Browse Results

Showing 15,076 through 15,100 of 59,330 results

Data Lakehouse in Action: Architecting a modern and scalable data analytics platform

by Pradeep Menon

Propose a new scalable data architecture paradigm, Data Lakehouse, that addresses the limitations of current data architecture patternsKey FeaturesUnderstand how data is ingested, stored, served, governed, and secured for enabling data analyticsExplore a practical way to implement Data Lakehouse using cloud computing platforms like AzureCombine multiple architectural patterns based on an organization's needs and maturity levelBook DescriptionThe Data Lakehouse architecture is a new paradigm that enables large-scale analytics. This book will guide you in developing data architecture in the right way to ensure your organization's success.The first part of the book discusses the different data architectural patterns used in the past and the need for a new architectural paradigm, as well as the drivers that have caused this change. It covers the principles that govern the target architecture, the components that form the Data Lakehouse architecture, and the rationale and need for those components. The second part deep dives into the different layers of Data Lakehouse. It covers various scenarios and components for data ingestion, storage, data processing, data serving, analytics, governance, and data security. The book's third part focuses on the practical implementation of the Data Lakehouse architecture in a cloud computing platform. It focuses on various ways to combine the Data Lakehouse pattern to realize macro-patterns, such as Data Mesh and Data Hub-Spoke, based on the organization's needs and maturity level. The frameworks introduced will be practical and organizations can readily benefit from their application.By the end of this book, you'll clearly understand how to implement the Data Lakehouse architecture pattern in a scalable, agile, and cost-effective manner.What you will learnUnderstand the evolution of the Data Architecture patterns for analyticsBecome well versed in the Data Lakehouse pattern and how it enables data analyticsFocus on methods to ingest, process, store, and govern data in a Data Lakehouse architectureLearn techniques to serve data and perform analytics in a Data Lakehouse architectureCover methods to secure the data in a Data Lakehouse architectureImplement Data Lakehouse in a cloud computing platform such as AzureCombine Data Lakehouse in a macro-architecture pattern such as Data MeshWho this book is forThis book is for data architects, big data engineers, data strategists and practitioners, data stewards, and cloud computing practitioners looking to become well-versed with modern data architecture patterns to enable large-scale analytics. Basic knowledge of data architecture and familiarity with data warehousing concepts are required.

Data Lakes

by Anne Laurent Dominique Laurent Cédrine Madera

The concept of a data lake is less than 10 years old, but they are already hugely implemented within large companies. Their goal is to efficiently deal with ever-growing volumes of heterogeneous data, while also facing various sophisticated user needs. However, defining and building a data lake is still a challenge, as no consensus has been reached so far. Data Lakes presents recent outcomes and trends in the field of data repositories. The main topics discussed are the data-driven architecture of a data lake; the management of metadata – supplying key information about the stored data, master data and reference data; the roles of linked data and fog computing in a data lake ecosystem; and how gravity principles apply in the context of data lakes. A variety of case studies are also presented, thus providing the reader with practical examples of data lake management.

Data Lakes For Dummies

by Alan R. Simon

Take a dive into data lakes “Data lakes” is the latest buzz word in the world of data storage, management, and analysis. Data Lakes For Dummies decodes and demystifies the concept and helps you get a straightforward answer the question: “What exactly is a data lake and do I need one for my business?” Written for an audience of technology decision makers tasked with keeping up with the latest and greatest data options, this book provides the perfect introductory survey of these novel and growing features of the information landscape. It explains how they can help your business, what they can (and can’t) achieve, and what you need to do to create the lake that best suits your particular needs. With a minimum of jargon, prolific tech author and business intelligence consultant Alan Simon explains how data lakes differ from other data storage paradigms. Once you’ve got the background picture, he maps out ways you can add a data lake to your business systems; migrate existing information and switch on the fresh data supply; clean up the product; and open channels to the best intelligence software for to interpreting what you’ve stored. Understand and build data lake architecture Store, clean, and synchronize new and existing data Compare the best data lake vendors Structure raw data and produce usable analytics Whatever your business, data lakes are going to form ever more prominent parts of the information universe every business should have access to. Dive into this book to start exploring the deep competitive advantage they make possible—and make sure your business isn’t left standing on the shore.

