Browse Results

Showing 21,451 through 21,475 of 61,763 results

Explainable Artificial Intelligence in Medical Imaging: Fundamentals and Applications (Advances in Computational Collective Intelligence)

by Tanzila Saba Amjad Rehman Khan

Artificial intelligence (AI) in medicine is rising, and it holds tremendous potential for more accurate findings and novel solutions to complicated medical issues. Biomedical AI has potential, especially in the context of precision medicine, in the healthcare industry’s next phase of development and advancement. Integration of AI research into precision medicine is the future; however, the human component must always be considered.Explainable Artificial Intelligence in Medical Imaging: Fundamentals and Applications focuses on the most recent developments in applying artificial intelligence and data science to health care and medical imaging. Explainable artificial intelligence is a well-structured, adaptable technology that generates impartial, optimistic results. New healthcare applications for explicable artificial intelligence include clinical trial matching, continuous healthcare monitoring, probabilistic evolutions, and evidence-based mechanisms. This book overviews the principles, methods, issues, challenges, opportunities, and the most recent research findings. It makes the emerging topics of digital health and explainable AI in health care and medical imaging accessible to a wide audience by presenting various practical applications.Presenting a thorough review of state-of-the-art techniques for precise analysis and diagnosis, the book emphasizes explainable artificial intelligence and its applications in healthcare. The book also discusses computational vision processing methods that manage complicated data, including physiological data, electronic medical records, and medical imaging data, enabling early prediction. Researchers, academics, business professionals, health practitioners, and students all can benefit from this book’s insights and coverage.

Explainable Artificial Intelligence in the Digital Sustainability Administration: Proceedings of the 2nd International Conference on Explainable Artificial Intelligence in the Digital Sustainability Administration (AIRDS 2024) (Lecture Notes in Networks and Systems #1033)

by Gül Erkol Bayram Marco Valeri Alhamzah Alnoor Mark Camilleri Hadi A. Al-Abrrow Yousif Raad Muhsen

This book explores current research trends in the context of the explainable artificial intelligence’s impact on the digital sustainability trend while delving into case studies on education, tourism, marketing, and finance. These trends are examined through various case studies utilizing distinct analytical methods. The chapters are expected to support scholars and postgraduate students in furthering their research in this field and in recognizing prospective advancements in the applications of artificial intelligence.

Explainable Artificial Intelligence in the Healthcare Industry

by Abhishek Kumar Chetan Sharma Ashutosh Kumar Dubey Prasenjit Das T. Ananth Kumar

Discover the essential insights and practical applications of explainable AI in healthcare that will empower professionals and enhance patient trust with Explainable AI in the Healthcare Industry, a must-have resource. Explainable AI (XAI) has significant implications for the healthcare industry, where trust, accountability, and interpretability are crucial factors for the adoption of artificial intelligence. XAI techniques in healthcare aim to provide clear and understandable explanations for AI-driven decisions, helping healthcare professionals, patients, and regulatory bodies to better comprehend and trust the AI models’ outputs. Explainable AI in the Healthcare Industry presents a comprehensive exploration of the critical role of explainable AI in revolutionizing the healthcare industry. With the rapid integration of AI-driven solutions in medical practice, understanding how these models arrive at their decisions is of paramount importance. The book delves into the principles, methodologies, and practical applications of XAI techniques specifically tailored for healthcare settings.

Explainable Artificial Intelligence: A Practical Guide (River Publishers Rapids Series on Intelligence in Chips)

by Parikshit Narendra Mahalle Yashwant Sudhakar Ingle

This book explores the growing focus on artificial intelligence (AI) systems in both industry and academia. It evaluates and justifies AI applications while enhancing trust in AI outcomes and aiding comprehension of AI feature development. Key topics include an overview of explainable AI, black box model understanding, interpretability techniques, practical XAI applications, and future trends and challenges in XAI.Technical topics discussed in the book include: Explainable AI overview Understanding black box models Techniques for model interpretability Practical applications of XAI Future trends and challenges in XAI

Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning

by Uday Kamath John Liu

This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students. --Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMUThis book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning.--Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYUThis is a wonderful book! I’m pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book I’ve seen that has up-to-date and well-rounded coverage. Thank you to the authors!--Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & Bioinformatics Literature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge. A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, notebooks with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level.Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist.Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder of Explainable AI-XAI Group

