- Table View
- List View
Modeling Discrete-Event Systems with GPenSIM: An Introduction (SpringerBriefs in Applied Sciences and Technology)
by Reggie DavidrajuhModeling Discrete-Event Systems with GPenSIM describes the design and applications of General Purpose Petri Net Simulator (GPenSIM), which is a software tool for modeling, simulation, and performance analysis of discrete-event systems. The brief explains the principles of modelling discrete-event systems, as well as the design and applications of GPenSIM. It is based on the author’s lectures that were given on “modeling, simulation, and performance analysis of discrete event systems”. The brief uses GPenSIM to enable the efficient modeling of complex and large-scale discrete-event systems. GPenSIM, which is based on MATLAB®, is designed to allow easy integration of Petri net models with a vast number of toolboxes that are available on the MATLAB®. The book offers an approach for developing models that can interact with the external environment; this will help readers to solve problems in industrial diverse fields. These problems include:airport capacity evaluation for aviation authorities;finding bottlenecks in supply chains;scheduling drilling operations in the oil and gas industry; andoptimal scheduling of jobs in grid computing. This brief is of interest to researchers working on the modeling, simulation and performance evaluation of discrete-event systems, as it shows them the design and applications of an efficient modeling package. Since the book also explains the basic principles of modeling discrete-event systems in a step-by-step manner, it is also of interest to final-year undergraduate and postgraduate students.
Modeling Dynamic Economic Systems
by Bruce Hannon Matthias RuthThis book explores the dynamic processes in economic systems, concentrating on the extraction and use of the natural resources required to meet economic needs. Sections cover methods for dynamic modeling in economics, microeconomic models of firms, modeling optimal use of both nonrenewable and renewable resources, and chaos in economic models. This book does not require a substantial background in mathematics or computer science.
Modeling, Evaluating, and Predicting IT Human Resources Performance
by null Konstantina Richter null Reiner R. DumkeNumerous methods exist to model and analyze the different roles, responsibilities, and process levels of information technology (IT) personnel. However, most methods neglect to account for the rigorous application and evaluation of human errors and their associated risks. This book fills that need. Modeling, Evaluating, and Predicting IT Human Resources Performance explains why it is essential to account for the human factor when determining the various risks in the software engineering process. The book presents an IT human resources evaluation approach that is rooted in existing research and describes how to enhance existing approaches through strict use of software measurement and statistical principles and criteria. Discussing IT human factors from a risk assessment point of view, the book identifies, analyzes, and evaluates the basics of IT human performance. It details the IT human factors required to achieve desired levels of human performance prediction. It also provides a rigorous investigation of existing human factors evaluation methods, including IT expertise and Big Five, in combination with powerful statistical methods, such as failure mode and effect analysis (FMEA) and design of experiment (DoE). Supplies an overview of existing methods of human risk evaluation Provides a detailed analysis of IT role-based human factors using the well-known Big Five method for software engineering Models the human factor as a risk factor in the software engineering process Summarizes emerging trends and future directions In addition to applying well-known human factors methods to software engineering, the book presents three models for analyzing psychological characteristics. It supplies profound analysis of human resources within the various software processes, including development, maintenance, and application under consideration of the Capability Maturity Model Integration (CMMI) process level five.
Modeling Fuzzy Spatiotemporal Data with XML (Studies in Computational Intelligence #894)
by Li Yan Zongmin Ma Luyi BaiThis book offers in-depth insights into the rapidly growing topic of technologies and approaches to modeling fuzzy spatiotemporal data with XML. The topics covered include representation of fuzzy spatiotemporal XML data, topological relationship determination for fuzzy spatiotemporal XML data, mapping between the fuzzy spatiotemporal relational database model and fuzzy spatiotemporal XML data model, and consistencies in fuzzy spatiotemporal XML data updating. Offering a comprehensive guide to the latest research on fuzzy spatiotemporal XML data management, the book is intended to provide state-of-the-art information for researchers, practitioners, and graduate students of Web intelligence, as well as data and knowledge engineering professionals confronted with non-traditional applications that make the use of conventional approaches difficult or impossible.
