Browse Results

Showing 16,351 through 16,375 of 61,610 results

Deep Learning Essentials: Your Hands-on Guide To The Fundamentals Of Deep Learning And Neural Network Modeling

by Wei Di

Deep Learning is one of the trending topics in the field of Artificial Intelligence today and can be considered to be an advanced form of machine learning. This book will help you take your first steps when it comes to training efficient deep learning models, and apply them in various practical scenarios. You will model, train and deploy different kinds of neural networks such as CNN and RNN and see their applications in real-world domains.

Deep Learning Essentials: Your hands-on guide to the fundamentals of deep learning and neural network modeling

by Wei Di Anurag Bhardwaj Jianing Wei

Get to grips with the essentials of deep learning by leveraging the power of Python Key Features Your one-stop solution to get started with the essentials of deep learning and neural network modeling Train different kinds of neural networks to tackle various problems in Natural Language Processing, computer vision, speech recognition, and more Covers popular Python libraries such as Tensorflow, Keras, and more, along with tips on training, deploying and optimizing your deep learning models in the best possible manner Book Description Deep Learning a trending topic in the field of Artificial Intelligence today and can be considered to be an advanced form of machine learning, which is quite tricky to master. This book will help you take your first steps in training efficient deep learning models and applying them in various practical scenarios. You will model, train, and deploy different kinds of neural networks such as Convolutional Neural Network, Recurrent Neural Network, and will see some of their applications in real-world domains including computer vision, natural language processing, speech recognition, and so on. You will build practical projects such as chatbots, implement reinforcement learning to build smart games, and develop expert systems for image captioning and processing. Popular Python library such as TensorFlow is used in this book to build the models. This book also covers solutions for different problems you might come across while training models, such as noisy datasets, small datasets, and more. This book does not assume any prior knowledge of deep learning. By the end of this book, you will have a firm understanding of the basics of deep learning and neural network modeling, along with their practical applications. What you will learn Get to grips with the core concepts of deep learning and neural networks Set up deep learning library such as TensorFlow Fine-tune your deep learning models for NLP and Computer Vision applications Unify different information sources, such as images, text, and speech through deep learning Optimize and fine-tune your deep learning models for better performance Train a deep reinforcement learning model that plays a game better than humans Learn how to make your models get the best out of your GPU or CPUWho this book is for Aspiring data scientists and machine learning experts who have limited or no exposure to deep learning will find this book to be very useful. If you are looking for a resource that gets you up and running with the fundamentals of deep learning and neural networks, this book is for you. As the models in the book are trained using the popular Python-based libraries such as Tensorflow and Keras, it would be useful to have sound programming knowledge of Python.

Deep Learning For Dummies

by John Paul Mueller Luca Massaron

Take a deep dive into deep learning Deep learning provides the means for discerning patterns in the data that drive online business and social media outlets. Deep Learning for Dummies gives you the information you need to take the mystery out of the topic—and all of the underlying technologies associated with it. In no time, you’ll make sense of those increasingly confusing algorithms, and find a simple and safe environment to experiment with deep learning. The book develops a sense of precisely what deep learning can do at a high level and then provides examples of the major deep learning application types. Includes sample code Provides real-world examples within the approachable text Offers hands-on activities to make learning easier Shows you how to use Deep Learning more effectively with the right tools This book is perfect for those who want to better understand the basis of the underlying technologies that we use each and every day.

Deep Learning Foundations

by Taeho Jo

This book provides a conceptual understanding of deep learning algorithms. The book consists of the four parts: foundations, deep machine learning, deep neural networks, and textual deep learning. The first part provides traditional supervised learning, traditional unsupervised learning, and ensemble learning, as the preparation for studying deep learning algorithms. The second part deals with modification of existing machine learning algorithms into deep learning algorithms. The book’s third part deals with deep neural networks, such as Multiple Perceptron, Recurrent Networks, Restricted Boltzmann Machine, and Convolutionary Neural Networks. The last part provides deep learning techniques that are specialized for text mining tasks. The book is relevant for researchers, academics, students, and professionals in machine learning.

