning in Energy Centered Maintenance Model Capabilities and Analytics Rules Building Management System Schematics The book contains a detailed description of the digital transformation process of most of the maintenance inspection tasks as they move away from being manually triggered. The book is aimed at building operators as well as those building automation companies who are working continuously to digitalize building operation and maintenance procedures. The benefits are reductions in the equipment failure rate, improvements in equipment reliability, increases in equipment efficiency and extended equipment lifespan.

Data Driven Marketing For Dummies

by David Semmelroth

Embrace data and use it to sell and market your productsData is everywhere and it keeps growing and accumulating. Companies need to embrace big data and make it work harder to help them sell and market their products. Successful data analysis can help marketing professionals spot sales trends, develop smarter marketing campaigns, and accurately predict customer loyalty. Data Driven Marketing For Dummies helps companies use all the data at their disposal to make current customers more satisfied, reach new customers, and sell to their most important customer segments more efficiently.Identifying the common characteristics of customers who buy the same products from your company (or who might be likely to leave you)Tips on using data to predict customer purchasing behavior based on past performanceUsing customer data and marketing analytics to predict when customers will purchase certain itemsInformation on how data collected can help with merchandise planningBreaking down customers into segments for easier market targetingBuilding a 360 degree view of a customer baseData Driven Marketing For Dummies assists marketing professionals at all levels of business in accelerating sales through analytical insights.

Data Driven Science for Clinically Actionable Knowledge in Diseases (Analytics and AI for Healthcare)

by Quang Vinh Nguyen Simeon J. Simoff Daniel R. Catchpoole Paul J. Kennedy

Data-driven science has become a major decision-making aid for the diagnosis and treatment of disease. Computational and visual analytics enables effective exploration and sense making of large and complex data through the deployment of appropriate data science methods, meaningful visualisation and human-information interaction. This edited volume covers state-of-the-art theory, method, models, design, evaluation and applications in computational and visual analytics in desktop, mobile and immersive environments for analysing biomedical and health data. The book is focused on data-driven integral analysis, including computational methods and visual analytics practices and solutions for discovering actionable knowledge in support of clinical actions in real environments. By studying how data and visual analytics have been implemented into the healthcare domain, the book demonstrates how analytics influences the domain through improving decision making, specifying diagnostics, selecting the best treatments and generating clinical certainty.

Data Driven: An Introduction to Management Consulting in the 21st Century (Management for Professionals)

by Jeremy David Curuksu

This book is a “scientific” introduction to management consulting that covers elementary and more advanced concepts, such as strategy and client-relationship. It discusses the emerging role of information technologies in consulting activities and introduces the essential tools in data science, assuming no technical background. Drawing on extensive literature reviews with more than 200 peer reviewed articles, reports, books and surveys referenced, this book has at least four objectives: to be scientific, modern, complete and concise. An interactive version of some sections (industry snapshots, method toolbox) is freely accessible at econsultingdata.com.

Data Driven: Truckers, Technology, and the New Workplace Surveillance

by Karen Levy

A behind-the-scenes look at how digital surveillance is affecting the trucking way of lifeLong-haul truckers are the backbone of the American economy, transporting goods under grueling conditions and immense economic pressure. Truckers have long valued the day-to-day independence of their work, sharing a strong occupational identity rooted in a tradition of autonomy. Yet these workers increasingly find themselves under many watchful eyes. Data Driven examines how digital surveillance is upending life and work on the open road, and raises crucial questions about the role of data collection in broader systems of social control.Karen Levy takes readers inside a world few ever see, painting a bracing portrait of one of the last great American frontiers. Federal regulations now require truckers to buy and install digital monitors that capture data about their locations and behaviors. Intended to address the pervasive problem of trucker fatigue by regulating the number of hours driven each day, these devices support additional surveillance by trucking firms and other companies. Traveling from industry trade shows to law offices and truck-stop bars, Levy reveals how these invasive technologies are reconfiguring industry relationships and providing new tools for managerial and legal control—and how truckers are challenging and resisting them.Data Driven contributes to an emerging conversation about how technology affects our work, institutions, and personal lives, and helps to guide our thinking about how to protect public interests and safeguard human dignity in the digital age.

Data Enclaves

by Kean Birch

This book focuses on our increasing dependence upon Big Tech to live, manage, and enjoy our lives. The author examines how we freely exchange our personal data for access to online platforms, services, and devices without proper consideration of the implications of this trade. Our personal data is the defining resource of the emerging digital economy, and it is increasingly concentrated in a few data enclaves controlled by Big Tech firms, cementing an increasingly parasitic form of technoscientific innovation. Big Tech controls access to these data, dictates the terms of our use of their services and products, and controls the future development of key technologies like artificial intelligence. The contention of this book is that we need to rethink our political and policy approach to data governance and to do so requires unpacking the peculiarities of personal data and how personal data are transformed into a valuable asset.