Data Literacy in Practice: A complete guide to data literacy and making smarter decisions with data through intelligent actions

by Angelika Klidas Kevin Hanegan

Accelerate your journey to smarter decision making by mastering the fundamentals of data literacy and developing the mindset to work confidently with dataKey FeaturesGet a solid grasp of data literacy fundamentals to support your next steps in your careerLearn how to work with data and extract meaningful insights to take the right actionsApply your knowledge to real-world business intelligence projectsBook DescriptionData is more than a mere commodity in our digital world. It is the ebb and flow of our modern existence. Individuals, teams, and enterprises working with data can unlock a new realm of possibilities. And the resultant agility, growth, and inevitable success have one origin—data literacy.This comprehensive guide is written by two data literacy pioneers, each with a thorough footprint within the data and analytics commercial world and lectures at top universities in the US and the Netherlands. Complete with best practices, practical models, and real-world examples, Data Literacy in Practice will help you start making your data work for you by building your understanding of data literacy basics and accelerating your journey to independently uncovering insights.You'll learn the four-pillar model that underpins all data and analytics and explore concepts such as measuring data quality, setting up a pragmatic data management environment, choosing the right graphs for your readers, and questioning your insights.By the end of the book, you'll be equipped with a combination of skills and mindset as well as with tools and frameworks that will allow you to find insights and meaning within your data for data-informed decision making.What you will learnStart your data literacy journey with simple and actionable stepsApply the four-pillar model for organizations to transform data into insightsDiscover which skills you need to work confidently with dataVisualize data and create compelling visual data storiesMeasure, improve, and leverage your data to meet organizational goalsMaster the process of drawing insights, ask critical questions and action your insightsDiscover the right steps to take when you analyze insightsWho this book is forThis book is for data analysts, data professionals, and data teams starting or wanting to accelerate their data literacy journey. If you're looking to develop the skills and mindset you need to work independently with data, as well as a solid knowledge base of the tools and frameworks, you'll find this book useful.

Data Love: The Seduction and Betrayal of Digital Technologies

by Roberto Simanowski

Intelligence services, government administrations, businesses, and a growing majority of the population are hooked on the idea that big data can reveal patterns and correlations in everyday life. Initiated by software engineers and carried out through algorithms, the mining of big data has sparked a silent revolution. But algorithmic analysis and data mining are not simply byproducts of media development or the logical consequences of computation. They are the radicalization of the Enlightenment's quest for knowledge and progress. Data Love argues that the "cold civil war" of big data is taking place not among citizens or between the citizen and government but within each of us.Roberto Simanowski elaborates on the changes data love has brought to the human condition while exploring the entanglements of those who—out of stinginess, convenience, ignorance, narcissism, or passion—contribute to the amassing of ever more data about their lives, leading to the statistical evaluation and individual profiling of their selves. Writing from a philosophical standpoint, Simanowski illustrates the social implications of technological development and retrieves the concepts, events, and cultural artifacts of past centuries to help decode the programming of our present.

Data Made Flesh: Embodying Information

by Robert Mitchell Phillip Thurtle

In an age of cloning, cyborgs, and biotechnology, the line between bodies and bytes seems to be disappearing. Data Made Flesh is the first collection to address the increasingly important links between information and embodiment, at a moment when we are routinely tempted, in the words of Donna Haraway, "to be raptured out of the bodies that matter in the lust for information," whether in the rush to complete the Human Genome Project or in the race to clone a human being.

Data Management: Der Weg zum datengetriebenen Unternehmen

by Klaus-Dieter Gronwald

Dieses Lehrbuch betrachtet Data Management als interdisziplinäres Konzept mit Fokus auf den Zielen datengetriebener Unternehmen. Im Zentrum steht die interaktive Entwicklung eines Unternehmensdatenmodells für ein virtuelles Unternehmen mit Unterstützung eines online Learning Games unter Einbeziehung der Aufgaben, Ziele und Grundsätze des Data Managements, typischer Data-Management-Komponenten und Frameworks wie Datenmodellierung und Design, Metadaten Management, Data Architecture, und Data Governance, und verknüpft diese mit datengetriebenen Anwendungen wie Business Warehousing, Big Data, In-Memory Data Management, und Machine Learning im Data Management Kontext.Das Buch dient als Lehrbuch für Studierende der Informatik, der Wirtschaft und der Wirtschaftsinformatik an Universitäten, Hochschulen und Fachschulen und zur industriellen Aus- und Weiterbildung.

Data Management, Analytics and Innovation: Proceedings of ICDMAI 2019, Volume 2 (Advances in Intelligent Systems and Computing #1016)

by Valentina Emilia Balas Amlan Chakrabarti Neha Sharma

This book presents the latest findings in the areas of data management and smart computing, big data management, artificial intelligence and data analytics, along with advances in network technologies. It addresses state-of-the-art topics and discusses challenges and solutions for future development. Gathering original, unpublished contributions by scientists from around the globe, the book is mainly intended for a professional audience of researchers and practitioners in academia and industry.