Modeling Groundwater Flow and Contaminant Transport
by Jacob Bear Alexander H.-D. ChengIn many parts of the world, groundwater resources are under increasing threat from growing demands, wasteful use, and contamination. To face the challenge, good planning and management practices are needed. A key to the management of groundwater is the ability to model the movement of fluids and contaminants in the subsurface. The purpose of this book is to construct conceptual and mathematical models that can provide the information required for making decisions associated with the management of groundwater resources, and the remediation of contaminated aquifers. The basic approach of this book is to accurately describe the underlying physics of groundwater flow and solute transport in heterogeneous porous media, starting at the microscopic level, and to rigorously derive their mathematical representation at the macroscopic levels. The well-posed, macroscopic mathematical models are formulated for saturated, single phase flow, as well as for unsaturated and multiphase flow, and for the transport of single and multiple chemical species. Numerical models are presented and computer codes are reviewed, as tools for solving the models. The problem of seawater intrusion into coastal aquifers is examined and modeled. The issues of uncertainty in model input data and output are addressed. The book concludes with a chapter on the management of groundwater resources. Although one of the main objectives of this book is to construct mathematical models, the amount of mathematics required is kept minimal.
Modeling Human Behavior With Integrated Cognitive Architectures: Comparison, Evaluation, and Validation
by Kevin A. Gluck Richard W. PewResulting from the need for greater realism in models of human and organizational behavior in military simulations, there has been increased interest in research on integrative models of human performance, both within the cognitive science community generally, and within the defense and aerospace industries in particular. This book documents accomplishments and lessons learned in a multi-year project to examine the ability of a range of integrated cognitive modeling architectures to explain and predict human behavior in a common task environment that requires multi-tasking and concept learning.This unique project, called the Agent-Based Modeling and Behavior Representation (AMBR) Model Comparison, involved a series of human performance model evaluations in which the processes and performance levels of computational cognitive models were compared to each other and to human operators performing the identical tasks. In addition to quantitative data comparing the performance of the models and real human performance, the book also presents a qualitatively oriented discussion of the practical and scientific considerations that arise in the course of attempting this kind of model development and validation effort.The primary audiences for this book are people in academia, industry, and the military who are interested in explaining and predicting complex human behavior using computational cognitive modeling approaches. The book should be of particular interest to individuals in any sector working in Psychology, Cognitive Science, Artificial Intelligence, Industrial Engineering, System Engineering, Human Factors, Ergonomics and Operations Research. Any technically or scientifically oriented professional or student should find the material fully accessible without extensive mathematical background.
Modeling in Event-B
by Jean-Raymond AbrialA practical text suitable for an introductory or advanced course in formal methods, this book presents a mathematical approach to modelling and designing systems using an extension of the B formal method: Event-B. Based on the idea of refinement, the author's systematic approach allows the user to construct models gradually and to facilitate a systematic reasoning method by means of proofs. Readers will learn how to build models of programs and, more generally, discrete systems, but this is all done with practice in mind. The numerous examples provided arise from various sources of computer system developments, including sequential programs, concurrent programs and electronic circuits. The book also contains a large number of exercises and projects ranging in difficulty. Each of the examples included in the book has been proved using the Rodin Platform tool set, which is available free for download at www. event-b. org.
Modeling in Silo: The Official Guide
by Antony Ward David Randall NevercenterCreate high-quality models in no time at all with these comprehensive, full-color, techniques and tutorials from Antony Ward and David Randall. These step-by-step tutorials walk readers through the creation of a high-quality female model while teaching you the basics and principles behind 3D modeling in Silo - including modeling the face and clothes, creating textures, and posing the character. The companion website includes all of the tutorial and project files. This book is officially endorsed and co-written by the creators of Silo, Nevercenter. Features include:
Modeling in Systems Biology
by Falk Schreiber Ina Koch Wolfgang ReisigThe emerging, multi-disciplinary field of systems biology is devoted to the study of the relationships between various parts of a biological system, and computer modeling plays a vital role in the drive to understand the processes of life from an holistic viewpoint. Advancements in experimental technologies in biology and medicine have generated an enormous amount of biological data on the dependencies and interactions of many different molecular cell processes, fueling the development of numerous computational methods for exploring this data. The mathematical formalism of Petri net theory is able to encompass many of these techniques. This essential text/reference presents a comprehensive overview of cutting-edge research in applications of Petri nets in systems biology, with contributions from an international selection of experts. Those unfamiliar with the field are also provided with a general introduction to systems biology, the foundations of biochemistry, and the basics of Petri net theory. Further chapters address Petri net modeling techniques for building and analyzing biological models, as well as network prediction approaches, before reviewing the applications to networks of different biological classification. Topics and features: investigates the modular, qualitative modeling of regulatory networks using Petri nets, and examines an Hybrid Functional Petri net simulation case study; contains a glossary of the concepts and notation used in the book, in addition to exercises at the end of each chapter; covers the topological analysis of metabolic and regulatory networks, the analysis of models of signaling networks, and the prediction of network structure; provides a biological case study on the conversion of logical networks into Petri nets; discusses discrete modeling, stochastic modeling, fuzzy modeling, dynamic pathway modeling, genetic regulatory network modeling, and quantitative analysis techniques; includes a Foreword by Professor Jens Reich, Professor of Bioinformatics at Humboldt University and Max Delbrück Center for Molecular Medicine in Berlin. This unique guide to the modeling of biochemical systems using Petri net concepts will be of real utility to researchers and students of computational biology, systems biology, bioinformatics, computer science, and biochemistry.