Data Engineering with Alteryx: Helping data engineers apply DataOps practices with Alteryx

by Paul Houghton

Build and deploy data pipelines with Alteryx by applying practical DataOps principlesKey FeaturesLearn DataOps principles to build data pipelines with AlteryxBuild robust data pipelines with Alteryx DesignerUse Alteryx Server and Alteryx Connect to share and deploy your data pipelinesBook DescriptionAlteryx is a GUI-based development platform for data analytic applications.Data Engineering with Alteryx will help you leverage Alteryx's code-free aspects which increase development speed while still enabling you to make the most of the code-based skills you have.This book will teach you the principles of DataOps and how they can be used with the Alteryx software stack. You'll build data pipelines with Alteryx Designer and incorporate the error handling and data validation needed for reliable datasets. Next, you'll take the data pipeline from raw data, transform it into a robust dataset, and publish it to Alteryx Server following a continuous integration process.By the end of this Alteryx book, you'll be able to build systems for validating datasets, monitoring workflow performance, managing access, and promoting the use of your data sources.What you will learnBuild a working pipeline to integrate an external data sourceDevelop monitoring processes for the pipeline exampleUnderstand and apply DataOps principles to an Alteryx data pipelineGain skills for data engineering with the Alteryx software stackWork with spatial analytics and machine learning techniques in an Alteryx workflow Explore Alteryx workflow deployment strategies using metadata validation and continuous integrationOrganize content on Alteryx Server and secure user accessWho this book is forIf you're a data engineer, data scientist, or data analyst who wants to set up a reliable process for developing data pipelines using Alteryx, this book is for you. You'll also find this book useful if you are trying to make the development and deployment of datasets more robust by following the DataOps principles. Familiarity with Alteryx products will be helpful but is not necessary.

Data Engineering: Mining, Information and Intelligence (International Series in Operations Research & Management Science #132)

by John Talburt Terry M. Talley Yupo Chan

DATA ENGINEERING: Mining, Information, and Intelligence describes applied research aimed at the task of collecting data and distilling useful information from that data. Most of the work presented emanates from research completed through collaborations between Acxiom Corporation and its academic research partners under the aegis of the Acxiom Laboratory for Applied Research (ALAR). Chapters are roughly ordered to follow the logical sequence of the transformation of data from raw input data streams to refined information. Four discrete sections cover Data Integration and Information Quality; Grid Computing; Data Mining; and Visualization. Additionally, there are exercises at the end of each chapter. The primary audience for this book is the broad base of anyone interested in data engineering, whether from academia, market research firms, or business-intelligence companies. The volume is ideally suited for researchers, practitioners, and postgraduate students alike. With its focus on problems arising from industry rather than a basic research perspective, combined with its intelligent organization, extensive references, and subject and author indices, it can serve the academic, research, and industrial audiences.

Data Envelopment Analysis in the Financial Services Industry: A Guide for Practitioners and Analysts Working in Operations Research Using DEA (International Series in Operations Research & Management Science #266)

by H. David Sherman Joseph C. Paradi Fai Keung Tam

This book presents the methodology and applications of Data Envelopment Analysis (DEA) in measuring productivity, efficiency and effectiveness in Financial Services firms such as banks, bank branches, stock markets, pension funds, mutual funds, insurance firms, credit unions, risk tolerance, and corporate failure prediction. Financial service DEA research includes banking; insurance businesses; hedge, pension and mutual funds; and credit unions. Significant business transactions among financial service organizations such as bank mergers and acquisitions and valuation of IPOs have also been the focus of DEA research. The book looks at the range of DEA uses for financial services by presenting prior studies, examining the current capabilities reflected in the most recent research, and projecting future new uses of DEA in finance related applications.

Data Envelopment Analysis with GAMS: A Handbook on Productivity Analysis and Performance Measurement (International Series in Operations Research & Management Science #338)

by Ali Emrouznejad Vincent Charles Konstantinos Petridis

This book provides a comprehensive and practical introduction to Data Envelopment Analysis (DEA). It explains how this non-parametric technique is used to measure performance and extract efficiency from homogeneous entities within a production procedure. It situates DEA within a growing field of productivity analysis and performance measurement, for which numerous models have been proposed. This book encapsulates all of the advances in DEA models proposed in the literature. These models are presented in the context of the GAMS software, which is a powerful tool for mathematical programming models. This book serves two educational purposes: it introduces readers to DEA models and provides examples using GAMS. In addition, the reader is introduced to GAMS programming, as well as innovative and practical applications. GAMS codes are available for free, allowing readers to test and expand the models to meet their specific needs.

Data Envelopment Analysis with R (Studies in Fuzziness and Soft Computing #386)

by Ali Ebrahimnejad Farhad Hosseinzadeh Lotfi Mohsen Vaez-Ghasemi Zohreh Moghaddas

This book introduces readers to the use of R codes for optimization problems. First, it provides the necessary background to understand data envelopment analysis (DEA), with a special emphasis on fuzzy DEA. It then describes DEA models, including fuzzy DEA models, and shows how to use them to solve optimization problems with R. Further, it discusses the main advantages of R in optimization problems, and provides R codes based on real-world data sets throughout. Offering a comprehensive review of DEA and fuzzy DEA models and the corresponding R codes, this practice-oriented reference guide is intended for masters and Ph.D. students in various disciplines, as well as practitioners and researchers.

Refine Search

Showing 24,151 through 24,175 of 100,000 results