Data Management, Analytics and Innovation: Proceedings of ICDMAI 2018, Volume 1 (Advances in Intelligent Systems and Computing #808)

by Valentina Emilia Balas Neha Sharma Amlan Chakrabarti

The book presents the latest, high-quality, technical contributions and research findings in the areas of data management and smart computing, big data management, artificial intelligence and data analytics, along with advances in network technologies. It discusses state-of-the-art topics as well as the challenges and solutions for future development. It includes original and previously unpublished international research work highlighting research domains from different perspectives. This book is mainly intended for researchers and practitioners in academia and industry.

Data Management, Analytics and Innovation: Proceedings of ICDMAI 2022 (Lecture Notes on Data Engineering and Communications Technologies #137)

by Alfred M. Bruckstein C. Mohan Saptarsi Goswami Inderjit Singh Barara Amol Goje

This book presents the latest findings in the areas of data management and smart computing, big data management, artificial intelligence, and data analytics, along with advances in network technologies. The book is a collection of peer-reviewed research papers presented at Sixth International Conference on Data Management, Analytics and Innovation (ICDMAI 2022), held virtually during January 14–16, 2022. It addresses state-of-the-art topics and discusses challenges and solutions for future development. Gathering original, unpublished contributions by scientists from around the globe, the book is mainly intended for a professional audience of researchers and practitioners in academia and industry.

Data Management, Analytics and Innovation: Proceedings Of Icdmai 2018, Volume 2 (Advances In Intelligent Systems and Computing #839)

by Amlan Chakrabarti Neha Sharma Valentina Emilia Balas

The volume on Data Management, Analytics and Innovations presents the latest high-quality technical contributions and research results in the areas of data management and smart computing, big data management, artificial intelligence and data analytics along with advances in network technologies. It deals with the state-of-the-art topics and provides challenges and solutions for future development. Original, unpublished research work highlighting specific research domains from all viewpoints are contributed from scientists throughout the globe. This volume is mainly designed for professional audience, composed of researchers and practitioners in academia and industry.

Data Management, Analytics and Innovation: Proceedings of ICDMAI 2024, Volume 2 (Lecture Notes in Networks and Systems #998)

by Amlan Chakrabarti Neha Sharma Alfred M. Bruckstein Amol C. Goje

This book presents the latest findings in the areas of data management and smart computing, big data management, artificial intelligence, and data analytics, along with advances in network technologies. The book is a collection of peer-reviewed research papers presented at 8th International Conference on Data Management, Analytics and Innovation (ICDMAI 2024), held during 19–21 January 2024 in Vellore Institute of Technology, Vellore, India. It addresses state-of-the-art topics and discusses challenges and solutions for future development. Gathering original, unpublished contributions by scientists from around the globe, the book is mainly intended for a professional audience of researchers and practitioners in academia and industry. The book is divided into two volumes.

Data Management, Analytics and Innovation: Proceedings of ICDMAI 2024, Volume 1 (Lecture Notes in Networks and Systems #997)

by Amlan Chakrabarti Neha Sharma Alfred M. Bruckstein Amol C. Goje

This book presents the latest findings in the areas of data management and smart computing, big data management, artificial intelligence, and data analytics, along with advances in network technologies. The book is a collection of peer-reviewed research papers presented at 8th International Conference on Data Management, Analytics and Innovation (ICDMAI 2024), held during 19–21 January 2024 in Vellore Institute of Technology, Vellore, India. It addresses state-of-the-art topics and discusses challenges and solutions for future development. Gathering original, unpublished contributions by scientists from around the globe, the book is mainly intended for a professional audience of researchers and practitioners in academia and industry. The book is divided into two volumes.

Data Management, Analytics and Innovation: Proceedings of ICDMAI 2019, Volume 1 (Advances in Intelligent Systems and Computing #1042)

by Neha Sharma Amlan Chakrabarti Valentina Emilia Balas

This book presents the latest findings in the areas of data management and smart computing, big data management, artificial intelligence and data analytics, along with advances in network technologies. It addresses state-of-the-art topics and discusses challenges and solutions for future development. Gathering original, unpublished contributions by scientists from around the globe, the book is mainly intended for a professional audience of researchers and practitioners in academia and industry.