Explainable Artificial Intelligence: First World Conference, xAI 2023, Lisbon, Portugal, July 26–28, 2023, Proceedings, Part I (Communications in Computer and Information Science #1901)

by Luca Longo

This three-volume set constitutes the refereed proceedings of the First World Conference on Explainable Artificial Intelligence, xAI 2023, held in Lisbon, Portugal, in July 2023. The 94 papers presented were thoroughly reviewed and selected from the 220 qualified submissions. They are organized in the following topical sections: ​Part I: Interdisciplinary perspectives, approaches and strategies for xAI; Model-agnostic explanations, methods and techniques for xAI, Causality and Explainable AI; Explainable AI in Finance, cybersecurity, health-care and biomedicine.Part II: Surveys, benchmarks, visual representations and applications for xAI; xAI for decision-making and human-AI collaboration, for Machine Learning on Graphs with Ontologies and Graph Neural Networks; Actionable eXplainable AI, Semantics and explainability, and Explanations for Advice-Giving Systems.Part III: xAI for time series and Natural Language Processing; Human-centered explanations and xAI for Trustworthy and Responsible AI; Explainable and Interpretable AI with Argumentation, Representational Learning and concept extraction for xAI.

Explainable Artificial Intelligence: First World Conference, xAI 2023, Lisbon, Portugal, July 26–28, 2023, Proceedings, Part II (Communications in Computer and Information Science #1902)

by Luca Longo

Chapters “Finding Spurious Correlations with Function-Semantic Contrast Analysis” and “Explaining Socio-Demographic and Behavioral Patterns of Vaccination Against the Swine Flu (H1N1) Pandemic” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Explainable Artificial Intelligence: First World Conference, xAI 2023, Lisbon, Portugal, July 26–28, 2023, Proceedings, Part III (Communications in Computer and Information Science #1903)

by Luca Longo

This three-volume set constitutes the refereed proceedings of the First World Conference on Explainable Artificial Intelligence, xAI 2023, held in Lisbon, Portugal, in July 2023. The 94 papers presented were thoroughly reviewed and selected from the 220 qualified submissions. They are organized in the following topical sections: ​Part I: Interdisciplinary perspectives, approaches and strategies for xAI; Model-agnostic explanations, methods and techniques for xAI, Causality and Explainable AI; Explainable AI in Finance, cybersecurity, health-care and biomedicine.Part II: Surveys, benchmarks, visual representations and applications for xAI; xAI for decision-making and human-AI collaboration, for Machine Learning on Graphs with Ontologies and Graph Neural Networks; Actionable eXplainable AI, Semantics and explainability, and Explanations for Advice-Giving Systems.Part III: xAI for time series and Natural Language Processing; Human-centered explanations and xAI for Trustworthy and Responsible AI; Explainable and Interpretable AI with Argumentation, Representational Learning and concept extraction for xAI.

Explainable Artificial Intelligence: Methodology, Tools, and Applications (SpringerBriefs in Applied Sciences and Technology)

by Tin-Chih Toly Chen

This book provides a comprehensive overview of the latest developments in Explainable AI (XAI) and its applications in manufacturing. It covers the various methods, tools, and technologies that are being used to make AI more understandable and communicable for factory workers. With the increasing use of AI in manufacturing, there is a growing need to address the limitations of advanced AI methods that are difficult to understand or explain to those without a background in AI. This book addresses this need by providing a systematic review of the latest research and advancements in XAI specifically tailored for the manufacturing industry.The book includes real-world case studies and examples to illustrate the practical applications of XAI in manufacturing. It is a valuable resource for researchers, engineers, and practitioners working in the field of AI and manufacturing.

