- Table View
- List View
Data Science with Java: Practical Methods for Scientists and Engineers
by Michael R. BrzustowiczData Science is booming thanks to R and Python, but Java brings the robustness, convenience, and ability to scale critical to today’s data science applications. With this practical book, Java software engineers looking to add data science skills will take a logical journey through the data science pipeline. Author Michael Brzustowicz explains the basic math theory behind each step of the data science process, as well as how to apply these concepts with Java.You’ll learn the critical roles that data IO, linear algebra, statistics, data operations, learning and prediction, and Hadoop MapReduce play in the process. Throughout this book, you’ll find code examples you can use in your applications.Examine methods for obtaining, cleaning, and arranging data into its purest formUnderstand the matrix structure that your data should takeLearn basic concepts for testing the origin and validity of dataTransform your data into stable and usable numerical valuesUnderstand supervised and unsupervised learning algorithms, and methods for evaluating their successGet up and running with MapReduce, using customized components suitable for data science algorithms
Data Science with Python: Combine Python with machine learning principles to discover hidden patterns in raw data
by Rohan Chopra Aaron England Mohamed Noordeen AlaudeenLeverage the power of the Python data science libraries and advanced machine learning techniques to analyse large unstructured datasets and predict the occurrence of a particular future event. Key Features Explore the depths of data science, from data collection through to visualization Learn pandas, scikit-learn, and Matplotlib in detail Study various data science algorithms using real-world datasets Book Description Data Science with Python begins by introducing you to data science and teaches you to install the packages you need to create a data science coding environment. You will learn three major techniques in machine learning: unsupervised learning, supervised learning, and reinforcement learning. You will also explore basic classification and regression techniques, such as support vector machines, decision trees, and logistic regression. As you make your way through chapters, you will study the basic functions, data structures, and syntax of the Python language that are used to handle large datasets with ease. You will learn about NumPy and pandas libraries for matrix calculations and data manipulation, study how to use Matplotlib to create highly customizable visualizations, and apply the boosting algorithm XGBoost to make predictions. In the concluding chapters, you will explore convolutional neural networks (CNNs), deep learning algorithms used to predict what is in an image. You will also understand how to feed human sentences to a neural network, make the model process contextual information, and create human language processing systems to predict the outcome. By the end of this book, you will be able to understand and implement any new data science algorithm and have the confidence to experiment with tools or libraries other than those covered in the book. What you will learn Pre-process data to make it ready to use for machine learning Create data visualizations with Matplotlib Use scikit-learn to perform dimension reduction using principal component analysis (PCA) Solve classification and regression problems Get predictions using the XGBoost library Process images and create machine learning models to decode them Process human language for prediction and classification Use TensorBoard to monitor training metrics in real time Find the best hyperparameters for your model with AutoML Who this book is for Data Science with Python is designed for data analysts, data scientists, database engineers, and business analysts who want to move towards using Python and machine learning techniques to analyze data and predict outcomes. Basic knowledge of Python and data analytics will prove beneficial to understand the various concepts explained through this book.
