Browse Results

Showing 25,576 through 25,600 of 100,000 results

Data Envelopment Analysis: A Handbook of Models and Methods (International Series in Operations Research & Management Science #221)

by Joe Zhu

This handbook compiles state-of-the-art empirical studies and applications using Data Envelopment Analysis (DEA). It includes a collection of 18 chapters written by DEA experts. Chapter 1 examines the performance of CEOs of U. S. banks and thrifts. Chapter 2 describes the network operational structure of transportation organizations and the relative network data envelopment analysis model. Chapter 3 demonstrates how to use different types of DEA models to compute total-factor energy efficiency scores with an application to energy efficiency. In chapter 4, the authors explore the impact of incorporating customers' willingness to pay for service quality in benchmarking models on cost efficiency of distribution networks, and chapter 5 provides a brief review of previous applications of DEA to the professional baseball industry, followed by two detailed applications to Major League Baseball. Chapter 6 examines efficiency and productivity of U. S. property-liability (P-L) insurers using DEA, while chapter 7 presents a two-stage network DEA model that decomposes the overall efficiency of a decision-making unit into two components. Chapter 8 presents a review of the literature of DEA models for the perfoemance assessment of mutual funds, and chapter 9 discusses the management strategies formulation of the international tourist hotel industry in Taiwan. Chapter 10 presents a novel use of the two-stage network DEA to evaluate sustainable product design performances. In chapter 11 authors highlight limitations of some DEA environmental efficiency models, and chapter 12 reviews applications of DEA in secondary and tertiary education. Chapter 13 measures the relative performance of New York State school districts in the 2011-2012 academic year. Chapter 14 provides an introductory prelude to chapters 15 and 16, which both provide detailed applications of DEA in marketing. Chapter 17 then shows how to decompose a new total factor productivity index that satisfies all economically-relevant axioms from index theory with an application to U. S. agriculture. Finally, chapter 18 presents a unique study that conducts a DEA research front analysis, applying a network clustering method to group the DEA literature over the period 2000 to 2014.

Data Envelopment Analysis in the Financial Services Industry: A Guide for Practitioners and Analysts Working in Operations Research Using DEA (International Series in Operations Research & Management Science #266)

by H. David Sherman Joseph C. Paradi Fai Keung Tam

This book presents the methodology and applications of Data Envelopment Analysis (DEA) in measuring productivity, efficiency and effectiveness in Financial Services firms such as banks, bank branches, stock markets, pension funds, mutual funds, insurance firms, credit unions, risk tolerance, and corporate failure prediction. Financial service DEA research includes banking; insurance businesses; hedge, pension and mutual funds; and credit unions. Significant business transactions among financial service organizations such as bank mergers and acquisitions and valuation of IPOs have also been the focus of DEA research. The book looks at the range of DEA uses for financial services by presenting prior studies, examining the current capabilities reflected in the most recent research, and projecting future new uses of DEA in finance related applications.

Data Envelopment Analysis with GAMS: A Handbook on Productivity Analysis and Performance Measurement (International Series in Operations Research & Management Science #338)

by Ali Emrouznejad Konstantinos Petridis Vincent Charles

This book provides a comprehensive and practical introduction to Data Envelopment Analysis (DEA). It explains how this non-parametric technique is used to measure performance and extract efficiency from homogeneous entities within a production procedure. It situates DEA within a growing field of productivity analysis and performance measurement, for which numerous models have been proposed. This book encapsulates all of the advances in DEA models proposed in the literature. These models are presented in the context of the GAMS software, which is a powerful tool for mathematical programming models. This book serves two educational purposes: it introduces readers to DEA models and provides examples using GAMS. In addition, the reader is introduced to GAMS programming, as well as innovative and practical applications. GAMS codes are available for free, allowing readers to test and expand the models to meet their specific needs.

Data Envelopment Analysis with R (Studies in Fuzziness and Soft Computing #386)

by Farhad Hosseinzadeh Lotfi Ali Ebrahimnejad Mohsen Vaez-Ghasemi Zohreh Moghaddas

This book introduces readers to the use of R codes for optimization problems. First, it provides the necessary background to understand data envelopment analysis (DEA), with a special emphasis on fuzzy DEA. It then describes DEA models, including fuzzy DEA models, and shows how to use them to solve optimization problems with R. Further, it discusses the main advantages of R in optimization problems, and provides R codes based on real-world data sets throughout. Offering a comprehensive review of DEA and fuzzy DEA models and the corresponding R codes, this practice-oriented reference guide is intended for masters and Ph.D. students in various disciplines, as well as practitioners and researchers.