Explainable Artificial Intelligence: Second World Conference, xAI 2024, Valletta, Malta, July 17–19, 2024, Proceedings, Part I (Communications in Computer and Information Science #2153)

by Luca Longo Christin Seifert Sebastian Lapuschkin

This four-volume set constitutes the refereed proceedings of the Second World Conference on Explainable Artificial Intelligence, xAI 2024, held in Valletta, Malta, during July 17-19, 2024. The 95 full papers presented were carefully reviewed and selected from 204 submissions. The conference papers are organized in topical sections on: Part I - intrinsically interpretable XAI and concept-based global explainability; generative explainable AI and verifiability; notion, metrics, evaluation and benchmarking for XAI. Part II - XAI for graphs and computer vision; logic, reasoning, and rule-based explainable AI; model-agnostic and statistical methods for eXplainable AI. Part III - counterfactual explanations and causality for eXplainable AI; fairness, trust, privacy, security, accountability and actionability in eXplainable AI. Part IV - explainable AI in healthcare and computational neuroscience; explainable AI for improved human-computer interaction and software engineering for explainability; applications of explainable artificial intelligence.

Explainable Artificial Intelligence: Second World Conference, xAI 2024, Valletta, Malta, July 17–19, 2024, Proceedings, Part II (Communications in Computer and Information Science #2154)

by Luca Longo Christin Seifert Sebastian Lapuschkin

This four-volume set constitutes the refereed proceedings of the Second World Conference on Explainable Artificial Intelligence, xAI 2024, held in Valletta, Malta, during July 17-19, 2024. The 95 full papers presented were carefully reviewed and selected from 204 submissions. The conference papers are organized in topical sections on: Part I - intrinsically interpretable XAI and concept-based global explainability; generative explainable AI and verifiability; notion, metrics, evaluation and benchmarking for XAI. Part II - XAI for graphs and computer vision; logic, reasoning, and rule-based explainable AI; model-agnostic and statistical methods for eXplainable AI. Part III - counterfactual explanations and causality for eXplainable AI; fairness, trust, privacy, security, accountability and actionability in eXplainable AI. Part IV - explainable AI in healthcare and computational neuroscience; explainable AI for improved human-computer interaction and software engineering for explainability; applications of explainable artificial intelligence.

Explainable Artificial Intelligence: Second World Conference, xAI 2024, Valletta, Malta, July 17–19, 2024, Proceedings, Part III (Communications in Computer and Information Science #2155)

by Luca Longo Christin Seifert Sebastian Lapuschkin

This four-volume set constitutes the refereed proceedings of the Second World Conference on Explainable Artificial Intelligence, xAI 2024, held in Valletta, Malta, during July 17-19, 2024. The 95 full papers presented were carefully reviewed and selected from 204 submissions. The conference papers are organized in topical sections on: Part I - intrinsically interpretable XAI and concept-based global explainability; generative explainable AI and verifiability; notion, metrics, evaluation and benchmarking for XAI. Part II - XAI for graphs and computer vision; logic, reasoning, and rule-based explainable AI; model-agnostic and statistical methods for eXplainable AI. Part III - counterfactual explanations and causality for eXplainable AI; fairness, trust, privacy, security, accountability and actionability in eXplainable AI. Part IV - explainable AI in healthcare and computational neuroscience; explainable AI for improved human-computer interaction and software engineering for explainability; applications of explainable artificial intelligence.

Explainable Artificial Intelligence: Second World Conference, xAI 2024, Valletta, Malta, July 17–19, 2024, Proceedings, Part IV (Communications in Computer and Information Science #2156)

by Luca Longo Christin Seifert Sebastian Lapuschkin

This four-volume set constitutes the refereed proceedings of the Second World Conference on Explainable Artificial Intelligence, xAI 2024, held in Valletta, Malta, during July 17-19, 2024. The 95 full papers presented were carefully reviewed and selected from 204 submissions. The conference papers are organized in topical sections on: Part I - intrinsically interpretable XAI and concept-based global explainability; generative explainable AI and verifiability; notion, metrics, evaluation and benchmarking for XAI. Part II - XAI for graphs and computer vision; logic, reasoning, and rule-based explainable AI; model-agnostic and statistical methods for eXplainable AI. Part III - counterfactual explanations and causality for eXplainable AI; fairness, trust, privacy, security, accountability and actionability in eXplainable AI. Part IV - explainable AI in healthcare and computational neuroscience; explainable AI for improved human-computer interaction and software engineering for explainability; applications of explainable artificial intelligence.