Data Science with Python and Dask
by Jesse DanielSummaryDask is a native parallel analytics tool designed to integrate seamlessly with the libraries you're already using, including Pandas, NumPy, and Scikit-Learn. With Dask you can crunch and work with huge datasets, using the tools you already have. And Data Science with Python and Dask is your guide to using Dask for your data projects without changing the way you work!Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. You'll find registration instructions inside the print book.About the TechnologyAn efficient data pipeline means everything for the success of a data science project. Dask is a flexible library for parallel computing in Python that makes it easy to build intuitive workflows for ingesting and analyzing large, distributed datasets. Dask provides dynamic task scheduling and parallel collections that extend the functionality of NumPy, Pandas, and Scikit-learn, enabling users to scale their code from a single laptop to a cluster of hundreds of machines with ease.About the BookData Science with Python and Dask teaches you to build scalable projects that can handle massive datasets. After meeting the Dask framework, you'll analyze data in the NYC Parking Ticket database and use DataFrames to streamline your process. Then, you'll create machine learning models using Dask-ML, build interactive visualizations, and build clusters using AWS and Docker. What's insideWorking with large, structured and unstructured datasetsVisualization with Seaborn and DatashaderImplementing your own algorithmsBuilding distributed apps with Dask DistributedPackaging and deploying Dask appsAbout the ReaderFor data scientists and developers with experience using Python and the PyData stack.About the AuthorJesse Daniel is an experienced Python developer. He taught Python for Data Science at the University of Denver and leads a team of data scientists at a Denver-based media technology company.Table of ContentsPART 1 - The Building Blocks of scalable computingWhy scalable computing matters Introducing Dask PART 2 - Working with Structured Data using Dask DataFrames Introducing Dask DataFrames Loading data into DataFrames Cleaning and transforming DataFrames Summarizing and analyzing DataFrames Visualizing DataFrames with Seaborn Visualizing location data with Datashader PART 3 - Extending and deploying DaskWorking with Bags and Arrays Machine learning with Dask-ML Scaling and deploying Dask
Data Science with Raspberry Pi
by K. Mohaideen Abdul Kadhar G. AnandImplement real-time data processing applications on the Raspberry Pi. This book uniquely helps you work with data science concepts as part of real-time applications using the Raspberry Pi as a localized cloud. <P><P> You’ll start with a brief introduction to data science followed by a dedicated look at the fundamental concepts of Python programming. Here you’ll install the software needed for Python programming on the Pi, and then review the various data types and modules available. The next steps are to set up your Pis for gathering real-time data and incorporate the basic operations of data science related to real-time applications. You’ll then combine all these new skills to work with machine learning concepts that will enable your Raspberry Pi to learn from the data it gathers. Case studies round out the book to give you an idea of the range of domains where these concepts can be applied. <P><P> By the end of Data Science with the Raspberry Pi, you’ll understand that many applications are now dependent upon cloud computing. As Raspberry Pis are cheap, it is easy to use a number of them closer to the sensors gathering the data and restrict the analytics closer to the edge. You’ll find that not only is the Pi an easy entry point to data science, it also provides an elegant solution to cloud computing limitations through localized deployment.
Data Science with Semantic Technologies: Deployment and Exploration
by Archana Patel Narayan C. DebnathGone are the days when data was interlinked with related data by humans and human interpretation was required. Data is no longer just data. It is now considered a Thing or Entity or Concept with meaning, so that a machine not only understands the concept but also extrapolates the way humans do.Data Science with Semantic Technologies: Deployment and Exploration, the second volume of a two-volume handbook set, provides a roadmap for the deployment of semantic technologies in the field of data science and enables the user to create intelligence through these technologies by exploring the opportunities and eradicating the challenges in the current and future time frame. In addition, this book offers the answer to various questions like: What makes a technology semantic as opposed to other approaches to data science? What is knowledge data science? How does knowledge data science relate to other fields? This book explores the optimal use of these technologies to provide the highest benefit to the user under one comprehensive source and title. As there is no dedicated book available in the market on this topic at this time, this book becomes a unique resource for scholars, researchers, data scientists, professionals, and practitioners. This volume can serve as an important guide toward applications of data science with semantic technologies for the upcoming generation.
