- Table View
- List View
Data, Disruption & Digital Leadership: How to Win the Innovation Game
by Philipp Futterknecht Tobias HertfelderSince the theory of relativity we know that massive objects attract things by their gravitation. The greater the mass, the greater the force of attraction. It is the same in strategy projects. Each project participant is a massive participant and has an impact on the interaction. What has changed dramatically is the influence of data on this process. Those who do not take this into account will suffer enormous losses in the future. As this change creates a new equilibrium, the chances of success of the methods and behaviors used also change. In this book, you will learn how to master this change and what you need to do so.
Data Driven: An Introduction to Management Consulting in the 21st Century (Management for Professionals)
by Jeremy David CuruksuThis book is a “scientific” introduction to management consulting that covers elementary and more advanced concepts, such as strategy and client-relationship. It discusses the emerging role of information technologies in consulting activities and introduces the essential tools in data science, assuming no technical background. Drawing on extensive literature reviews with more than 200 peer reviewed articles, reports, books and surveys referenced, this book has at least four objectives: to be scientific, modern, complete and concise. An interactive version of some sections (industry snapshots, method toolbox) is freely accessible at econsultingdata.com.
Data Driven: Truckers, Technology, and the New Workplace Surveillance
by Karen LevyA behind-the-scenes look at how digital surveillance is affecting the trucking way of lifeLong-haul truckers are the backbone of the American economy, transporting goods under grueling conditions and immense economic pressure. Truckers have long valued the day-to-day independence of their work, sharing a strong occupational identity rooted in a tradition of autonomy. Yet these workers increasingly find themselves under many watchful eyes. Data Driven examines how digital surveillance is upending life and work on the open road, and raises crucial questions about the role of data collection in broader systems of social control.Karen Levy takes readers inside a world few ever see, painting a bracing portrait of one of the last great American frontiers. Federal regulations now require truckers to buy and install digital monitors that capture data about their locations and behaviors. Intended to address the pervasive problem of trucker fatigue by regulating the number of hours driven each day, these devices support additional surveillance by trucking firms and other companies. Traveling from industry trade shows to law offices and truck-stop bars, Levy reveals how these invasive technologies are reconfiguring industry relationships and providing new tools for managerial and legal control—and how truckers are challenging and resisting them.Data Driven contributes to an emerging conversation about how technology affects our work, institutions, and personal lives, and helps to guide our thinking about how to protect public interests and safeguard human dignity in the digital age.
Data Driven
by Dj Patil Hilary MasonSucceeding with data isn’t just a matter of putting Hadoop in your machine room, or hiring some physicists with crazy math skills. It requires you to develop a data culture that involves people throughout the organization. In this O’Reilly report, DJ Patil and Hilary Mason outline the steps you need to take if your company is to be truly data-driven—including the questions you should ask and the methods you should adopt.You’ll not only learn examples of how Google, LinkedIn, and Facebook use their data, but also how Walmart, UPS, and other organizations took advantage of this resource long before the advent of Big Data. No matter how you approach it, building a data culture is the key to success in the 21st century.You’ll explore:Data scientist skills—and why every company needs a SpockHow the benefits of giving company-wide access to data outweigh the costsWhy data-driven organizations use the scientific method to explore and solve data problemsKey questions to help you develop a research-specific process for tackling important issuesWhat to consider when assembling your data teamDeveloping processes to keep your data team (and company) engagedChoosing technologies that are powerful, support teamwork, and easy to use and learn
Data-Driven Alexa Skills: Voice Access to Rich Data Sources for Enterprise Applications
by Simon A. KingabyDesign and build innovative, custom, data-driven Alexa skills for home or business. Working through several projects, this book teaches you how to build Alexa skills and integrate them with online APIs. If you have basic Python skills, this book will show you how to build data-driven Alexa skills. You will learn to use data to give your Alexa skills dynamic intelligence, in-depth knowledge, and the ability to remember. Data-Driven Alexa Skills takes a step-by-step approach to skill development. You will begin by configuring simple skills in the Alexa Skill Builder Console. Then you will develop advanced custom skills that use several Alexa Skill Development Kit features to integrate with lambda functions, Amazon Web Services (AWS), and Internet data feeds. These advanced skills enable you to link user accounts, query and store data using a NoSQL database, and access real estate listings and stock prices via web APIs.What You Will LearnSet up and configure your development environment properly the first timeBuild Alexa skills quickly and efficiently using Agile tools and techniquesCreate a variety of data-driven Alexa skills for home and businessAccess data from web applications and Internet data sources via their APIsTest with unit-testing frameworks throughout the development life cycleManage and query your data using the DynamoDb NoSQL database enginesWho This Book Is ForDevelopers who wish to go beyond Hello World and build complex, data-driven applications on Amazon's Alexa platform; developers who want to learn how to use Lambda functions, the Alexa Skills SDK, Alexa Presentation Language, and Alexa Conversations; developers interested in integrating with public APIs such as real estate listings and stock market prices. Readers will need to have basic Python skills.