Data Ethics: Practical Strategies for Implementing Ethical Information Management and Governance

by Katherine O'Keefe Daragh O Brien

Data-gathering technology is more sophisticated than ever, as are the ethical standards for using this data. This second edition shows how to navigate this complex environment.Data Ethics provides a practical framework for the implementation of ethical principles into information management systems. It shows how to assess the types of ethical dilemmas organizations might face as they become more data-driven. This fully updated edition includes guidance on sustainability and environmental management and on how ethical frameworks can be standardized across cultures that have conflicting values. There is also discussion of data colonialism, the challenge of ethical trade-offs with ad-tech and analytics such as Covid-19 tracking systems and case studies on Smart Cities and Demings Principles.As the pace of developments in data-processing technology continues to increase, it is vital to capitalize on the opportunities this affords while ensuring that ethical standards and ideals are not compromised. Written by internationally regarded experts in the field, Data Ethics is the essential guide for students and practitioners to optimizing ethical data standards in organizations.

Data-First Marketing: How To Compete and Win In the Age of Analytics

by Janet Driscoll Miller Julia Lim

Supercharge your marketing strategy with data analytics In Data-First Marketing: How to Compete & Win in the Age of Analytics, distinguished authors Miller and Lim demystify the application of data analytics to marketing in any size business. Digital transformation has created a widening gap between what the CEO and business expect marketing to do and what the CMO and the marketing organization actually deliver. The key to unlocking the true value of marketing is data – from actual buyer behavior to targeting info on social media platforms to marketing’s own campaign metrics. Data is the next big battlefield for not just marketers, but also for the business because the judicious application of data analytics will create competitive advantage in the Age of Analytics. Miller and Lim show marketers where to start by leveraging their decades of experience to lay out a step-by-step process to help businesses transform into data-first marketing organizations. The book includes a self-assessment which will help to place your organization on the Data-First Marketing Maturity Model and serve as a guide for which steps you might need to focus on to complete your own transformation. Data-First Marketing: How to Compete & Win in the Age of Analytics should be used by CMOs and heads of marketing to institute a data-first approach throughout the marketing organization. Marketing staffers can pick up practical tips for incorporating data in their daily tasks using the Data-First Marketing Campaign Framework. And CEOs or anyone in the C-suite can use this book to see what is possible and then help their marketing teams to use data analytics to increase pipeline, revenue, customer loyalty – anything that drives business growth.

Data Flood: Helping the Navy Address the Rising Tide of Sensor Information

by Evan Saltzman Bradley Wilson Erin-Elizabeth Johnson Shane Tierney Isaac R. Porche

Navy analysts are struggling to keep pace with the growing flood of data collected by intelligence, surveillance, and reconnaissance sensors. This challenge is sure to intensify as the Navy continues to field new and additional sensors. The authors explore options for solving the Navy's "big data" challenge, considering changes across four dimensions: people, tools and technology, data and data architectures, and demand and demand management.

The Data Game: Controversies in Social Science Statistics (Habitat Guides)

by Mark Maier Jennifer Imazeki

This book introduces students to the collection, uses, and interpretation of statistical data in the social sciences. It would suit all social science introductory statistics and research methods courses. Separate chapters are devoted to data in the fields of demography, housing, health, education, crime, the economy, wealth, income, poverty, labor, business statistics, and public opinion polling, with a concluding chapter devoted to the common problem of ambiguity. Each chapter includes multiple case studies illustrating the controversies, overview of data sources including web sites, chapter summary and a set of case study questions designed to stimulate further thought.