Modeling in the Neurosciences: From Ionic Channels to Neural Networks
by Roman R. PoznanskiWith contributions from more than 40 renowned experts, Modeling in the Neurosciences: From Ionic Channels to Neural Networks is essential for those interested in neuronal modeling and quantitative neiroscience. Focusing on new mathematical and computer models, techniques and methods, this monograph represents a cohesive and comprehensive treatment
Modeling Information Diffusion in Online Social Networks with Partial Differential Equations (Surveys and Tutorials in the Applied Mathematical Sciences #7)
by Feng Wang Haiyan Wang Kuai XuThe book lies at the interface of mathematics, social media analysis, and data science. Its authors aim to introduce a new dynamic modeling approach to the use of partial differential equations for describing information diffusion over online social networks. The eigenvalues and eigenvectors of the Laplacian matrix for the underlying social network are used to find communities (clusters) of online users. Once these clusters are embedded in a Euclidean space, the mathematical models, which are reaction-diffusion equations, are developed based on intuitive social distances between clusters within the Euclidean space. The models are validated with data from major social media such as Twitter. In addition, mathematical analysis of these models is applied, revealing insights into information flow on social media. Two applications with geocoded Twitter data are included in the book: one describing the social movement in Twitter during the Egyptian revolution in 2011 and another predicting influenza prevalence. The new approach advocates a paradigm shift for modeling information diffusion in online social networks and lays the theoretical groundwork for many spatio-temporal modeling problems in the big-data era.
Modeling, Machine Learning and Astronomy: First International Conference, MMLA 2019, Bangalore, India, November 22–23, 2019, Revised Selected Papers (Communications in Computer and Information Science #1290)
by Snehanshu Saha Nithin Nagaraj Shikha TripathiThis book constitutes the proceedings of the First International Conference on Modeling, Machine Learning and Astronomy, MMLA 2019, held in Bangalore, India, in November 2019.The 11 full papers and 3 short papers presented in this volume were carefully reviewed and selected from 63 submissions. They are organized in topical sections on modeling and foundations; machine learning applications; astronomy and astroinformatics.
Modeling Marvels
by Errol G. LewarsThe aim of this highly original book is to survey a number of chemical compounds that some chemists, theoretical and experimental, find fascinating. This is the first book to feature compounds/classes of compounds of theoretical interest that have been studied theoretically but have defied synthesis. It is hoped that this collection of idiosyncratic molecules will appeal to chemists who find the study of chemical oddities interesting and, on occasion, even rewarding.
Modeling Methods for Medical Systems Biology: Regulatory Dynamics Underlying the Emergence of Disease Processes (Advances in Experimental Medicine and Biology #1069)
by María Elena Álvarez-Buylla Roces Juan Carlos Martínez-García José Dávila-Velderrain Elisa Domínguez-Hüttinger Mariana Esther Martínez-SánchezThis book contributes to better understand how lifestyle modulations can effectively halt the emergence and progression of human diseases. The book will allow the reader to gain a better understanding of the mechanisms by which the environment interferes with the bio-molecular regulatory processes underlying the emergence and progression of complex diseases, such as cancer. Focusing on key and early cellular bio-molecular events giving rise to the emergence of degenerative chronic disease, it builds on previous experience on the development of multi-cellular organisms, to propose a mathematical and computer based framework that allows the reader to analyze the complex interplay between bio-molecular processes and the (micro)-environment from an integrative, mechanistic, quantitative and dynamical perspective. Taking the wealth of empirical evidence that exists it will show how to build and analyze models of core regulatory networks involved in the emergence and progression of chronic degenerative diseases, using a bottom-up approach.
Modeling Nanowire and Double-Gate Junctionless Field-Effect Transistors
by Farzan Jazaeri Jean-Michel SalleseThe first book on the topic, this is a comprehensive introduction to the modeling and design of junctionless field effect transistors (FETs). Beginning with a discussion of the advantages and limitations of the technology, the authors also provide a thorough overview of published analytical models for double-gate and nanowire configurations, before offering a general introduction to the EPFL charge-based model of junctionless FETs. Important features are introduced gradually, including nanowire versus double-gate equivalence, technological design space, junctionless FET performances, short channel effects, transcapacitances, asymmetric operation, thermal noise, interface traps, and the junction FET. Additional features compatible with biosensor applications are also discussed. This is a valuable resource for students and researchers looking to understand more about this new and fast developing field. The first book on the modeling of junctionless field effect transistors (FETs); Introduces the basic physics as well as explaining more advanced modeling techniques; Includes modeling of non-ideal characteristics targeting applications in biosensing.