Data Science with Semantic Technologies: Theory, Practice and Application (Advances in Intelligent and Scientific Computing)
by Archana Patel Narayan C. Debnath Bharat BhusanDATA SCIENCE WITH SEMANTIC TECHNOLOGIES This book will serve as an important guide toward applications of data science with semantic technologies for the upcoming generation and thus becomes a unique resource for scholars, researchers, professionals, and practitioners in this field. To create intelligence in data science, it becomes necessary to utilize semantic technologies which allow machine-readable representation of data. This intelligence uniquely identifies and connects data with common business terms, and it also enables users to communicate with data. Instead of structuring the data, semantic technologies help users to understand the meaning of the data by using the concepts of semantics, ontology, OWL, linked data, and knowledge-graphs. These technologies help organizations to understand all the stored data, adding the value in it, and enabling insights that were not available before. As data is the most important asset for any organization, it is essential to apply semantic technologies in data science to fulfill the need of any organization. Data Science with Semantic Technologies provides a roadmap for the deployment of semantic technologies in the field of data science. Moreover, it highlights how data science enables the user to create intelligence through these technologies by exploring the opportunities and eradicating the challenges in the current and future time frame. In addition, this book provides answers to various questions like: Can semantic technologies be able to facilitate data science? Which type of data science problems can be tackled by semantic technologies? How can data scientists benefit from these technologies? What is knowledge data science? How does knowledge data science relate to other domains? What is the role of semantic technologies in data science? What is the current progress and future of data science with semantic technologies? Which types of problems require the immediate attention of researchers? Audience Researchers in the fields of data science, semantic technologies, artificial intelligence, big data, and other related domains, as well as industry professionals, software engineers/scientists, and project managers who are developing the software for data science. Students across the globe will get the basic and advanced knowledge on the current state and potential future of data science.
Data Science with SQL Server Quick Start Guide: Integrate SQL Server with data science
by Dejan SarkaGet unique insights from your data by combining the power of SQL Server, R and PythonKey FeaturesUse the features of SQL Server 2017 to implement the data science project life cycleLeverage the power of R and Python to design and develop efficient data modelsfind unique insights from your data with powerful techniques for data preprocessing and analysisBook DescriptionSQL Server only started to fully support data science with its two most recent editions. If you are a professional from both worlds, SQL Server and data science, and interested in using SQL Server and Machine Learning (ML) Services for your projects, then this is the ideal book for you.This book is the ideal introduction to data science with Microsoft SQL Server and In-Database ML Services. It covers all stages of a data science project, from businessand data understanding,through data overview, data preparation, modeling and using algorithms, model evaluation, and deployment.You will learn to use the engines and languages that come with SQL Server, including ML Services with R and Python languages and Transact-SQL. You will also learn how to choose which algorithm to use for which task, and learn the working of each algorithm.What you will learnUse the popular programming languages,T-SQL, R, and Python, for data scienceUnderstand your data with queries and introductory statisticsCreate and enhance the datasets for MLVisualize and analyze data using basic and advanced graphsExplore ML using unsupervised and supervised modelsDeploy models in SQL Server and perform predictionsWho this book is forSQL Server professionals who want to start with data science, and data scientists who would like to start using SQL Server in their projects will find this book to be useful. Prior exposure to SQL Server will be helpful.
Data Science Without Makeup: A Guidebook for End-Users, Analysts, and Managers
by Mikhail Zhilkin"Having worked with Mikhail it does not surprise me that he has put together a comprehensive and insightful book on Data Science where down-to-earth pragmatism is the recurring theme. This is a must-read for everyone interested in industrial data science, in particular analysts and managers who want to learn from Mikhail‘s great experience and approach." --Stefan Freyr Gudmundsson, Lead Data Scientist at H&M, former AI Research Lead at King and Director of Risk Analytics and Modeling at Islandsbanki. "It tells the unvarnished truth about data science. Chapter 2 ("Data Science is Hard") is worth the price on its own—and then Zhilkin gives us processes to help. A must-read for any practitioner, manager, or executive sponsor of data science." --Ted Lorenzen, Director of Marketing Analytics at Vein Clinics of America "Mikhail is a pioneer in the applied data science space. His ability to provide innovative solutions to practical questions in a dynamic environment is simply superb. Importantly, Mikhail’s ability to remain calm and composed in high-pressure situations is surpassed only by his humility." --Darren Burgess, High Performance Manager at Melbourne FC, former Head of Elite Performance at Arsenal FC Mikhail Zhilkin, a data scientist who has worked on projects ranging from Candy Crush games to Premier League football players’ physical performance, shares his strong views on some of the best and, more importantly, worst practices in data analytics and business intelligence. Why data science is hard, what pitfalls analysts and decision-makers fall into, and what everyone involved can do to give themselves a fighting chance—the book examines these and other questions with the skepticism of someone who has seen the sausage being made. Honest and direct, full of examples from real life, Data Science Without Makeup: A Guidebook for End-Users, Analysts and Managers will be of great interest to people who aspire to work with data, people who already work with data, and people who work with people who work with data—from students to professional researchers and from early-career to seasoned professionals. Mikhail Zhilkin is a data scientist at Arsenal FC. He has previously worked on the popular Candy Crush mobile games and in sports betting.