Deep Learning Models: A Practical Approach for Hands-On Professionals (Transactions on Computer Systems and Networks)

by Jonah Gamba

This book focuses on and prioritizes a practical approach, minimizing theoretical concepts to deliver algorithms effectively. With deep learning emerging as a vibrant field of research and development in numerous industrial applications, there is a pressing need for accessible resources that provide comprehensive examples and quick guidance. Unfortunately, many existing books on the market tend to emphasize theoretical aspects, leaving newcomers scrambling for practical guidance. This book takes a different approach by focusing on practicality while keeping theoretical concepts to a necessary minimum. The book begins by laying a foundation of basic information on deep learning, gradually delving into the subject matter to explain and illustrate the limitations of existing algorithms. A dedicated chapter is allocated to evaluating the performance of multiple algorithms on specific datasets, highlighting techniques and strategies that can address real-world challenges when deep learning is employed. By consolidating all necessary information into a single resource, readers can bypass the hassle of scouring scattered online sources, gaining a one-stop solution to dive into deep learning for object detection and classification. To facilitate understanding, the book employs a rich array of illustrations, figures, tables, and code snippets. Comprehensive code examples are provided, empowering readers to grasp concepts quickly and develop practical solutions. The book covers essential methods and tools, ensuring a complete and comprehensive coverage that enables professionals to implement deep learning algorithms swiftly and effectively.This book is designed to equip professionals with the necessary skills to thrive in the active field of deep learning, where it has the potential to revolutionize traditional problem-solving approaches. This book serves as a practical companion, enabling readers to grasp concepts swiftly and embark on building practical solutions.

Deep Learning Networks: Design, Development and Deployment

by Azad M. Madni S. S. Iyengar Jayakumar Singaram

This textbook presents multiple facets of design, development and deployment of deep learning networks for both students and industry practitioners. It introduces a deep learning tool set with deep learning concepts interwoven to enhance understanding. It also presents the design and technical aspects of programming along with a practical way to understand the relationships between programming and technology for a variety of applications. It offers a tutorial for the reader to learn wide-ranging conceptual modeling and programming tools that animate deep learning applications. The book is especially directed to students taking senior level undergraduate courses and to industry practitioners interested in learning about and applying deep learning methods to practical real-world problems.

Deep Learning Patterns and Practices

by Andrew Ferlitsch

Discover best practices, reproducible architectures, and design patterns to help guide deep learning models from the lab into production.In Deep Learning Patterns and Practices you will learn: Internal functioning of modern convolutional neural networks Procedural reuse design pattern for CNN architectures Models for mobile and IoT devices Assembling large-scale model deployments Optimizing hyperparameter tuning Migrating a model to a production environment The big challenge of deep learning lies in taking cutting-edge technologies from R&D labs through to production. Deep Learning Patterns and Practices is here to help. This unique guide lays out the latest deep learning insights from author Andrew Ferlitsch&’s work with Google Cloud AI. In it, you'll find deep learning models presented in a unique new way: as extendable design patterns you can easily plug-and-play into your software projects. Each valuable technique is presented in a way that's easy to understand and filled with accessible diagrams and code samples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Discover best practices, design patterns, and reproducible architectures that will guide your deep learning projects from the lab into production. This awesome book collects and illuminates the most relevant insights from a decade of real world deep learning experience. You&’ll build your skills and confidence with each interesting example. About the book Deep Learning Patterns and Practices is a deep dive into building successful deep learning applications. You&’ll save hours of trial-and-error by applying proven patterns and practices to your own projects. Tested code samples, real-world examples, and a brilliant narrative style make even complex concepts simple and engaging. Along the way, you&’ll get tips for deploying, testing, and maintaining your projects. What's inside Modern convolutional neural networks Design pattern for CNN architectures Models for mobile and IoT devices Large-scale model deployments Examples for computer vision About the reader For machine learning engineers familiar with Python and deep learning. About the author Andrew Ferlitsch is an expert on computer vision, deep learning, and operationalizing ML in production at Google Cloud AI Developer Relations. Table of Contents PART 1 DEEP LEARNING FUNDAMENTALS 1 Designing modern machine learning 2 Deep neural networks 3 Convolutional and residual neural networks 4 Training fundamentals PART 2 BASIC DESIGN PATTERN 5 Procedural design pattern 6 Wide convolutional neural networks 7 Alternative connectivity patterns 8 Mobile convolutional neural networks 9 Autoencoders PART 3 WORKING WITH PIPELINES 10 Hyperparameter tuning 11 Transfer learning 12 Data distributions 13 Data pipeline 14 Training and deployment pipeline