Data.gov (Abridged)

by Karim R. Lakhani Robert D. Austin Yumi Yi

This case presents the logic and execution underlying the launch of Data.gov, an instantiation of President Obama's initiative for transparency and open government. The process used by Vivek Kundra, the federal CIO, and his team to rapidly develop the website and to make available high-value data sets for reuse is highlighted. The case recounts Kundra's experience at the state and local government levels in developing open data initiatives and the application of that experience to the federal government. The case demonstrates the benefits of making government data available in terms of both engaged citizens and the potential for new innovations from the private sector. Potential drawbacks of open access including security and privacy issues are illustrated. Issues related to the role of government in releasing data and the balance between accountability and private-sector innovation are explored.

Data Governance: From the Fundamentals to Real Cases

by Ismael Caballero Mario Piattini

This book presents a set of models, methods, and techniques that allow the successful implementation of data governance (DG) in an organization and reports real experiences of data governance in different public and private sectors. To this end, this book is composed of two parts. Part I on “Data Governance Fundamentals” begins with an introduction to the concept of data governance that stresses that DG is not primarily focused on databases, clouds, or other technologies, but that the DG framework must be understood by business users, systems personnel, and the systems themselves alike. Next, chapter 2 addresses crucial topics for DG, such as the evolution of data management in organizations, data strategy and policies, and defensive and offensive approaches to data strategy. Chapter 3 then details the central role that human resources play in DG, analysing the key responsibilities of the different DG-related roles and boards, while chapter 4 discusses the most common barriers to DG in practice. Chapter 5 summarizes the paradigm shifts in DG from control to value creation. Subsequently chapter 6 explores the needs, characteristics and key functionalities of DG tools, before this part ends with a chapter on maturity models for data governance. Part II on “Data Governance Applied” consists of five chapters which review the situation of DG in different sectors and industries. Details about DG in the banking sector, public administration, insurance companies, healthcare and telecommunications each are presented in one chapter. The book is aimed at academics, researchers and practitioners (especially CIOs, Data Governors, or Data Stewards) involved in DG. It can also serve as a reference for courses on data governance in information systems.

Data Governance and Compliance: Evolving to Our Current High Stakes Environment

by Rupa Mahanti

This book sets the stage of the evolution of corporate governance, laws and regulations, other forms of governance, and the interaction between data governance and other corporate governance sub-disciplines. Given the continuously evolving and complex regulatory landscape and the growing number of laws and regulations, compliance is a widely discussed issue in the field of data. This book considers the cost of non-compliance bringing in examples from different industries of instances in which companies failed to comply with rules, regulations, and other legal obligations, and goes on to explain how data governance helps in avoiding such pitfalls.The first in a three-volume series on data governance, this book does not assume any prior or specialist knowledge in data governance and will be highly beneficial for IT, management and law students, academics, information management and business professionals, and researchers to enhance their knowledge and get guidance in managing their own data governance projects from a governance and compliance perspective.

Data Governance and Data Management: Contextualizing Data Governance Drivers, Technologies, and Tools

by Rupa Mahanti

This book delves into the concept of data as a critical enterprise asset needed for informed decision making, compliance, regulatory reporting and insights into trends, behaviors, performance and patterns. With good data being key to staying ahead in a competitive market, enterprises capture and store exponential volumes of data. Considering the business impact of data, there needs to be adequate management around it to derive the best value. Data governance is one of the core data management related functions. However, it is often overlooked, misunderstood or confused with other terminologies and data management functions. Given the pervasiveness of data and the importance of data, this book provides comprehensive understanding of the business drivers for data governance and benefits of data governance, the interactions of data governance function with other data management functions and various components and aspects of data governance that can be facilitated by technology and tools, the distinction between data management tools and data governance tools, the readiness checks to perform before exploring the market to purchase a data governance tool, the different aspects that must be considered when comparing and selecting the appropriate data governance technologies and tools from large number of options available in the marketplace and the different market players that provide tools for supporting data governance. This book combines the data and data governance knowledge that the author has gained over years of working in different industrial and research programs and projects associated with data, processes and technologies with unique perspectives gained through interviews with thought leaders and data experts. This book is highly beneficial for IT students, academicians, information management and business professionals and researchers to enhance their knowledge and get guidance on implementing data governance in their own data initiatives.