The Data Science Workshop: A New, Interactive Approach to Learning Data Science
by Anthony So Thomas V. Joseph Robert Thas John Andrew Worsley Dr. Samuel AsareCut through the noise and get real results with a step-by-step approach to data science Key Features Ideal for the data science beginner who is getting started for the first time A data science tutorial with step-by-step exercises and activities that help build key skills Structured to let you progress at your own pace, on your own terms Use your physical print copy to redeem free access to the online interactive edition Book Description You already know you want to learn data science, and a smarter way to learn data science is to learn by doing. The Data Science Workshop focuses on building up your practical skills so that you can understand how to develop simple machine learning models in Python or even build an advanced model for detecting potential bank frauds with effective modern data science. You'll learn from real examples that lead to real results. Throughout The Data Science Workshop, you'll take an engaging step-by-step approach to understanding data science. You won't have to sit through any unnecessary theory. If you're short on time you can jump into a single exercise each day or spend an entire weekend training a model using sci-kit learn. It's your choice. Learning on your terms, you'll build up and reinforce key skills in a way that feels rewarding. Every physical print copy of The Data Science Workshop unlocks access to the interactive edition. With videos detailing all exercises and activities, you'll always have a guided solution. You can also benchmark yourself against assessments, track progress, and receive content updates. You'll even earn a secure credential that you can share and verify online upon completion. It's a premium learning experience that's included with your printed copy. To redeem, follow the instructions located at the start of your data science book. Fast-paced and direct, The Data Science Workshop is the ideal companion for data science beginners. You'll learn about machine learning algorithms like a data scientist, learning along the way. This process means that you'll find that your new skills stick, embedded as best practice. A solid foundation for the years ahead. What you will learn Find out the key differences between supervised and unsupervised learning Manipulate and analyze data using scikit-learn and pandas libraries Learn about different algorithms such as regression, classification, and clustering Discover advanced techniques to improve model ensembling and accuracy Speed up the process of creating new features with automated feature tool Simplify machine learning using open source Python packages Who this book is for Our goal at Packt is to help you be successful, in whatever it is you choose to do. The Data Science Workshop is an ideal data science tutorial for the data science beginner who is just getting started. Pick up a Workshop today and let Packt help you develop skills that stick with you for life.