Explainable Edge AI: A Futuristic Computing Perspective (Studies in Computational Intelligence #1072)

by Ankit Garg Aboul Ella Hassanien Deepak Gupta Anuj Kumar Singh

This book presents explainability in edge AI, an amalgamation of edge computing and AI. The issues of transparency, fairness, accountability, explainability, interpretability, data-fusion, and comprehensibility that are significant for edge AI are being addressed in this book through explainable models and techniques. The concept of explainable edge AI is new in front of the academic and research community, and consequently, it will undoubtedly explore multiple research dimensions. The book presents the concept of explainability in edge AI which is the amalgamation of edge computing and AI. In the futuristic computing scenario, the goal of explainable edge AI will be to execute the AI tasks and produce explainable results at the edge. First, this book explains the fundamental concepts of explainable artificial intelligence (XAI), then it describes the concept of explainable edge AI, and finally, it elaborates on the technicalities of explainability in edge AI. Owing to the quick transition in the current computing scenario and integration with the latest AI-based technologies, it is significant to facilitate people-centric computing through explainable edge AI. Explainable edge AI will facilitate enhanced prediction accuracy with the comprehensible decision and traceability of actions performed at the edge and have a significant impact on futuristic computing scenarios. This book is highly relevant to graduate/postgraduate students, academicians, researchers, engineers, professionals, and other personnel working in artificial intelligence, machine learning, and intelligent systems.

Explainable Fuzzy Systems: Paving the Way from Interpretable Fuzzy Systems to Explainable AI Systems (Studies in Computational Intelligence #970)

by Luis Magdalena Ciro Castiello Corrado Mencar Jose Maria Alonso Moral

The importance of Trustworthy and Explainable Artificial Intelligence (XAI) is recognized in academia, industry and society. This book introduces tools for dealing with imprecision and uncertainty in XAI applications where explanations are demanded, mainly in natural language. Design of Explainable Fuzzy Systems (EXFS) is rooted in Interpretable Fuzzy Systems, which are thoroughly covered in the book. The idea of interpretability in fuzzy systems, which is grounded on mathematical constraints and assessment functions, is firstly introduced. Then, design methodologies are described. Finally, the book shows with practical examples how to design EXFS from interpretable fuzzy systems and natural language generation. This approach is supported by open source software. The book is intended for researchers, students and practitioners who wish to explore EXFS from theoretical and practical viewpoints. The breadth of coverage will inspire novel applications and scientific advancements.

Explainable IoT Applications: A Demystification (Information Systems Engineering and Management #21)

by Suneeta Satpathy Sachi Nandan Mohanty Subhendu Kumar Pani Xiaochun Cheng

Explainable IoT Application: A Demystification is an in-depth guide that examines the intersection of the Internet of Things (IoT) with AI and Machine Learning, focusing on the crucial need for transparency and interpretability in IoT systems. As IoT devices become more integrated into daily life, from smart homes to industrial automation, it is increasingly important to understand and trust the decisions they make. The book starts by covering the basics of IoT, highlighting its importance in modern technology and its wide-ranging applications in fields such as healthcare, transportation, and smart cities. It then delves into the concept of explainability, stressing the need to prevent IoT systems from being perceived as opaque, black-box operations. The authors explore various techniques and methods for achieving explainability, including rule-based systems and machine learning models, while also addressing the challenge of balancing explainability with performance. Through practical examples, the book shows how explainability can be successfully implemented in IoT applications, such as in smart healthcare systems. Furthermore, the book addresses the significant challenges of securing IoT systems in an increasingly connected world. It examines the unique vulnerabilities that come with the widespread use of IoT devices, such as data breaches, cyberattacks, and privacy issues, and discusses the complexities of managing these risks. The authors emphasize the importance of implementing security strategies that strike a balance between fostering innovations and protecting user data. The book concludes with a comprehensive exploration of the challenges and opportunities in making IoT systems more transparent and interpretable, offering valuable insights for researchers, developers, and decision-makers aiming to create IoT applications that are both trustworthy and understandable.