Data Governance and the Digital Economy in Asia: Harmonising Cross-Border Data Flows (Routledge Studies in the Modern World Economy)

by Paul Cheung Liu Jingting Ulrike Sengstschmid

Data governance is the cornerstone of digital economy growth, particularly in Asia, where both the digital economy and the policy space are fast expanding. The chapters collected in this volume delve into how diverse and rapidly evolving data governance models of ASEAN countries and their Asian partners are shaping the regional digital economy integration, particularly through cross-border data flows.The book begins with an examination of the diffusion of data governance rules globally and their economic impacts on a macro level. It then delves into a regional analysis, emphasising the interplay between data governance and economic development. Key discussions include data policies in India, China, South Korea, and ASEAN countries, enriched with insights from industry leaders. The book evaluates the role of regional and international trade agreements in facilitating digital trade and explores the consequences of widely differing data governance models for the ASEAN regional economy, with a special focus on implications for ASEAN’s Digital Economy Framework Agreement.Written for scholars of digital economy, data governance, and digital trade, this book provides a thorough understanding of Asia’s data regulatory environment. Policymakers and industry professionals will also find the book’s insights into the intricacies of digital economy policies and their implications useful in navigating the future of digital economic integration and growth in the ASEAN region.

Data Governance for Managers: The Driver of Value Stream Optimization and a Pacemaker for Digital Transformation (Management for Professionals)

by Lars Michael Bollweg

Professional data management is the foundation for the successful digital transformation of traditional companies. Unfortunately, many companies fail to implement data governance because they do not fully understand the complexity of the challenge (organizational structure, employee empowerment, change management, etc.) and therefore do not include all aspects in the planning and implementation of their data governance. This book explains the driving role that a responsive data organization can play in a company's digital transformation. Using proven process models, the book takes readers from the basics, through planning and implementation, to regular operations and measuring the success of data governance. All the important decision points are highlighted, and the advantages and disadvantages are discussed in order to identify digitization potential, implement it in the company, and develop customized data governance. The book will serve as a useful guide for interested newcomers as well as for experienced managers.

Data Governance für Manager: Datengetriebene Prozess- und Systemoptimierung als Taktgeber der digitalen Transformation

by Lars Michael Bollweg

Dieses Fachbuch führt den Leser in fünf Buchteilen und mit der Hilfe praxiserprobter Vorgehensmodelle von den Grundlagen (Was ist Data Governance?), über die Planung (Welche Gestaltungsoptionen habe ich?) und Implementierung (Wie kann ich Data Governance im Unternehmen einführen?) bis zum Regelbetrieb (Wie kann ich Mehrwerte erzielen?) und der Erfolgsmessung einer Data Governance. Wie jedes Unternehmen ist auch jede Data Governance anders, deshalb werden alle wichtigen Entscheidungspunkte aufgezeigt, die Vor- und Nachteile diskutiert, um dem Leser, die Möglichkeit zu bieten, eine maßgeschneiderte Data Governance zu entwickeln.Ein professionelles Datenmanagement (Data Governance) ist die Grundlage für die erfolgreiche digitale Transformation traditioneller Unternehmen. Leider scheitern eine Vielzahl an Unternehmen an der Einführung einer Data Governance, weil sie die Komplexität der Herausforderung (Organisationsaufbau, Befähigung der Mitarbeiter, Change Management etc.) nicht vollständig überblicken und deshalb nicht alle Aspekte mit in die Planung und Umsetzung ihrer Data Governance miteinbeziehen. Hier setzt dieses Buch an: Es erläutert die treibende Rolle, die eine reaktionsfähige Datenorganisation innerhalb der digitalen Transformation eines Unternehmens einnehmen kann. Der Leser wird befähigt, Digitalisierungspotenziale aufzuzeigen und diese im Unternehmen in die Umsetzung zu überführen.Der InhaltGrundlagen Data GovernanceErfolgsfaktoren der ImplementierungEntwicklung eines reaktionsfähigen Operating Model Data Governance als Treiber der Wertstromoptimierung und Taktgeber der digitalen TransformationErfolgsmessung einer Data Governance

The Data Governance Imperative: A Business Strategy for Corporate Data

by Steve Sarsfield

Attention to corporate information has never been more important than now. The ability to generate accurate business intelligence, accurate financial reports and to understand your business relies on better processes and personal commitment to clean data. Every byte of data that resides inside your company, and some that resides outside its walls, has the potential to make you stronger by giving you the agility, speed and intelligence that none of your competitors yet have. Data governance is the term given to changing the hearts and minds of your company to see the value of such information quality. "The Data Governance Imperative" is a business person's view of data governance. This practical book covers both strategies and tactics around managing a data governance initiative. The author, Steve Sarsfield, works for a major enterprise software company and is a leading expert in data quality and data governance, focusing on the business perspectives that are important to data champions, front-office employees, and executives.