Data-Driven Approach for Bio-medical and Healthcare (Data-Intensive Research)
by Nilanjan DeyThe book presents current research advances, both academic and industrial, in machine learning, artificial intelligence, and data analytics for biomedical and healthcare applications. The book deals with key challenges associated with biomedical data analysis including higher dimensions, class imbalances, smaller database sizes, etc. It also highlights development of novel pattern recognition and machine learning methods specific to medical and genomic data, which is extremely necessary but highly challenging. The book will be useful for healthcare professionals who have access to interesting data sources but lack the expertise to use data mining effectively.
Data Driven Approach Towards Disruptive Technologies: Proceedings of MIDAS 2020 (Studies in Autonomic, Data-driven and Industrial Computing)
by T. P. Singh Ravi Tomar Tanupriya Choudhury Thinagaran Perumal Hussain Falih MahdiThis book is a compilation of peer-reviewed papers presented at the International Conference on Machine Intelligence and Data Science Applications, organized by the School of Computer Science, University of Petroleum & Energy Studies, Dehradun, India, during 4–5 September 2020. The book addresses the algorithmic aspect of machine intelligence which includes the framework and optimization of various states of algorithms. Variety of papers related to wide applications in various fields like data-driven industrial IoT, bioinformatics, network and security, autonomous computing and various other aligned areas. The book concludes with interdisciplinary applications like legal, health care, smart society, cyber-physical system and smart agriculture. All papers have been carefully reviewed. The book is of interest to computer science engineers, lecturers/researchers in machine intelligence discipline and engineering graduates.
Data Driven Approaches for Healthcare: Machine learning for Identifying High Utilizers (Chapman & Hall/CRC Big Data Series)
by Chengliang Yang Chris Delcher Elizabeth Shenkman Sanjay RankaHealth care utilization routinely generates vast amounts of data from sources ranging from electronic medical records, insurance claims, vital signs, and patient-reported outcomes. Predicting health outcomes using data modeling approaches is an emerging field that can reveal important insights into disproportionate spending patterns. This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges uniquely posed by this problem. Key Features: Introduces basic elements of health care data, especially for administrative claims data, including disease code, procedure codes, and drug codes Provides tailored supervised and unsupervised machine learning approaches for understanding and predicting the high utilizers Presents descriptive data driven methods for the high utilizer population Identifies a best-fitting linear and tree-based regression model to account for patients’ acute and chronic condition loads and demographic characteristics
Data Driven Approaches in Digital Education: 12th European Conference on Technology Enhanced Learning, EC-TEL 2017, Tallinn, Estonia, September 12–15, 2017, Proceedings (Lecture Notes in Computer Science #10474)
by Katrien Verbert Hendrik Drachsler Élise Lavoué Mar Pérez-Sanagustín Julien BroisinThis book constitutes the proceedings of the 12th European Conference on Technology Enhanced Learning, EC-TEL 2017, held in Tallinn, Estonia, in September 2017. The 24 full papers, 23 short papers, 6 demo papers, and 22 poster papers presented in this volume were carefully reviewed and selected from 141 submissions. The theme for the 12th EC-TEL conference on Data Driven Approaches in Digital Education' aims to explore the multidisciplinary approaches that eectively illustrate how data-driven education combined with digital education systems can look like and what are the empirical evidences for the use of datadriven tools in educational practices.