Explainable Machine Learning Models and Architectures

by Suman Lata Tripathi Mufti Mahmud

EXPLAINABLE MACHINE LEARNING MODELS AND ARCHITECTURES This cutting-edge new volume covers the hardware architecture implementation, the software implementation approach, and the efficient hardware of machine learning applications. Machine learning and deep learning modules are now an integral part of many smart and automated systems where signal processing is performed at different levels. Signal processing in the form of text, images, or video needs large data computational operations at the desired data rate and accuracy. Large data requires more use of integrated circuit (IC) area with embedded bulk memories that further lead to more IC area. Trade-offs between power consumption, delay and IC area are always a concern of designers and researchers. New hardware architectures and accelerators are needed to explore and experiment with efficient machine-learning models. Many real-time applications like the processing of biomedical data in healthcare, smart transportation, satellite image analysis, and IoT-enabled systems have a lot of scope for improvements in terms of accuracy, speed, computational powers, and overall power consumption. This book deals with the efficient machine and deep learning models that support high-speed processors with reconfigurable architectures like graphic processing units (GPUs) and field programmable gate arrays (FPGAs), or any hybrid system. Whether for the veteran engineer or scientist working in the field or laboratory, or the student or academic, this is a must-have for any library.

Explainable Machine Learning for Multimedia Based Healthcare Applications

by Deepak Gupta M. Shamim Hossain Utku Kose

This book covers the latest research studies regarding Explainable Machine Learning used in multimedia-based healthcare applications. In this context, the content includes not only introductions for applied research efforts but also theoretical touches and discussions targeting open problems as well as future insights. In detail, a comprehensive topic coverage is ensured by focusing on remarkable healthcare problems solved with Artificial Intelligence. Because today’s conditions in medical data processing are often associated with multimedia, the book considers research studies with especially multimedia data processing.

Explainable Machine Learning in Medicine (Synthesis Lectures on Engineering, Science, and Technology)

by Karol Przystalski Rohit M. Thanki

This book covers a variety of advanced communications technologies that can be used to analyze medical data and can be used to diagnose diseases in clinic centers. The book is a primer of methods for medicine, providing an overview of explainable artificial intelligence (AI) techniques that can be applied in different medical challenges. The authors discuss how to select and apply the proper technology depending on the provided data and the analysis desired. Because a variety of data can be used in the medical field, the book explains how to deal with challenges connected with each type. A number of scenarios are introduced that can happen in real-time environments, with each pared with a type of machine learning that can be used to solve it.

Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools (Studies in Fuzziness and Soft Computing #408)

by József Dombi Orsolya Csiszár

The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable – and even, in many cases, more efficient. Fuzzy logic together with multi-criteria decision-making tools provides very powerful tools for modeling human thinking. Based on their common theoretical basis, we propose a consistent framework for modeling human thinking by using the tools of all three fields: fuzzy logic, multi-criteria decision-making, and deep learning to help reduce the black-box nature of neural models; a challenge that is of vital importance to the whole research community.

Explainable Uncertain Rule-Based Fuzzy Systems

by Jerry M. Mendel

The third edition of this textbook presents a further updated approach to fuzzy sets and systems that can model uncertainty — i.e., “type-2” fuzzy sets and systems. The author demonstrates how to overcome the limitations of classical fuzzy sets and systems, enabling a wide range of applications, from time-series forecasting to knowledge mining to classification to control and to explainable AI (XAI). This latest edition again begins by introducing classical (type-1) fuzzy sets and systems, and then explains how they can be modified to handle uncertainty, leading to type-2 fuzzy sets and systems. New material is included about how to obtain fuzzy set word models that are needed for XAI, similarity of fuzzy sets, a quantitative methodology that lets one explain in a simple way why the different kinds of fuzzy systems have the potential for performance improvements over each other, and new parameterizations of membership functions that have the potential for achieving even greater performance for all kinds of fuzzy systems. For hands-on experience, the book provides information on accessing MATLAB, Java, and Python software to complement the content. The book features a full suite of classroom material.