Data Governance Success: Growing and Sustaining Data Governance

by Rupa Mahanti

While good data is an enterprise asset, bad data is an enterprise liability. Data governance enables you to effectively and proactively manage data assets throughout the enterprise by providing guidance in the form of policies, standards, processes and rules and defining roles and responsibilities outlining who will do what, with respect to data. While implementing data governance is not rocket science, it is not a simple exercise. There is a lot confusion around what data governance is, and a lot of challenges in the implementation of data governance. Data governance is not a project or a one-off exercise but a journey that involves a significant amount of effort, time and investment and cultural change and a number of factors to take into consideration to achieve and sustain data governance success. Data Governance Success: Growing and Sustaining Data Governance is the third and final book in the Data Governance series and discusses the following:• Data governance perceptions and challenges • Key considerations when implementing data governance to achieve and sustain success• Strategy and data governance• Different data governance maturity frameworks• Data governance – people and process elements• Data governance metricsThis book shares the combined knowledge related to data and data governance that the author has gained over the years of working in different industrial and research programs and projects associated with data, processes, and technologies and unique perspectives of Thought Leaders and Data Experts through Interviews conducted. This book will be highly beneficial for IT students, academicians, information management and business professionals and researchers to enhance their knowledge to support and succeed in data governance implementations. This book is technology agnostic and contains a balance of concepts and examples and illustrations making it easy for the readers to understand and relate to their own specific data projects.

Data Infrastructure Management: Insights and Strategies

by Greg Schulz

This book looks at various application and data demand drivers, along with data infrastructure options from legacy on premise, public cloud, hybrid, software-defined data center (SDDC), software data infrastructure (SDI), container as well as serverless along with infrastructure as a Service (IaaS), IT as a Service (ITaaS) along with related technology, trends, tools, techniques and strategies. Filled with example scenarios, tips and strategy considerations, the book covers frequently asked questions and answers to aid strategy as well as decision-making.

Data Integration in the Life Sciences: 12th International Conference, DILS 2017, Luxembourg, Luxembourg, November 14-15, 2017, Proceedings (Lecture Notes in Computer Science #10649)

by Marcos Da Silveira Cédric Pruski Reinhard Schneider

This book constitutes the proceedings of the 12th International Conference on Data Integration in the Life Sciences, DILS 2017, held in Luxembourg, in November 2017. The 5 full papers and 5 short papers presented in this volume were carefully reviewed and selected from 16 submissions. They cover topics such as: life science data modelling; analysing, indexing, and querying life sciences datasets; annotating, matching, and sharing life sciences datasets; privacy and provenance of life sciences datasets.

Data-Intensive Science (Chapman And Hall/crc Computational Science Ser. #18)

by Terence Critchlow Kerstin Kleese Van Dam

Data-intensive science has the potential to transform scientific research and quickly translate scientific progress into complete solutions, policies, and economic success. But this collaborative science is still lacking the effective access and exchange of knowledge among scientists, researchers, and policy makers across a range of disciplines. Bringing together leaders from multiple scientific disciplines, Data-Intensive Science shows how a comprehensive integration of various techniques and technological advances can effectively harness the vast amount of data being generated and significantly accelerate scientific progress to address some of the world's most challenging problems. In the book, a diverse cross-section of application, computer, and data scientists explores the impact of data-intensive science on current research and describes emerging technologies that will enable future scientific breakthroughs. The book identifies best practices used to tackle challenges facing data-intensive science as well as gaps in these approaches. It also focuses on the integration of data-intensive science into standard research practice, explaining how components in the data-intensive science environment need to work together to provide the necessary infrastructure for community-scale scientific collaborations. Organizing the material based on a high-level, data-intensive science workflow, this book provides an understanding of the scientific problems that would benefit from collaborative research, the current capabilities of data-intensive science, and the solutions to enable the next round of scientific advancements.