Deep Learning Pipeline: Building a Deep Learning Model with TensorFlow

by Hisham El-Amir Mahmoud Hamdy

Build your own pipeline based on modern TensorFlow approaches rather than outdated engineering concepts. This book shows you how to build a deep learning pipeline for real-life TensorFlow projects. You'll learn what a pipeline is and how it works so you can build a full application easily and rapidly. Then troubleshoot and overcome basic Tensorflow obstacles to easily create functional apps and deploy well-trained models. Step-by-step and example-oriented instructions help you understand each step of the deep learning pipeline while you apply the most straightforward and effective tools to demonstrative problems and datasets. You'll also develop a deep learning project by preparing data, choosing the model that fits that data, and debugging your model to get the best fit to data all using Tensorflow techniques. Enhance your skills by accessing some of the most powerful recent trends in data science. If you've ever considered building your own image or text-tagging solution or entering a Kaggle contest, Deep Learning Pipeline is for you! What You'll LearnDevelop a deep learning project using dataStudy and apply various models to your dataDebug and troubleshoot the proper model suited for your dataWho This Book Is ForDevelopers, analysts, and data scientists looking to add to or enhance their existing skills by accessing some of the most powerful recent trends in data science. Prior experience in Python or other TensorFlow related languages and mathematics would be helpful.

Deep Learning Projects Using TensorFlow 2: Neural Network Development with Python and Keras

by Vinita Silaparasetty

Work through engaging and practical deep learning projects using TensorFlow 2.0. Using a hands-on approach, the projects in this book will lead new programmers through the basics into developing practical deep learning applications. Deep learning is quickly integrating itself into the technology landscape. Its applications range from applicable data science to deep fakes and so much more. It is crucial for aspiring data scientists or those who want to enter the field of AI to understand deep learning concepts. The best way to learn is by doing. You'll develop a working knowledge of not only TensorFlow, but also related technologies such as Python and Keras. You'll also work with Neural Networks and other deep learning concepts. By the end of the book, you'll have a collection of unique projects that you can add to your GitHub profiles and expand on for professional application. What You'll LearnGrasp the basic process of neural networks through projects, such as creating musicRestore and colorize black and white images with deep learning processesWho This Book Is ForBeginners new to TensorFlow and Python.

Deep Learning Quick Reference: Useful hacks for training and optimizing deep neural networks with TensorFlow and Keras

by Michael Bernico

Dive deeper into neural networks and get your models trained, optimized with this quick reference guideKey FeaturesA quick reference to all important deep learning concepts and their implementationsEssential tips, tricks, and hacks to train a variety of deep learning models such as CNNs, RNNs, LSTMs, and moreSupplemented with essential mathematics and theory, every chapter provides best practices and safe choices for training and fine-tuning your models in Keras and Tensorflow.Book DescriptionDeep learning has become an essential necessity to enter the world of artificial intelligence. With this book deep learning techniques will become more accessible, practical, and relevant to practicing data scientists. It moves deep learning from academia to the real world through practical examples.You will learn how Tensor Board is used to monitor the training of deep neural networks and solve binary classification problems using deep learning. Readers will then learn to optimize hyperparameters in their deep learning models. The book then takes the readers through the practical implementation of training CNN's, RNN's, and LSTM's with word embeddings and seq2seq models from scratch. Later the book explores advanced topics such as Deep Q Network to solve an autonomous agent problem and how to use two adversarial networks to generate artificial images that appear real. For implementation purposes, we look at popular Python-based deep learning frameworks such as Keras and Tensorflow, Each chapter provides best practices and safe choices to help readers make the right decision while training deep neural networks.By the end of this book, you will be able to solve real-world problems quickly with deep neural networks.What you will learn Solve regression and classification challenges with TensorFlow and Keras Learn to use Tensor Board for monitoring neural networks and its training Optimize hyperparameters and safe choices/best practices Build CNN's, RNN's, and LSTM's and using word embedding from scratch Build and train seq2seq models for machine translation and chat applications. Understanding Deep Q networks and how to use one to solve an autonomous agent problem. Explore Deep Q Network and address autonomous agent challenges.Who this book is forIf you are a Data Scientist or a Machine Learning expert, then this book is a very useful read in training your advanced machine learning and deep learning models. You can also refer this book if you are stuck in-between the neural network modeling and need immediate assistance in getting accomplishing the task smoothly. Some prior knowledge of Python and tight hold on the basics of machine learning is required.