Modeling of AlGaN/GaN High Electron Mobility Transistors (Springer Tracts in Electrical and Electronics Engineering)
by D. Nirmal J. AjayanThis volume focuses on GaN HEMT, the most promising transistor technology for RF power applications such as 5G communications, space and defense. The contents include accurate small signal models required to predict the RF power performance of RF electronic circuits, large signal modeling of GaN HEMTs, accurate and compact physical models to assist the RF circuit designers to optimize GaN HEMT-based power amplifiers and integrated circuits, among others. The book also covers thermal resistance modeling of GaN HEMTs, charge-based compact models, and surface potential-based models to study the impact of gate leakage current on the RF power performance of GaN HEMTs. This book also deals with the analytical modeling of intrinsic charges and surface potential of GaN HEMTs, physical modeling of charge trapping, neural network-based GaN HEMT models, numerical-based GaN HEMT models, modeling of short channel effects in GaN HEMTs, modeling of parasitic capacitances and resistances, modelingof current collapse and kink effects in HGaN HEMTs, etc. This volume will be a useful to those in industry and academia.
Modeling of Antenna and Waveguide Devices for Wireless and Satellite Communications Systems
by Islam IslamovThis book introduces a packet-based co-design control framework for networked control systems. The book begins by providing a comprehensive survey of research on networked control systems, giving the reader a general overview of the field. The author subsequently verifies the proposed control framework both theoretically and experimentally, respectively – the former using multiple control methodologies, and the latter using a unique online test rig for networked control systems. The framework thoroughly investigates communication constraints including network-induced delays, data packet dropout, data packet disorders, network access constraints, etc., as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This complete co-design framework aims to benefit researchers, graduate students and engineers in the fields of control theory and engineering.
Modeling of Curves and Surfaces with MATLAB®
by Vladimir RovenskiThis text on geometry is devoted to various central geometrical topics including: graphs of functions, transformations, (non-)Euclidean geometries, curves and surfaces as well as their applications in a variety of disciplines. This book presents elementary methods for analytical modeling and demonstrates the potential for symbolic computational tools to support the development of analytical solutions. The author systematically examines several powerful tools of MATLAB® including 2D and 3D animation of geometric images with shadows and colors and transformations using matrices. With over 150 stimulating exercises and problems, this text integrates traditional differential and non-Euclidean geometries with more current computer systems in a practical and user-friendly format. This text is an excellent classroom resource or self-study reference for undergraduate students in a variety of disciplines.
Modeling of Photovoltaic Systems and Real-Time Implementation (Synthesis Lectures on Engineering, Science, and Technology)
by Talbi MouradThis book discusses photovoltaics and details the modelling of photovoltaics systems. The author demonstrates this modelling using Matlab/Simulink and also Proteus (ISIS). The author first shows the employment of Matlab/Simulink for modelling of a photovoltaic (PV) module. He then presents a Matlab/Simulink and experimental studies of shading effect on a photovoltaic array. He goes on to show modelling of novel architecture of PV generator based on a-Si: H/c-Si materials and using solar tracker for partial shading. Finally, he details the real-time of a PV system using an Arduino Uno Card.
Modeling of Regional Atmospheric Pollution
by Laurent MenutThis book describes the main concepts used to develop and implement chemistry-transport models to calculate the evolution of regional air pollution. Since physico-chemical principles are already widely presented in various works, the perspective chosen for this book concerns the modeling of these processes. As modeling can be a simplification of reality in a particular study framework, we will try to show whether the processes represented are well modeled or not. For each process, we will discuss the simplifying assumptions that have been made, the various possible ways for improvement and the impact of these simplifications on the desired results. General information on pollution is presented, followed by observations, legislation, modeling of meteorology and then chemistry-transport, anthropogenic and natural emissions, depots, validation of calculations, optimization and data assimilation.
Modeling of Road Traffic Events
by Jerzy Kisilowski Jarosław ZalewskiThis books reviews and brings readers up to date with the latest research knowledge on road traffic safety.It describes and discusses mathematical descriptions of the process of a motor vehicle crash and indicates the various factors that impact on collision models. It tackles also vehicle stability and shows how the forces generated in crashes result in different extents of post-accident repair. Mathematical models that simulate vehicle stability data are compared with those of real vehicles. Practical uses of the models are explained to readers.The book will be of interest to researchers in transport and vehicle technology well as automotive industry professionals.