Data Is Everybody's Business: The Fundamentals of Data Monetization (Management on the Cutting Edge)

by Barbara H. Wixom Cynthia M. Beath Leslie Owens

A clear, engaging, evidence-based guide to monetizing data, for everyone from employee to board member.Most organizations view data monetization—converting data into money—too narrowly: as merely selling data sets. But data monetization is a core business activity for both commercial and noncommercial organizations, and, within organizations, it&’s critical to have wide-ranging support for this pursuit. In Data Is Everybody&’s Business, the authors offer a clear and engaging way for people across the entire organization to understand data monetization and make it happen. The authors identify three viable ways to convert data into money—improving work with data, wrapping products with data, and selling information offerings—and explain when to pursue each and how to succeed. Key features of the book:• Grounded in twenty-eight years of academic research, including nine years of research at the MIT Sloan Center for Information Systems Research (MIT CISR)• Definitions of key terms, self-reflection questions, appealing graphics, and easy-to-use frameworks• Rich with detailed case studies• Supplemented by free MIT CISR website resources (cisr.mit.edu)Ideal for organizations engaged in data literacy training, data-driven transformation, or digital transformation, Data Is Everybody&’s Business is the essential guide for helping everybody in the organization—not just the data specialists—understand, get excited about, and participate in data monetization.

Data-ism: The Revolution Transforming Decision Making, Consumer Behavior, and Almost Everything Else

by Steve Lohr

By one estimate, 90 percent of all of the data in history was created in the last two years. In 2014, International Data Corporation calculated the data universe at 4.4 zettabytes, or 4.4 trillion gigabytes. That much information, in volume, could fill enough slender iPad Air tablets to create a stack two-thirds of the way to the moon. Now, that's Big Data.Coal, iron ore, and oil were the key productive assets that fueled the Industrial Revolution. The vital raw material of today's information economy is data.In Data-ism, New York Times reporter Steve Lohr explains how big-data technology is ushering in a revolution in proportions that promise to be the basis of the next wave of efficiency and innovation across the economy. But more is at work here than technology. Big data is also the vehicle for a point of view, or philosophy, about how decisions will be—and perhaps should be—made in the future. Lohr investigates the benefits of data while also examining its dark side. Data-ism is about this next phase, in which vast Internet-scale data sets are used for discovery and prediction in virtually every field. It shows how this new revolution will change decision making—by relying more on data and analysis, and less on intuition and experience—and transform the nature of leadership and management. Focusing on young entrepreneurs at the forefront of data science as well as on giant companies such as IBM that are making big bets on data science for the future of their businesses, Data-ism is a field guide to what is ahead, explaining how individuals and institutions will need to exploit, protect, and manage data to stay competitive in the coming years. With rich examples of how the rise of big data is affecting everyday life, Data-ism also raises provocative questions about policy and practice that have wide implications for everyone.The age of data-ism is here. But are we ready to handle its consequences, good and bad?