Data Management, Analytics and Innovation: Proceedings of ICDMAI 2021, Volume 1 (Lecture Notes on Data Engineering and Communications Technologies #70)

by Neha Sharma Amlan Chakrabarti Valentina Emilia Balas Alfred M. Bruckstein

This book presents the latest findings in the areas of data management and smart computing, machine learning, big data management, artificial intelligence, and data analytics, along with advances in network technologies. The book is a collection of peer-reviewed research papers presented at Fifth International Conference on Data Management, Analytics and Innovation (ICDMAI 2021), held during January 15–17, 2021, in a virtual mode. It addresses state-of-the-art topics and discusses challenges and solutions for future development. Gathering original, unpublished contributions by scientists from around the globe, the book is mainly intended for a professional audience of researchers and practitioners in academia and industry.

Data Management, Analytics and Innovation: Proceedings of ICDMAI 2021, Volume 2 (Lecture Notes on Data Engineering and Communications Technologies #71)

by Neha Sharma Amlan Chakrabarti Valentina Emilia Balas Alfred M. Bruckstein

This book presents the latest findings in the areas of data management and smart computing, machine learning, big data management, artificial intelligence, and data analytics, along with advances in network technologies. The book is a collection of peer-reviewed research papers presented at Fifth International Conference on Data Management, Analytics and Innovation (ICDMAI 2021), held during January 15–17, 2021, in a virtual mode. It addresses state-of-the-art topics and discusses challenges and solutions for future development. Gathering original, unpublished contributions by scientists from around the globe, the book is mainly intended for a professional audience of researchers and practitioners in academia and industry.

Data Management, Analytics and Innovation: Proceedings of ICDMAI 2020, Volume 1 (Advances in Intelligent Systems and Computing #1174)

by Neha Sharma Amlan Chakrabarti Valentina Emilia Balas Jan Martinovic

This book presents the latest findings in the areas of data management and smart computing, big data management, artificial intelligence and data analytics, along with advances in network technologies. Gathering peer-reviewed research papers presented at the Fourth International Conference on Data Management, Analytics and Innovation (ICDMAI 2020), held on 17–19 January 2020 at the United Services Institute (USI), New Delhi, India, it addresses cutting-edge topics and discusses challenges and solutions for future development. Featuring original, unpublished contributions by respected experts from around the globe, the book is mainly intended for a professional audience of researchers and practitioners in academia and industry.

Data Management, Analytics and Innovation: Proceedings of ICDMAI 2020, Volume 2 (Advances in Intelligent Systems and Computing #1175)

by Neha Sharma Amlan Chakrabarti Valentina Emilia Balas Jan Martinovic

This book presents the latest findings in the areas of data management and smart computing, big data management, artificial intelligence and data analytics, along with advances in network technologies. Gathering peer-reviewed research papers presented at the Fourth International Conference on Data Management, Analytics and Innovation (ICDMAI 2020), held on 17–19 January 2020 at the United Services Institute (USI), New Delhi, India, it addresses cutting-edge topics and discusses challenges and solutions for future development. Featuring original, unpublished contributions by respected experts from around the globe, the book is mainly intended for a professional audience of researchers and practitioners in academia and industry.

Data Management, Analytics and Innovation: Proceedings of ICDMAI 2023 (Lecture Notes in Networks and Systems #662)

by Neha Sharma Amol Goje Amlan Chakrabarti Alfred M. Bruckstein

This book presents the latest findings in the areas of data management and smart computing, big data management, artificial intelligence and data analytics, along with advances in network technologies. The volume is a collection of peer reviewed research papers presented at Seventh International Conference on Data Management, Analytics and Innovation (ICDMAI 2023), held during 20 – 22 January, 2023 in Pune, India. It addresses state-of-the-art topics and discusses challenges and solutions for future development. Gathering original, unpublished contributions by scientists from around the globe, the book is mainly intended for a professional audience of researchers and practitioners in academia and industry.

Data Management and Analysis: Case Studies in Education, Healthcare and Beyond (Studies in Big Data #65)

by Reda Alhajj Mohammad Moshirpour Behrouz Far

Data management and analysis is one of the fastest growing and most challenging areas of research and development in both academia and industry. Numerous types of applications and services have been studied and re-examined in this field resulting in this edited volume which includes chapters on effective approaches for dealing with the inherent complexity within data management and analysis. This edited volume contains practical case studies, and will appeal to students, researchers and professionals working in data management and analysis in the business, education, healthcare, and bioinformatics areas.