The Data Science Workshop: Learn how you can build machine learning models and create your own real-world data science projects, 2nd Edition
by Anthony So Thomas V. Joseph Robert Thas John Andrew Worsley Dr. Samuel AsareGain expert guidance on how to successfully develop machine learning models in Python and build your own unique data platforms Key Features Gain a full understanding of the model production and deployment process Build your first machine learning model in just five minutes and get a hands-on machine learning experience Understand how to deal with common challenges in data science projects Book Description Where there's data, there's insight. With so much data being generated, there is immense scope to extract meaningful information that'll boost business productivity and profitability. By learning to convert raw data into game-changing insights, you'll open new career paths and opportunities. The Data Science Workshop begins by introducing different types of projects and showing you how to incorporate machine learning algorithms in them. You'll learn to select a relevant metric and even assess the performance of your model. To tune the hyperparameters of an algorithm and improve its accuracy, you'll get hands-on with approaches such as grid search and random search. Next, you'll learn dimensionality reduction techniques to easily handle many variables at once, before exploring how to use model ensembling techniques and create new features to enhance model performance. In a bid to help you automatically create new features that improve your model, the book demonstrates how to use the automated feature engineering tool. You'll also understand how to use the orchestration and scheduling workflow to deploy machine learning models in batch. By the end of this book, you'll have the skills to start working on data science projects confidently. By the end of this book, you'll have the skills to start working on data science projects confidently. What you will learn Explore the key differences between supervised learning and unsupervised learning Manipulate and analyze data using scikit-learn and pandas libraries Understand key concepts such as regression, classification, and clustering Discover advanced techniques to improve the accuracy of your model Understand how to speed up the process of adding new features Simplify your machine learning workflow for production Who this book is for This is one of the most useful data science books for aspiring data analysts, data scientists, database engineers, and business analysts. It is aimed at those who want to kick-start their careers in data science by quickly learning data science techniques without going through all the mathematics behind machine learning algorithms. Basic knowledge of the Python programming language will help you easily grasp the concepts explained in this book.
Data Science—Analytics and Applications: Proceedings of the 5th International Data Science Conference—iDSC2023
by Peter Haber Thomas J. Lampoltshammer Manfred MayrBased on the overall digitalization in all spheres of our lives, Data Science and Artificial Intelligence (AI) are nowadays cornerstones for innovation, problem solutions, and business transformation. Data, whether structured or unstructured, numerical, textual, or audiovisual, put in context with other data or analyzed and processed by smart algorithms, are the basis for intelligent concepts and practical solutions. These solutions address many application areas such as Industry 4.0, the Internet of Things (IoT), smart cities, smart energy generation, and distribution, and environmental management. Innovation dynamics and business opportunities for effective solutions for the essential societal, environmental, or health challenges, are enabled and driven by modern data science approaches.However, Data Science and Artificial Intelligence are forming a new field that needs attention and focused research. Effective data science is only achieved in a broad and diverse discourse – when data science experts cooperate tightly with application domain experts and scientists exchange views and methods with engineers and business experts. Thus, the 5th International Data Science Conference (iDSC 2023) brings together researchers, scientists, business experts, and practitioners to discuss new approaches, methods, and tools made possible by data science.
A Data Scientist's Guide to Acquiring, Cleaning, and Managing Data in R
by Samuel E. Buttrey Lyn R. WhitakerThe only how-to guide offering a unified, systemic approach to acquiring, cleaning, and managing data in R Every experienced practitioner knows that preparing data for modeling is a painstaking, time-consuming process. Adding to the difficulty is that most modelers learn the steps involved in cleaning and managing data piecemeal, often on the fly, or they develop their own ad hoc methods. This book helps simplify their task by providing a unified, systematic approach to acquiring, modeling, manipulating, cleaning, and maintaining data in R. Starting with the very basics, data scientists Samuel E. Buttrey and Lyn R. Whitaker walk readers through the entire process. From what data looks like and what it should look like, they progress through all the steps involved in getting data ready for modeling. They describe best practices for acquiring data from numerous sources; explore key issues in data handling, including text/regular expressions, big data, parallel processing, merging, matching, and checking for duplicates; and outline highly efficient and reliable techniques for documenting data and recordkeeping, including audit trails, getting data back out of R, and more. The only single-source guide to R data and its preparation, it describes best practices for acquiring, manipulating, cleaning, and maintaining data Begins with the basics and walks readers through all the steps necessary to get data ready for the modeling process Provides expert guidance on how to document the processes described so that they are reproducible Written by seasoned professionals, it provides both introductory and advanced techniques Features case studies with supporting data and R code, hosted on a companion website A Data Scientist's Guide to Acquiring, Cleaning and Managing Data in R is a valuable working resource/bench manual for practitioners who collect and analyze data, lab scientists and research associates of all levels of experience, and graduate-level data mining students.