Deep Learning Recommender Systems

by Zhe Wang Chao Pu Felice Wang

Recommender systems are ubiquitous in modern life and are one of the main monetization channels for Internet technology giants. This book helps graduate students, researchers and practitioners to get to grips with this cutting-edge field and build the thorough understanding and practical skills needed to progress in the area. It not only introduces the applications of deep learning and generative AI for recommendation models, but also focuses on the industry architecture of the recommender systems. The authors include a detailed discussion of the implementation solutions used by companies such as YouTube, Alibaba, Airbnb and Netflix, as well as the related machine learning framework including model serving, model training, feature storage and data stream processing.

Deep Learning Techniques for Automation and Industrial Applications

by Abhishek Kumar Pramod Singh Rathore Sachin Ahuja Anupam Baliyan Srinivasa Rao Burri Ajay Khunteta

This book provides state-of-the-art approaches to deep learning in areas of detection and prediction, as well as future framework development, building service systems and analytical aspects in which artificial neural networks, fuzzy logic, genetic algorithms, and hybrid mechanisms are used. Deep learning algorithms and techniques are found to be useful in various areas, such as automatic machine translation, automatic handwriting generation, visual recognition, fraud detection, and detecting developmental delays in children. “Deep Learning Techniques for Automation and Industrial Applications” presents a concise introduction to the recent advances in this field of artificial intelligence (AI). The broad-ranging discussion covers the algorithms and applications in AI, reasoning, machine learning, neural networks, reinforcement learning, and their applications in various domains like agriculture, manufacturing, and healthcare. Applying deep learning techniques or algorithms successfully in these areas requires a concerted effort, fostering integrative research between experts from diverse disciplines from data science to visualization. This book provides state-of-the-art approaches to deep learning covering detection and prediction, as well as future framework development, building service systems, and analytical aspects. For all these topics, various approaches to deep learning, such as artificial neural networks, fuzzy logic, genetic algorithms, and hybrid mechanisms, are explained. Audience The book will be useful to researchers and industry engineers working in information technology, data analytics network security, and manufacturing. Graduate and upper-level undergraduate students in advanced modeling and simulation courses will find this book very useful.

Deep Learning Techniques for Biomedical and Health Informatics (Studies in Big Data #68)

by Ajith Abraham Mamta Mittal Sujata Dash Biswa Ranjan Acharya Arpad Kelemen

This book presents a collection of state-of-the-art approaches for deep-learning-based biomedical and health-related applications. The aim of healthcare informatics is to ensure high-quality, efficient health care, and better treatment and quality of life by efficiently analyzing abundant biomedical and healthcare data, including patient data and electronic health records (EHRs), as well as lifestyle problems. In the past, it was common to have a domain expert to develop a model for biomedical or health care applications; however, recent advances in the representation of learning algorithms (deep learning techniques) make it possible to automatically recognize the patterns and represent the given data for the development of such model. This book allows new researchers and practitioners working in the field to quickly understand the best-performing methods. It also enables them to compare different approaches and carry forward their research in an important area that has a direct impact on improving the human life and health. It is intended for researchers, academics, industry professionals, and those at technical institutes and R&D organizations, as well as students working in the fields of machine learning, deep learning, biomedical engineering, health informatics, and related fields.

Deep Learning Techniques for IoT Security and Privacy (Studies in Computational Intelligence #997)

by Nour Moustafa Mohamed Abdel-Basset Hossam Hawash Weiping Ding

This book states that the major aim audience are people who have some familiarity with Internet of things (IoT) but interested to get a comprehensive interpretation of the role of deep Learning in maintaining the security and privacy of IoT. A reader should be friendly with Python and the basics of machine learning and deep learning. Interpretation of statistics and probability theory will be a plus but is not certainly vital for identifying most of the book's material.