Data Driven Approaches on Medical Imaging
by Bin Zheng Stefan Andrei Md Kamruzzaman Sarker Kishor Datta GuptaThis book deals with the recent advancements in computer vision techniques such as active learning, few-shot learning, zero shot learning, explainable and interpretable ML, online learning, AutoML etc. and their applications in medical domain. Moreover, the key challenges which affect the design, development, and performance of medical imaging systems are addressed. In addition, the state-of-the-art medical imaging methodologies for efficient, interpretable, explainable, and practical implementation of computer imaging techniques are discussed. At present, there are no textbook resources that address the medical imaging technologies. There are ongoing and novel research outcomes which would be useful for the development of novel medical imaging technologies/processes/equipment which can improve the current state of the art.The book particularly focuses on the use of data driven new technologies on medical imaging vision such as Active learning, Online learning, few shot learning, AutoML, segmentation etc.
Data-driven BIM for Energy Efficient Building Design (Spon Research)
by Saeed Banihashemi Hamed Golizadeh Farzad Pour RahimianThis research book aims to conceptualise the scale and spectrum of Building Information Modelling (BIM) and Artificial Intelligence (AI) approaches in energy efficient building design and develop its functional solutions with a focus towards four crucial aspects of building envelop, building layout, occupant behaviour and heating, ventilation and air-conditioning (HVAC) systems. Drawn from the theoretical development on the sustainability, informatics and optimisation paradigms in built environment, the energy efficient building design will be marked through the power of data and BIM intelligent agents during the design phase. It will be further developed via smart derivatives to reach a harmony in the systematic integration of energy efficient building design solutions; a gap which is missed in the extant literature and this book aims to fill that. This approach will inform a vision for future, provide a framework to shape and respond to our built environment and how it transforms the way we design and build. By considering the balance of BIM, AI and energy efficient outcomes, the future development of buildings will be regenerated in a direction that are sustainable in the long run. This book is essential reading for those in the AEC industry as well as computer scientists.
Data-driven Block Ciphers for Fast Telecommunication Systems
by Nikolai Moldovyan Alexander A. MoldovyanThe Most Progressive and Complete Guide to DDO-Based CiphersDevelopers have long recognized that ciphers based on Permutation Networks (PNs) and Controlled Substitution-Permutation Networks (CSPNs) allow for the implementation of a variety of Data Driven Operations (DDOs). These DDOs can provide fast encryption without incurring excessive
The Data-Driven Blockchain Ecosystem: Fundamentals, Applications, and Emerging Technologies
by Alex Khang Subrata Chowdhury Seema SharmaThis book focuses on futuristic approaches and designs for real-time systems and applications, as well as the fundamental concepts of including advanced techniques and tools in models of data-driven blockchain ecosystems. The Data-Driven Blockchain Ecosystem: Fundamentals, Applications, and Emerging Technologies discusses how to implement and manage processes for releasing and delivering blockchain applications. It presents the core of blockchain technology, IoT-based and AI-based blockchain systems, and various manufacturing areas related to Industry 4.0. The book illustrates how to apply design principles to develop and manage blockchain networks, and also covers the role that cloud computing plays in blockchain applications. All major technologies involved in blockchain-embedded applications are included in this book, which makes it useful to engineering students, researchers, academicians, and professionals interested in the core of blockchain technology.
Data-Driven Clinical Decision-Making Using Deep Learning in Imaging (Studies in Big Data #152)
by Nilanjan Dey M. F. MridhaThis book explores cutting-edge medical imaging advancements and their applications in clinical decision-making. The book contains various topics, methodologies, and applications, providing readers with a comprehensive understanding of the field's current state and prospects. It begins with exploring domain adaptation in medical imaging and evaluating the effectiveness of transfer learning to overcome challenges associated with limited labeled data. The subsequent chapters delve into specific applications, such as improving kidney lesion classification in CT scans, elevating breast cancer research through attention-based U-Net architecture for segmentation and classifying brain MRI images for neurological disorders. Furthermore, the book addresses the development of multimodal machine learning models for brain tumor prognosis, the identification of unique dermatological signatures using deep transfer learning, and the utilization of generative adversarial networks to enhance breast cancer detection systems by augmenting mammogram images. Additionally, the authors present a privacy-preserving approach for breast cancer risk prediction using federated learning, ensuring the confidentiality and security of sensitive patient data. This book brings together a global network of experts from various corners of the world, reflecting the truly international nature of its research.