Data Lake Development with Big Data

by Beulah Salome Purra Pradeep Pasupuleti

Explore architectural approaches to building Data Lakes that ingest, index, manage, and analyze massive amounts of data using Big Data technologies About This Book * Comprehend the intricacies of architecting a Data Lake and build a data strategy around your current data architecture * Efficiently manage vast amounts of data and deliver it to multiple applications and systems with a high degree of performance and scalability * Packed with industry best practices and use-case scenarios to get you up-and-running Who This Book Is For This book is for architects and senior managers who are responsible for building a strategy around their current data architecture, helping them identify the need for a Data Lake implementation in an enterprise context. The reader will need a good knowledge of master data management, information lifecycle management, data governance, data product design, data engineering, and systems architecture. Also required is experience of Big Data technologies such as Hadoop, Spark, Splunk, and Storm. What You Will Learn * Identify the need for a Data Lake in your enterprise context and learn to architect a Data Lake * Learn to build various tiers of a Data Lake, such as data intake, management, consumption, and governance, with a focus on practical implementation scenarios * Find out the key considerations to be taken into account while building each tier of the Data Lake * Understand Hadoop-oriented data transfer mechanism to ingest data in batch, micro-batch, and real-time modes * Explore various data integration needs and learn how to perform data enrichment and data transformations using Big Data technologies * Enable data discovery on the Data Lake to allow users to discover the data * Discover how data is packaged and provisioned for consumption * Comprehend the importance of including data governance disciplines while building a Data Lake In Detail A Data Lake is a highly scalable platform for storing huge volumes of multistructured data from disparate sources with centralized data management services. It eliminates the need for up-front modeling and rigid data structures by allowing schema-less writes. Data Lakes make it possible to ask complex far-reaching questions to find out hidden data patterns and relationships. This book explores the potential of Data Lakes and explores architectural approaches to building data lakes that ingest, index, manage, and analyze massive amounts of data using batch and real-time processing frameworks. It guides you on how to go about building a Data Lake that is managed by Hadoop and accessed as required by other Big Data applications such as Spark, Storm, Hive, and so on, to create an environment in which data from different sources can be meaningfully brought together and analyzed. Data Lakes can be viewed as having three capabilities--intake, management, and consumption. This book will take readers through each of these processes of developing a Data Lake and guide them (using best practices) in developing these capabilities. It will also explore often ignored, yet crucial considerations while building Data Lakes, with the focus on how to architect data governance, security, data quality, data lineage tracking, metadata management, and semantic data tagging. By the end of this book, you will have a good understanding of building a Data Lake for Big Data. You will be able to utilize Data Lakes for efficient and easy data processing and analytics. Style and approach Data Lake Development with Big Data provides architectural approaches to building a Data Lake. It follows a use case-based approach where practical implementation scenarios of each key component are explained. It also helps you understand how these use cases are implemented in a Data Lake. The chapters are organized in a way that mimics the sequential data flow evidenced in a Data Lake.

Data Leadership for Everyone: How You Can Harness the True Power of Data at Work

by Anthony Algmin

A revolutionary approach to bringing data and business togetherData is lazy. It sits in files or databases, minding its own business but not accomplishing very much. Data is like someone in their mid-twenties, living with their parents, who won't get off the couch and make something of their life. Data is also the closest thing we have to truth in our organizations—but most business leaders today struggle using data to make an impact on what really matters: the success of their businesses. Data Leadership for Everyone is a game-changing book for anyone who believes in the power of data and is ready to create revolutionary change in their organization. Whether you're a C-suite executive, a manager, or an individual contributor, this book will propel your career by unlocking the mystery of how raw data transforms into real outcomes. In this book, data leadership advocate and transformation coach Anthony J. Algmin reveals his five-step Data Leadership Framework, breaking down the complexity of data systems and empowering you to:Access and prepare data for useRefine data to maximize its potentialUse data to find new insightsImpact business success with data valueGovern and scale data-driven outcomes Data is the key to the future success of all businesses, and anyone not making the most of data will lose, while those who can use data to drive business value will win. It's not enough to learn about data—business success requires a special leadership approach to connect data to the people, processes, and technologies unique to your organization. With over 150 specific takeaways, Data Leadership for Everyone is a must-have business leadership book to help you become a better data leader for the twenty-first century and beyond.

Data Management: Der Weg zum datengetriebenen Unternehmen

by Klaus-Dieter Gronwald

Dieses Lehrbuch betrachtet Data Management als interdisziplinäres Konzept mit Fokus auf den Zielen datengetriebener Unternehmen. Im Zentrum steht die interaktive Entwicklung eines Unternehmensdatenmodells für ein virtuelles Unternehmen mit Unterstützung eines online Learning Games unter Einbeziehung der Aufgaben, Ziele und Grundsätze des Data Managements, typischer Data-Management-Komponenten und Frameworks wie Datenmodellierung und Design, Metadaten Management, Data Architecture, und Data Governance, und verknüpft diese mit datengetriebenen Anwendungen wie Business Warehousing, Big Data, In-Memory Data Management, und Machine Learning im Data Management Kontext.Das Buch dient als Lehrbuch für Studierende der Informatik, der Wirtschaft und der Wirtschaftsinformatik an Universitäten, Hochschulen und Fachschulen und zur industriellen Aus- und Weiterbildung.

Refine Search

Showing 25,576 through 25,600 of 100,000 results