Deep Learning Technologies for the Sustainable Development Goals: Issues and Solutions in the Post-COVID Era (Advanced Technologies and Societal Change)

by T. P. Singh Virender Kadyan Chidiebere Ugwu

This book provides insights into deep learning techniques that impact the implementation strategies toward achieving the Sustainable Development Goals (SDGs) laid down by the United Nations for its 2030 agenda, elaborating on the promises, limits, and the new challenges. It also covers the challenges, hurdles, and opportunities in various applications of deep learning for the SDGs. A comprehensive survey on the major applications and research, based on deep learning techniques focused on SDGs through speech and image processing, IoT, security, AR-VR, formal methods, and blockchain, is a feature of this book. In particular, there is a need to extend research into deep learning and its broader application to many sectors and to assess its impact on achieving the SDGs. The chapters in this book help in finding the use of deep learning across all sections of SDGs. The rapid development of deep learning needs to be supported by the organizational insight and oversight necessary for AI-based technologies in general; hence, this book presents and discusses the implications of how deep learning enables the delivery agenda for sustainable development.

Deep Learning Theory and Applications: 4th International Conference, DeLTA 2023, Rome, Italy, July 13–14, 2023, Proceedings (Communications in Computer and Information Science #1875)

by Ana Fred Oleg Gusikhin Donatello Conte Carlo Sansone

This book consitiutes the refereed proceedings of the 4th International Conference on Deep Learning Theory and Applications, DeLTA 2023, held in Rome, Italy from 13 to 14 July 2023.The 9 full papers and 22 short papers presented were thoroughly reviewed and selected from the 42 qualified submissions. The scope of the conference includes such topics as models and algorithms; machine learning; big data analytics; computer vision applications; and natural language understanding.

Deep Learning Theory and Applications: 5th International Conference, DeLTA 2024, Dijon, France, July 10–11, 2024, Proceedings, Part I (Communications in Computer and Information Science #2171)

by Ana Fred Oleg Gusikhin Carlo Sansone Allel Hadjali

The two-volume set CCIS 2171 and 2172 constitutes the refereed best papers from the 5th International Conference on Deep Learning Theory and Applications, DeLTA 2024, which took place in Dijon, France, during July 10-11, 2024. The 44 papers included in these proceedings were carefully reviewed and selected from a total of 70 submissions. They focus on topics such as deep learning and big data analytics; machine-learning and artificial intelligence, etc.

Deep Learning Theory and Applications: 5th International Conference, DeLTA 2024, Dijon, France, July 10–11, 2024, Proceedings, Part II (Communications in Computer and Information Science #2172)

by Ana Fred Oleg Gusikhin Carlo Sansone Allel Hadjali

The two-volume set CCIS 2171 and 2172 constitutes the refereed papers from the 5th INternational Conference on Deep Learning Theory and Applications, DeLTA 2024, which took place in Dijon, France, during July 10-11, 2024. The 44 papers included in these proceedings were carefully reviewed and selected from a total of 70 submissions. They focus on topics such as deep learning and big data analytics; machine-learning and artificial intelligence, etc.

Deep Learning Theory and Applications: First International Conference, DeLTA 2020, Virtual Event, July 8-10, 2020, and Second International Conference, DeLTA 2021, Virtual Event, July 7–9, 2021, Revised Selected Papers (Communications in Computer and Information Science #1854)

by Ana Fred Kurosh Madani Carlo Sansone

This book constitutes the refereed post-proceedings of the First International Conference and Second International Conference on Deep Learning Theory and Applications, DeLTA 2020 and DeLTA 2021, was held virtually due to the COVID-19 crisis on July 8-10, 2020 and July 7–9, 2021.The 7 full papers included in this book were carefully reviewed and selected from 58 submissions. They present recent research on machine learning and artificial intelligence in real-world applications such as computer vision, information retrieval and summarization from structuredand unstructured multimodal data sources, natural language understanding andtranslation, and many other application domains.

Deep Learning Theory and Applications: Third International Conference, DeLTA 2022, Lisbon, Portugal, July 12–14, 2022, Revised Selected Papers (Communications in Computer and Information Science #1858)

by Ana Fred Oleg Gusikhin Kurosh Madani Carlo Sansone

This book constitutes the refereed post-conference proceedings of the Third International Conference on Deep Learning Theory and Applications, DeLTA 2022, held in Lisbon, Portugal, during January 17-18, 2022.The 6 full papers included in this book were carefully reviewed and selected from 36 submissions. They present recent research on machine learning and artificial intelligence in real-world applications such as computer vision, information retrieval and summarization from structured and unstructured multimodal data sources, natural language understanding and translation, and many other application domains.