Data-Driven Company: Moderne und integrierte Ansätze, um datengetrieben zu werden
by Sven-Erik WillrichDaten werden für Unternehmen immer wichtiger. Gleichzeitig mangelt es an Best Practices und Leitfäden, wie klassische mit modernen Ansätzen wie Data Mesh oder Data Fabric zu einem anwendbaren Framework integriert werden können. Hierzu werden die Themen Organisationsdesign, Datenstrategie / -management und Enterprise Architecture auf theoretische und pragmatische Weise verbunden. Das Buch präsentiert Ziele, ein Data Operating Model sowie datenstrategische Ansätze für eine Data-Driven Company. Hervorzuheben sind dabei die zahlreichen Abbildungen aus diesem Buch, die die komplexen Zusammenhänge anschaulich machen und das Lesen unterstützen. Zielgruppe Mit diesen Inhalten richtet sich das Buch an Führungskräfte, Experten, Berater und weitere Personen, die einen Bezug zur IT und Daten haben beziehungsweise diesen entwickeln möchten. Durch den niedrigschwelligen Einstieg und gleichzeitigen Tiefgang in die ausgewählten Themen adressiert es sowohl Einsteiger als auch erfahrene Datenexperten. Autor Dr. Sven-Erik Willrich ist ein erfahrener Experte im Bereich IT und Datenmanagement. Mit seinem Hintergrund in Wirtschaftsinformatik und langjähriger Beratungserfahrung bringt er sowohl theoretisches Wissen als auch praxisorientierte Lösungsansätze ein. Als Dozent und Redner im Bereich Digitalisierung teilt er regelmäßig seine Expertise.
Data-Driven Customer Engagement: Mastering MarTech Strategies for Success
by Ralf StraussEmbark on a journey through the rapidly evolving landscape of Marketing Technology (MarTech) with this comprehensive guide. From understanding the strategic imperatives driving MarTech adoption to navigating the intricacies of data-driven customer interaction, this book provides invaluable insights and practical strategies. Explore topics ranging from budget allocation and market potential to data readiness and GDPR compliance, gaining a deep understanding of key concepts and best practices. Whether you're grappling with the complexities of AI integration or seeking to optimize measurement and KPIs, this book equips you with the knowledge and tools needed to thrive in today's digital marketing environment. With decades of industry experience, Ralf Strauss offers in this book a roadmap for success, empowering marketers to navigate the challenges and seize the opportunities presented by MarTech innovation.
Data-Driven Customer Experience Transformation: Optimize Your Omnichannel Approach
by null Mohamed ZakiWe are living in an experience-driven economy, where the customer's experience is paramount and even beloved brands risk losing market share due to a single negative customer experience.In our technology-led, omnichannel environment, one of the biggest risks for brands is a lack of consistency in their customer experience across digital, physical and social channels. Data-driven Customer Experience Transformation provides insights and frameworks for creating delightful customer experiences across all three channels, by leveraging data and the latest technologies. Using cutting-edge research from the Cambridge Service Alliance, at the University of Cambridge, this book explores the importance of omnichannel customer-centricity across all sectors and takes you on a journey from setting your strategy, through designing and managing your customer experiences in real-time. It explores how AI can be used to identify opportunities and predict engagement, as well as how to use data to understand customer loyalty, forge stronger customer relationships and drive growth.By combining academic rigour with real-world examples from leading companies such as Microsoft, KFC and Emirates Airline, this book is the ultimate guide to designing and implementing an exceptional data-driven customer experience across all channels, whether you work in B2B, B2C or public services.