Data Security: Technical and Organizational Protection Measures against Data Loss and Computer Crime
by Thomas H. LenhardUsing many practical examples and notes, the book offers an easy-to-understand introduction to technical and organizational data security. It provides an insight into the technical knowledge that is mandatory for data protection officers. Data security is an inseparable part of data protection, which is becoming more and more important in our society. It can only be implemented effectively if there is an understanding of technical interrelationships and threats. Data security covers much more information than just personal data. It secures all data and thus the continued existence of companies and organizations.This book is a translation of the original German 2nd edition Datensicherheit by Thomas H. Lenhard, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2020. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
Data Security and Privacy Protection: Second International Conference, DSPP 2024, Xi'an, China, October 25–28, 2024, Proceedings, Part I (Lecture Notes in Computer Science #15215)
by Xiaofeng Chen Xinyi Huang Moti YungThis book constitutes the proceedings of the 2nd International Conference on Data Security and Privacy Protection, DSPP 2024, held in Xi'an, China, during October 25-28, 2024. The 34 full papers included in this volume were carefully reviewed and selected from a total of 99 submissions. The DSPP 2024 conference promotes and stimulates discussion on the latest theories, algorithms, applications, and emerging topics on data security and privacy protection. It encourages the cross-fertilization of ideas and provides a platform for researchers, professionals, and students worldwide to discuss and present their research results.
Data Security and Privacy Protection: Second International Conference, DSPP 2024, Xi'an, China, October 25–28, 2024, Proceedings, Part II (Lecture Notes in Computer Science #15216)
by Xiaofeng Chen Xinyi Huang Moti YungThis book constitutes the proceedings of the 2nd International Conference on Data Security and Privacy Protection, DSPP 2024, held in Xi'an, China, during October 25-28, 2024. The 34 full papers included in this volume were carefully reviewed and selected from a total of 99 submissions. The DSPP 2024 conference promotes and stimulates discussion on the latest theories, algorithms, applications, and emerging topics on data security and privacy protection. It encourages the cross-fertilization of ideas and provides a platform for researchers, professionals, and students worldwide to discuss and present their research results.
Data, Security, and Trust in Smart Cities (Signals and Communication Technology)
by Stan McClellanThis book provides a comprehensive perspective on issues related to the trustworthiness of information in the emerging “Smart City.” Interrelated topics associated with the veracity of information are presented and discussed by authors with authoritative perspectives from multiple fields. The focus on security, veracity, and trustworthiness of information, data, societal structure and related topics in connected cities is timely, important, and uniquely presented. The authors cover issues related to the proliferation of disinformation and the mechanics of trust in modern society. Topical issues include trust in technologies, such as the use of machine learning (ML) and artificial intelligence (AI), the importance of encryption and cybersecurity, and the value of protecting of critical infrastructure. Structural issues include legal and governmental institutions, including the basis and importance of these fundamental components of society. Functional issues also include issues of societal trust related to healthcare, medical practitioners, and the dependence on reliability of scientific results. Insightful background on the development of AI is provided, and the use of this compelling technology in applications spanning networks, supply chains, and business practices are discussed by practitioners with direct knowledge and convincing perspective. These thought-provoking opinions from notable industry, academia, medicine, law, and government leaders provide substantial benefit for a variety of stakeholders.
Data Security Breaches and Privacy in Europe (SpringerBriefs in Cybersecurity)
by Rebecca WongData Security Breaches and Privacy in Europe aims to consider data protection and cybersecurity issues; more specifically, it aims to provide a fruitful discussion on data security breaches. A detailed analysis of the European Data Protection framework will be examined. In particular, the Data Protection Directive 95/45/EC, the Directive on Privacy and Electronic Communications and the proposed changes under the Data Protection Regulation (data breach notifications) and its implications are considered. This is followed by an examination of the Directive on Attacks against information systems and a discussion of the proposed Cybersecurity Directive, considering its shortcomings and its effects. The author concludes by looking at whether a balance can be drawn by the current and proposed Data Protection framework to protect against data security breaches and considers what more needs to be achieved.