Modeling Programming Competency: A Qualitative Analysis
by Natalie KieslerThis book covers a qualitative study on the programming competencies of novice learners in higher education. To be precise, the book investigates the expected programming competencies within basic programming education at universities and the extent to which the Computer Science curricula fail to provide transparent, observable learning outcomes and assessable competencies. The study analyzes empirical data on 35 exemplary universities' curricula and interviews with experts in the field. The book covers research desiderata, research design and methodology, an in-depth data analysis, and a presentation and discussion of results in the context of programming education. Addressing programming competency in such great detail is essential due to the increasing relevance of computing in today’s society and the need for competent programmers who will help shape our future. Although programming is a core tier of computing and many related disciplines, learning how to program can be challenging in higher education, and many students fail in introductory programming. The book aims to understand what programming means, what programming competency encompasses, and what teachers expect of novice learners. In addition, it illustrates the cognitive complexity of programming as an advanced competency, including knowledge, skills, and dispositions in context. So, the purpose is to communicate the breadth and depth of programming competency to educators and learners of programming, including institutions, curriculum designers, and accreditation bodies. Moreover, the book’s goal is to represent how a qualitative research methodology can be applied in the context of computing education research, as the qualitative research paradigm is still an exception in computing education research. The book provides new insights into programming competency. It outlines the components of programming competencies in terms of knowledge, skills, and dispositions and their cognitive complexity according to the CC2020 computing curricula and the Anderson-Krathwohl taxonomy of the cognitive domain. These insights are essential as programming constitutes one of the most relevant competencies in all computing study programs. In addition, being able to program describes the capability of solving problems, which is also a core competency in today’s increasingly digitalized society. In particular, the book reveals the great relevance of dispositions and other competency components in programming education, which curricula currently fail to recognize and specify. In addition, the book outlines the resulting implications for higher education institutions, educators, and student expectations. Yet another result of interest to graduate students is the multi-method study design that allows for the triangulation of data and results.
Modeling Psychophysical Data in R
by Laurence T. Maloney Kenneth KnoblauchMany of the commonly used methods for modeling and fitting psychophysical data are special cases of statistical procedures of great power and generality, notably the Generalized Linear Model (GLM). This book illustrates how to fit data from a variety of psychophysical paradigms using modern statistical methods and the statistical language R. The paradigms include signal detection theory, psychometric function fitting, classification images and more. In two chapters, recently developed methods for scaling appearance, maximum likelihood difference scaling and maximum likelihood conjoint measurement are examined. The authors also consider the application of mixed-effects models to psychophysical data. R is an open-source programming language that is widely used by statisticians and is seeing enormous growth in its application to data in all fields. It is interactive, containing many powerful facilities for optimization, model evaluation, model selection, and graphical display of data. The reader who fits data in R can readily make use of these methods. The researcher who uses R to fit and model his data has access to most recently developed statistical methods. This book does not assume that the reader is familiar with R, and a little experience with any programming language is all that is needed to appreciate this book. There are large numbers of examples of R in the text and the source code for all examples is available in an R package MPDiR available through R. Kenneth Knoblauch is a researcher in the Department of Integrative Neurosciences in Inserm Unit 846, The Stem Cell and Brain Research Institute and associated with the University Claude Bernard, Lyon 1, in France. Laurence T. Maloney is Professor of Psychology and Neural Science at New York University. His research focusses on applications of mathematical models to perception, motor control and decision making.
Modeling Reality with Mathematics
by Alfio QuarteroniSimulating the behavior of a human heart, predicting tomorrow's weather, optimizing the aerodynamics of a sailboat, finding the ideal cooking time for a hamburger: to solve these problems, cardiologists, meteorologists, sportsmen, and engineers can count on math help. This book will lead you to the discovery of a magical world, made up of equations, in which a huge variety of important problems for our life can find useful answers.
Modeling, Simulation and Optimization: Proceedings of CoMSO 2020 (Smart Innovation, Systems and Technologies #206)
by Biplab Das Ripon Patgiri Sivaji Bandyopadhyay Valentina Emilia BalasThis book includes selected peer-reviewed papers presented at the International Conference on Modeling, Simulation and Optimization, organized by National Institute of Technology, Silchar, Assam, India, during 3–5 August 2020. The book covers topics of modeling, simulation and optimization, including computational modeling and simulation, system modeling and simulation, device/VLSI modeling and simulation, control theory and applications, modeling and simulation of energy system and optimization. The book disseminates various models of diverse systems and includes solutions of emerging challenges of diverse scientific fields.