Data-Driven Decision Making
by Vinod Sharma Chandan Maheshkar Jeanne PouloseThis book delves into contemporary business analytics techniques across sectors for critical decision-making. It combines data, mathematical and statistical models, and information technology to present alternatives for decision evaluation. Offering systematic mechanisms, it explores business contexts, factors, and relationships to foster competitiveness. Beyond managerial perspectives, it includes contributions from professionals, academics, and scholars worldwide, delivering comprehensive knowledge and skills through diverse viewpoints, cases, and applications of analytical tools. As an international business science reference, it targets professionals, academics, researchers, doctoral scholars, postgraduate students, and research organizations seeking a nuanced understanding of modern business analytics.
Data-Driven Decision-Making for Business
by Claus Grand BangResearch shows that companies that employ data-driven decision-making are more productive, have a higher market value, and deliver higher returns for their shareholders. In this book, the reader will discover the history, theory, and practice of data-driven decision-making, learning how organizations and individual managers alike can utilize its methods to avoid cognitive biases and improve confidence in their decisions. It argues that value does not come from data, but from acting on data.Throughout the book, the reader will examine how to convert data to value through data-driven decision-making, as well as how to create a strong foundation for such decision-making within organizations. Covering topics such as strategy, culture, analysis, and ethics, the text uses a collection of diverse and up-to-date case studies to convey insights which can be developed into future action. Simultaneously, the text works to bridge the gap between data specialists and businesspeople. Clear learning outcomes and chapter summaries ensure that key points are highlighted, enabling lecturers to easily align the text to their curriculums.Data-Driven Decision-Making for Business provides important reading for undergraduate and postgraduate students of business and data analytics programs, as well as wider MBA classes. Chapters can also be used on a standalone basis, turning the book into a key reference work for students graduating into practitioners. The book is supported by online resources, including PowerPoint slides for each chapter.
Data-driven Decision-making for Product Managers: A Primer to Data Literacy in Product Management (Business Guides on the Go)
by Gabriel SteinhardtThis book is an essential guide for product managers seeking to harness the power of data to drive their product decisions. It is a detailed resource for developing and maintaining data literacy, a core skill for product managers. Through a structured approach supported by practical insights and illustrative examples, readers will learn to prioritize decisions based on quantitative data rather than intuition, understand core data concepts, and analyze and leverage data effectively. Product managers will discover how data can transform decision-making processes, enabling evidence-based selection, prioritization, and resource allocation for product features. By using customer feedback, user behavior data, market research, and performance metrics, product managers can foster a culture that leverages data to create successful products. This introductory primer and reference guide is indispensable for product managers aiming to integrate data-driven methodologies into their practice, ensuring their decisions are informed, strategic, and impactful.
Data-Driven Decision Making in Entrepreneurship: Tools for Maximizing Human Capital
by Nikki Blacksmith Maureen E. McCuskerSince the beginning of the 21st century, there has been an explosion in startup organizations. Together, these organizations have been valued at over $3 trillion. In 2019, alone, nearly $300 billion of venture capital was invested globally (Global Startup Ecosystem Report 2020). Simultaneously, an explosion in high volume and high velocity of big data is rapidly changing how organizations function. Gone are the days where organizations can make decisions solely on intuition, logic, or experience. Some have gone as far as to say that data is the most valuable currency and resource available to businesses, and startups are no exception. However, startups and small businesses do differ from their larger counterparts and corporations in three distinct ways: 1) they tend to have fewer resources, time, and specialized training to devote to data analytics; 2) they are part of a unique entrepreneurial ecosystem with unique needs; 3) scholarship and academic research on human capital data analytics in startups is lacking. Existing entrepreneurship research focuses almost exclusively on macro-level aspects. There has been little to no integration of micro- and meso-level research (i.e., individual and team sciences), which is unfortunate given how organizational scientists have significantly advanced human capital data analytics. Unlike other books focused on data analytics and decision for organizations, this proposed book is purposefully designed to be more specifically aimed at addressing the unique idiosyncrasies of the science, research, and practice of startups. Each chapter highlights a specific organizational domain and discuss how a novel data analytic technique can help enhance decision-making, provides a tutorial of said regarding the data analytic technique, and lists references and resources for the respective data analytic technique. The volume will be grounded in sound theory and practice of organizational psychology, entrepreneurship and management and is divided into two parts: assessing and evaluating human capital performance and the use of data analytics to manage human capital.