Data Security in Cloud Storage (Wireless Networks)
by Yuan Zhang Chunxiang Xu Xuemin Sherman ShenThis book provides a comprehensive overview of data security in cloud storage, ranging from basic paradigms and principles, to typical security issues and practical security solutions. It also illustrates how malicious attackers benefit from the compromised security of outsourced data in cloud storage and how attacks work in real situations, together with the countermeasures used to ensure the security of outsourced data. Furthermore, the book introduces a number of emerging technologies that hold considerable potential – for example, blockchain, trusted execution environment, and indistinguishability obfuscation – and outlines open issues and future research directions in cloud storage security. The topics addressed are important for the academic community, but are also crucial for industry, since cloud storage has become a fundamental component in many applications. The book offers a general introduction for interested readers with a basic modern cryptography background, and a reference guide for researchers and practitioners in the fields of data security and cloud storage. It will also help developers and engineers understand why some current systems are insecure and inefficient, and move them to design and develop improved systems.
Data Security in Internet of Things Based RFID and WSN Systems Applications (Internet of Everything (IoE))
by Rohit Sharma Rajendra Prasad Mahapatra Korhan CengizThis book focuses on RFID (Radio Frequency Identification), IoT (Internet of Things), and WSN (Wireless Sensor Network). It includes contributions that discuss the security and privacy issues as well as the opportunities and applications that are tightly linked to sensitive infrastructures and strategic services. This book addresses the complete functional framework and workflow in IoT-enabled RFID systems and explores basic and high-level concepts. It is based on the latest technologies and covers the major challenges, issues, and advances in the field. It presents data acquisition and case studies related to data-intensive technologies in RFID-based IoT and includes WSN-based systems and their security. It can serve as a manual for those in the industry while also helping beginners to understand both the basic and advanced aspects of IoT-based RFID-related issues. This book can be a premier interdisciplinary platform for researchers, practitioners, and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered, and find solutions that have been adopted in the fields of IoT and analytics.
Data Sketches: A journey of imagination, exploration, and beautiful data visualizations (AK Peters Visualization Series)
by Nadieh Bremer Shirley WuIn Data Sketches, Nadieh Bremer and Shirley Wu document the deeply creative process behind 24 unique data visualization projects, and they combine this with powerful technical insights which reveal the mindset behind coding creatively. Exploring 12 different themes – from the Olympics to Presidents & Royals and from Movies to Myths & Legends – each pair of visualizations explores different technologies and forms, blurring the boundary between visualization as an exploratory tool and an artform in its own right. This beautiful book provides an intimate, behind-the-scenes account of all 24 projects and shares the authors’ personal notes and drafts every step of the way. The book features: Detailed information on data gathering, sketching, and coding data visualizations for the web, with screenshots of works-in-progress and reproductions from the authors’ notebooks Never-before-published technical write-ups, with beginner-friendly explanations of core data visualization concepts Practical lessons based on the data and design challenges overcome during each project Full-color pages, showcasing all 24 final data visualizations This book is perfect for anyone interested or working in data visualization and information design, and especially those who want to take their work to the next level and are inspired by unique and compelling data-driven storytelling.
Data Smart
by John W. ForemanData Science gets thrown around in the press like it's magic. Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions.But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope.Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data. Each chapter will cover a different technique in a spreadsheet so you can follow along:Mathematical optimization, including non-linear programming and genetic algorithmsClustering via k-means, spherical k-means, and graph modularityData mining in graphs, such as outlier detectionSupervised AI through logistic regression, ensemble models, and bag-of-words modelsForecasting, seasonal adjustments, and prediction intervals through monte carlo simulationMoving from spreadsheets into the R programming languageYou get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.