Explainable and Customizable Job Sequencing and Scheduling: Advancing Production Control and Management with XAI (SpringerBriefs in Applied Sciences and Technology)

by Tin-Chih Toly Chen

This book systematically reviews the progress in explainable AI (XAI) and introduces the methods, tools, and applications of XAI technologies in job sequencing and scheduling. Relevant references and real case studies are provided as supporting evidence. To date, artificial intelligence (AI) technologies have been widely applied in job sequencing and scheduling. However, some advanced AI methods are not easy to understand or communicate, especially for factory workers with insufficient background knowledge of AI. This undoubtedly limits the practicability of these methods. To address this issue, explainable AI has been considered a viable strategy. XAI methods suitable for job sequencing and scheduling differ from those for other fields in manufacturing, such as pattern recognition, defect analysis, estimation, and prediction. This is the first book to systematically integrate current knowledge in XAI and demonstrate its application to manufacturing.

Explainable and Interpretable Models in Computer Vision and Machine Learning (The Springer Series on Challenges in Machine Learning)

by Xavier Baró Sergio Escalera Hugo Jair Escalante Isabelle Guyon Yağmur Güçlütürk Umut Güçlü Marcel Van Gerven

This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning. Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: · Evaluation and Generalization in Interpretable Machine Learning · Explanation Methods in Deep Learning · Learning Functional Causal Models with Generative Neural Networks · Learning Interpreatable Rules for Multi-Label Classification · Structuring Neural Networks for More Explainable Predictions · Generating Post Hoc Rationales of Deep Visual Classification Decisions · Ensembling Visual Explanations · Explainable Deep Driving by Visualizing Causal Attention · Interdisciplinary Perspective on Algorithmic Job Candidate Search · Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions · Inherent Explainability Pattern Theory-based Video Event Interpretations

Explainable and Interpretable Reinforcement Learning for Robotics (Synthesis Lectures on Artificial Intelligence and Machine Learning)

by Dinesh Manocha Aaron M. Roth Ram D. Sriram Elham Tabassi

This book surveys the state of the art in explainable and interpretable reinforcement learning (RL) as relevant for robotics. While RL in general has grown in popularity and been applied to increasingly complex problems, several challenges have impeded the real-world adoption of RL algorithms for robotics and related areas. These include difficulties in preventing safety constraints from being violated and the issues faced by systems operators who desire explainable policies and actions. Robotics applications present a unique set of considerations and result in a number of opportunities related to their physical, real-world sensory input and interactions. The authors consider classification techniques used in past surveys and papers and attempt to unify terminology across the field. The book provides an in-depth exploration of 12 attributes that can be used to classify explainable/interpretable techniques. These include whether the RL method is model-agnostic or model-specific, self-explainable or post-hoc, as well as additional analysis of the attributes of scope, when-produced, format, knowledge limits, explanation accuracy, audience, predictability, legibility, readability, and reactivity. The book is organized around a discussion of these methods broken down into 42 categories and subcategories, where each category can be classified according to some of the attributes. The authors close by identifying gaps in the current research and highlighting areas for future investigation.

Explainable and Responsible Artificial Intelligence in Healthcare

by Rishabha Malviya Sonali Sundram

This book presents the fundamentals of explainable artificial intelligence (XAI) and responsible artificial intelligence (RAI), discussing their potential to enhance diagnosis, treatment, and patient outcomes. This book explores the transformative potential of explainable artificial intelligence (XAI) and responsible AI (RAI) in healthcare. It provides a roadmap for navigating the complexities of healthcare-based AI while prioritizing patient safety and well-being. The content is structured to highlight topics on smart health systems, neuroscience, diagnostic imaging, and telehealth. The book emphasizes personalized treatment and improved patient outcomes in various medical fields. In addition, this book discusses osteoporosis risk, neurological treatment, and bone metastases. Each chapter provides a distinct viewpoint on how XAI and RAI approaches can help healthcare practitioners increase diagnosis accuracy, optimize treatment plans, and improve patient outcomes. Readers will find the book: explains recent XAI and RAI breakthroughs in the healthcare system; discusses essential architecture with computational advances ranging from medical imaging to disease diagnosis; covers the latest developments and applications of XAI and RAI-based disease management applications; demonstrates how XAI and RAI can be utilized in healthcare and what problems the technology faces in the future. Audience The main audience for this book is targeted to scientists, healthcare professionals, biomedical industries, hospital management, engineers, and IT professionals interested in using AI to improve human health.

Refine Search

Showing 21,451 through 21,475 of 61,763 results