Data Driven Decision Making using Analytics (Computational Intelligence Techniques)
by Parul GandhiThis book aims to explain Data Analytics towards decision making in terms of models and algorithms, theoretical concepts, applications, experiments in relevant domains or focused on specific issues. It explores the concepts of database technology, machine learning, knowledge-based system, high performance computing, information retrieval, finding patterns hidden in large datasets and data visualization. Also, it presents various paradigms including pattern mining, clustering, classification, and data analysis. Overall aim is to provide technical solutions in the field of data analytics and data mining. Features: Covers descriptive statistics with respect to predictive analytics and business analytics. Discusses different data analytics platforms for real-time applications. Explain SMART business models. Includes algorithms in data sciences alongwith automated methods and models. Explores varied challenges encountered by researchers and businesses in the realm of real-time analytics. This book aims at researchers and graduate students in data analytics, data sciences, data mining, and signal processing.
Data Driven Decisions: Systems Engineering to Understand Corporate Value and Intangible Assets
by Joshua JahaniExpand your enterprise into new regions using systems engineering and data analysis In Data Driven Decisions: Systems Engineering to Understand Corporate Valuation and Intangible Assets, investment banker, systems engineer, and Cornell University lecturer Joshua Michael Jahani delivers an incisive and unique unveiling of how to use the tools of systems engineering to value your organization, its intangible assets, and how to gauge or prepare its readiness for an overseas or cross-border expansion. In the book, you’ll learn to implement a wide range of systems engineering tools, including context diagrams, decision matrices, Goal-Question-Metric analyses, and more. You’ll also discover the following: How to communicate corporate value measurements and their impact to owners, executives, and investors. Explorations of the relevant topics when considering an international expansion, including macroeconomics, joint ventures, market entry, corporate valuations, mergers and acquisitions, and company culture. A comprehensive framework and methodology for examining available global regions in your search for the perfect expansion target. A deep understanding of specific sectors in which intangible assets have a particular impact, including branded consumer products, ad-tech, and healthcare.A must-have resource for business owners, managers, executives, directors, and other corporate leaders, Data-Driven Decisions will also prove invaluable to consultants and other professionals who serve companies considering expansion or growth into new regions.
Data-Driven Design for Computer-Supported Collaborative Learning: Design Matters (Lecture Notes in Educational Technology)
by Lanqin ZhengThis book highlights the importance of design in computer-supported collaborative learning (CSCL) by proposing data-driven design and assessment. It addresses data-driven design, which focuses on the processing of data and on improving design quality based on analysis results, in three main sections. The first section explains how to design collaborative learning activities based on data-driven design approaches, while the second shares illustrative examples of computer-supported collaborative learning activities. In turn, the third and last section demonstrates how to evaluate design quality and the fidelity of enactment based on design-centered research.The book features several examples of innovative data-driven design approaches to optimizing collaborative learning activities; highlights innovative CSCL activities in authentic learning environments; demonstrates how learning analytics can be used to optimize CSCL design; and discusses the design-centered research approach to evaluating the alignment between design and enactment in CSCL. Given its scope, it will be of interest to a broad readership including researchers, educators, practitioners, and students in the field of collaborative learning, as well as the rapidly growing community of people who are interested in optimizing learning performance with CSCL.
Data-Driven Engineering Design
by Ang Liu Yuchen Wang Xingzhi WangThis book addresses the emerging paradigm of data-driven engineering design. In the big-data era, data is becoming a strategic asset for global manufacturers. This book shows how the power of data can be leveraged to drive the engineering design process, in particular, the early-stage design.Based on novel combinations of standing design methodology and the emerging data science, the book presents a collection of theoretically sound and practically viable design frameworks, which are intended to address a variety of critical design activities including conceptual design, complexity management, smart customization, smart product design, product service integration, and so forth. In addition, it includes a number of detailed case studies to showcase the application of data-driven engineering design. The book concludes with a set of promising research questions that warrant further investigation.Given its scope, the book will appeal to a broad readership, including postgraduate students, researchers, lecturers, and practitioners in the field of engineering design.