Data Smart: Using Data Science to Transform Information into Insight
by Jordan GoldmeierA straightforward and engaging approach to data science that skips the jargon and focuses on the essentials In the newly revised second edition of Data Smart: Using Data Science to Transform Information into Insight, accomplished data scientist and speaker Jordan Goldmeier delivers an approachable and conversational approach to data science using Microsoft Excel’s easily understood features. The author also walks readers through the fundamentals of statistics, machine learning and powerful artificial intelligence concepts, focusing on how to learn by doing. You’ll also find: Four-color data visualizations that highlight and illustrate the concepts discussed in the book Tutorials explaining complicated data science using just Microsoft Excel How to take what you’ve learned and apply it to everyday problems at work and lifeA must-read guide to data science for every day, non-technical professionals, Data Smart will earn a place on the bookshelves of students, analysts, data-driven managers, marketers, consultants, business intelligence analysts, demand forecasters, and revenue managers.
Data Source Handbook: A Guide to Public Data
by Pete WardenIf you're a developer looking to supplement your own data tools and services, this concise ebook covers the most useful sources of public data available today. You'll find useful information on APIs that offer broad coverage, tie their data to the outside world, and are either accessible online or feature downloadable bulk data. You'll also find code and helpful links. This guide organizes APIs by the subjects they cover--such as websites, people, or places--so you can quickly locate the best resources for augmenting the data you handle in your own service. Categories include: Website tools such as WHOIS, bit.ly, and Compete Services that use email addresses as search terms, including Github Finding information from just a name, with APIs such as WhitePages Services, such as Klout, for locating people with Facebook and Twitter accounts Search APIs, including BOSS and Wikipedia Geographical data sources, including SimpleGeo and U.S. Census Company information APIs, such as CrunchBase and ZoomInfo APIs that list IP addresses, such as MaxMind Services that list books, films, music, and products
Data Spaces: Design, Deployment and Future Directions
by Edward Curry Simon Scerri Tuomo TuikkaThis open access book aims to educate data space designers to understand what is required to create a successful data space. It explores cutting-edge theory, technologies, methodologies, and best practices for data spaces for both industrial and personal data and provides the reader with a basis for understanding the design, deployment, and future directions of data spaces.The book captures the early lessons and experience in creating data spaces. It arranges these contributions into three parts covering design, deployment, and future directions respectively. The first part explores the design space of data spaces. The single chapters detail the organisational design for data spaces, data platforms, data governance federated learning, personal data sharing, data marketplaces, and hybrid artificial intelligence for data spaces.The second part describes the use of data spaces within real-world deployments. Its chapters are co-authored with industry experts and include case studies of data spaces in sectors including industry 4.0, food safety, FinTech, health care, and energy.The third and final part details future directions for data spaces, including challenges and opportunities for common European data spaces and privacy-preserving techniques for trustworthy data sharing.The book is of interest to two primary audiences: first, researchers interested in data management and data sharing, and second, practitioners and industry experts engaged in data-driven systems where the sharing and exchange of data within an ecosystem are critical.
Data Stewardship for Open Science: Implementing FAIR Principles
by Barend MonsData Stewardship for Open Science: Implementing FAIR Principles has been written with the intention of making scientists, funders, and innovators in all disciplines and stages of their professional activities broadly aware of the need, complexity, and challenges associated with open science, modern science communication, and data stewardship. The FAIR principles are used as a guide throughout the text, and this book should leave experimentalists consciously incompetent about data stewardship and motivated to respect data stewards as representatives of a new profession, while possibly motivating others to consider a career in the field. The ebook, avalable for no additional cost when you buy the paperback, will be updated every 6 months on average (providing that significant updates are needed or avaialble). Readers will have the opportunity to contribute material towards these updates, and to develop their own data management plans, via the free Data Stewardship Wizard.