Deep Learning Through the Prism of Tensors (Studies in Big Data #162)

by Balasubramanian Raman Pradeep Singh

In the rapidly evolving field of artificial intelligence, this book serves as a crucial resource for understanding the mathematical foundations of AI. It explores the intricate world of tensors, the fundamental elements powering today's advanced deep learning models. Combining theoretical depth with practical insights, the text navigates the complex landscape of tensor calculus, guiding readers to master the principles and applications of tensors in AI. From the basics of tensor algebra and geometry to the sophisticated architectures of neural networks, including multi-layer perceptrons, convolutional, recurrent, and transformer models, this book provides a comprehensive examination of the mechanisms driving modern AI innovations. It delves into the specifics of autoencoders, generative models, and geometric interpretations, offering a fresh perspective on the complex, high-dimensional spaces traversed by deep learning technologies. Concluding with a forward-looking view, the book addresses the latest advancements and speculates on the future directions of AI research, preparing readers to contribute to or navigate the next wave of innovations in the field. Designed for academics, researchers, and industry professionals, it serves as both an essential textbook for graduate and postgraduate students and a valuable reference for experts in the field. With its rigorous approach to the mathematical frameworks of AI and a strong focus on practical applications, this book bridges the gap between theoretical research and real-world implementation, making it an indispensable guide in the realm of artificial intelligence.

Deep Learning Tools for Predicting Stock Market Movements

by Renuka Sharma Kiran Mehta

DEEP LEARNING TOOLS for PREDICTING STOCK MARKET MOVEMENTS The book provides a comprehensive overview of current research and developments in the field of deep learning models for stock market forecasting in the developed and developing worlds. The book delves into the realm of deep learning and embraces the challenges, opportunities, and transformation of stock market analysis. Deep learning helps foresee market trends with increased accuracy. With advancements in deep learning, new opportunities in styles, tools, and techniques evolve and embrace data-driven insights with theories and practical applications. Learn about designing, training, and applying predictive models with rigorous attention to detail. This book offers critical thinking skills and the cultivation of discerning approaches to market analysis. The book: details the development of an ensemble model for stock market prediction, combining long short-term memory and autoregressive integrated moving average; explains the rapid expansion of quantum computing technologies in financial systems; provides an overview of deep learning techniques for forecasting stock market trends and examines their effectiveness across different time frames and market conditions; explores applications and implications of various models for causality, volatility, and co-integration in stock markets, offering insights to investors and policymakers. Audience The book has a wide audience of researchers in financial technology, financial software engineering, artificial intelligence, professional market investors, investment institutions, and asset management companies.

Deep Learning With Python

by Francois Chollet

Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher Francois Chollet, this book builds your understanding through intuitive explanations and practical examples.

Deep Learning With R

by François Chollet J. J. Allaire

Deep Learning with R introduces the world of deep learning using the powerful Keras library and its R language interface. The book builds your understanding of deep learning through intuitive explanations and practical examples.

Deep Learning and Big Data for Intelligent Transportation: Enabling Technologies and Future Trends (Studies in Computational Intelligence #945)

by Aboul Ella Hassanien Khaled R. Ahmed

This book contributes to the progress towards intelligent transportation. It emphasizes new data management and machine learning approaches such as big data, deep learning and reinforcement learning. Deep learning and big data are very energetic and vital research topics of today’s technology. Road sensors, UAVs, GPS, CCTV and incident reports are sources of massive amount of data which are crucial to make serious traffic decisions. Herewith this substantial volume and velocity of data, it is challenging to build reliable prediction models based on machine learning methods and traditional relational database. Therefore, this book includes recent research works on big data, deep convolution networks and IoT-based smart solutions to limit the vehicle’s speed in a particular region, to support autonomous safe driving and to detect animals on roads for mitigating animal-vehicle accidents. This book serves broad readers including researchers, academicians, students and working professional in vehicles manufacturing, health and transportation departments and networking companies.

Refine Search

Showing 16,351 through 16,375 of 61,610 results