Data Management and Analytics for Medicine and Healthcare: Third International Workshop, DMAH 2017, Held at VLDB 2017, Munich, Germany, September 1, 2017, Proceedings (Lecture Notes in Computer Science #10494)

by Edmon Begoli, Fusheng Wang and Gang Luo

This book constitutes the thoroughly refereed conference proceedings of the Third International Workshop on Data Management and Analytics for Medicine and Healthcare, DMAH 2017, in Munich, Germany, in September 2017, held in conjunction with the 43rd International Conference on Very Large Data Bases, VLDB 2017. The 9 revised full papers presented together with 2 keynote abstracts were carefully reviewed and selected from 16 initial submissions. The papers are organized in topical sections on data privacy and trustability for electronic health records; biomedical data management and Integration; online mining of Health related data; and clinical data analytics.

Data Management and Analytics for Medicine and Healthcare: Second International Workshop, DMAH 2016, Held at VLDB 2016, New Delhi, India, September 9, 2016, Revised Selected Papers (Lecture Notes in Computer Science #10186)

by Fusheng Wang Gang Luo Lixia Yao

This book constitutes the thoroughly refereed post-conference proceedings of the Second International Workshop on Data Management and Analytics for Medicine and Healthcare, DMAH 2016, in New Delhi, India, in September 2016, held in conjunction with the 42nd International Conference on Very Large Data Bases, VLDB 2016. The 7 revised full papers presented together with 2 invited papers and 3 keynote abstracts were carefully reviewed and selected from 11 initial submissions. The papers are organized in topical sections on knowledge discovery of biomedical data; managing, querying and processing of medical image data; information extraction and data integration for biomedical data; and health information systems.

Data Management and Query Processing in Semantic Web Databases

by Sven Groppe

The Semantic Web, which is intended to establish a machine-understandable Web, is currently changing from being an emerging trend to a technology used in complex real-world applications. A number of standards and techniques have been developed by the World Wide Web Consortium (W3C), e.g., the Resource Description Framework (RDF), which provides a general method for conceptual descriptions for Web resources, and SPARQL, an RDF querying language. Recent examples of large RDF data with billions of facts include the UniProt comprehensive catalog of protein sequence, function and annotation data, the RDF data extracted from Wikipedia, and Princeton University's WordNet. Clearly, querying performance has become a key issue for Semantic Web applications. In his book, Groppe details various aspects of high-performance Semantic Web data management and query processing. His presentation fills the gap between Semantic Web and database books, which either fail to take into account the performance issues of large-scale data management or fail to exploit the special properties of Semantic Web data models and queries. After a general introduction to the relevant Semantic Web standards, he presents specialized indexing and sorting algorithms, adapted approaches for logical and physical query optimization, optimization possibilities when using the parallel database technologies of today's multicore processors, and visual and embedded query languages. Groppe primarily targets researchers, students, and developers of large-scale Semantic Web applications. On the complementary book webpage readers will find additional material, such as an online demonstration of a query engine, and exercises, and their solutions, that challenge their comprehension of the topics presented.

Data Management at Scale: Best Practices For Enterprise Architecture

by Piethein Strengholt

As data management and integration continue to evolve rapidly, storing all your data in one place, such as a data warehouse, is no longer scalable. In the very near future, data will need to be distributed and available for several technological solutions. With this practical book, you’ll learnhow to migrate your enterprise from a complex and tightly coupled data landscape to a more flexible architecture ready for the modern world of data consumption.Executives, data architects, analytics teams, and compliance and governance staff will learn how to build a modern scalable data landscape using the Scaled Architecture, which you can introduce incrementally without a large upfront investment. Author Piethein Strengholt provides blueprints, principles, observations, best practices, and patterns to get you up to speed.Examine data management trends, including technological developments, regulatory requirements, and privacy concernsGo deep into the Scaled Architecture and learn how the pieces fit togetherExplore data governance and data security, master data management, self-service data marketplaces, and the importance of metadata

Data Management at Scale: Modern Data Architecture with Data Mesh and Data Fabric

by Piethein Strengholt

As data management continues to evolve rapidly, managing all of your data in a central place, such as a data warehouse, is no longer scalable. Today's world is about quickly turning data into value. This requires a paradigm shift in the way we federate responsibilities, manage data, and make it available to others. With this practical book, you'll learn how to design a next-gen data architecture that takes into account the scale you need for your organization.Executives, architects and engineers, analytics teams, and compliance and governance staff will learn how to build a next-gen data landscape. Author Piethein Strengholt provides blueprints, principles, observations, best practices, and patterns to get you up to speed.Examine data management trends, including regulatory requirements, privacy concerns, and new developments such as data mesh and data fabricGo deep into building a modern data architecture, including cloud data landing zones, domain-driven design, data product design, and moreExplore data governance and data security, master data management, self-service data marketplaces, and the importance of metadata

Refine Search

Showing 15,076 through 15,100 of 59,330 results