Browse Results

Showing 54,801 through 54,825 of 60,533 results

Swarm Intelligence

by Marco Dorigo Mauro Birattari Xiaodong Li Manuel López-Ibáñez Kazuhiro Ohkura Carlo Pinciroli Thomas Stützle

Social insects-ants, bees, termites, and wasps-can be viewed as powerful problem-solving systems with sophisticated collective intelligence. Composed of simple interacting agents, this intelligence lies in the networks of interactions among individuals and between individuals and the environment. A fascinating subject, social insects are also a powerful metaphor for artificial intelligence, and the problems they solve-finding food, dividing labor among nestmates, building nests, responding to external challenges-have important counterparts in engineering and computer science. This book provides a detailed look at models of social insect behaviour and how to apply these models in the design of complex systems. The book shows how these models replace an emphasis on control, preprogramming, and centralization with designs featuring autonomy, emergence, and distributed functioning. These designs are proving immensely flexible and robust, able to adapt quickly to changing environments and to continue functioning even when individual elements fail. In particular, these designs are an exciting approach to the tremendous growth of complexity in software and information. ; Swarm Intelligence draws on up-to-date research from biology, neuroscience, artificial intelligence, robotics, operations research, and computer graphics, and each chapter is organized around a particular biological example, which is then used to develop an algorithm, a multiagent system, or a group of robots. The book will be an invaluable resource for a broad range of disciplines.

Swarm Intelligence: 13th International Conference, ANTS 2022, Málaga, Spain, November 2–4, 2022, Proceedings (Lecture Notes in Computer Science #13491)

by Marco Dorigo Heiko Hamann Manuel López-Ibáñez José García-Nieto Andries Engelbrecht Carlo Pinciroli Volker Strobel Christian Camacho-Villalón

This book constitutes the proceedings of the 13th International Conference on Swarm Intelligence, ANTS 2022, held in Málaga, Spain, in November 2022. The 19 full papers presented, together with 14 short papers and 4 extended abstracts were carefully reviewed and selected from 45 submissions. ANTS 2022 contributions are dealing with any aspect of swarm intelligence such as behavioral models of social insects, empirical and theoretical research in swarm intelligence, application of swarm intelligence methods, and much more.

Swarm Intelligence: 14th International Conference, ANTS 2024, Konstanz, Germany, October 9–11, 2024, Proceedings (Lecture Notes in Computer Science #14987)

by Marco Dorigo Heiko Hamann Andreagiovanni Reina Leslie Pérez Cáceres Jonas Kuckling Tanja Katharina Kaiser Mohammad Soorati Ken Hasselmann Eduard Buss

This book constitutes the proceedings of the 14th International Conference on Swarm Intelligence, ANTS 2024, which took place in Konstanz, Germany, during October 9-11, 2024. The 14 ull papers and 5 short papers included in this book were carefully reviewed and selected from 33 submissions. They deal with self-organizing processes both in nature and in artificial systems.

Swarm Intelligence: 12th International Conference, ANTS 2020, Barcelona, Spain, October 26–28, 2020, Proceedings (Lecture Notes in Computer Science #12421)

by Marco Dorigo Thomas Stützle Maria J. Blesa Christian Blum Heiko Hamann Mary Katherine Heinrich Volker Strobel

This book constitutes the proceedings of the 12th International Conference on Swarm Intelligence, ANTS 2020, held online -due to COVID-19- in Barcelona Spain, in October 2020. The 20 full papers presented , together with 8 short papers and 5 extended abstracts were carefully reviewed and selected from 50 submissions. ANTS 2020 contributions are dealing with any aspect of swarm intelligence.

Swarm Intelligence: Principles, Advances, and Applications

by Aboul Ella Hassanien Eid Emary

Swarm Intelligence: Principles, Advances, and Applications delivers in-depth coverage of bat, artificial fish swarm, firefly, cuckoo search, flower pollination, artificial bee colony, wolf search, and gray wolf optimization algorithms. The book begins with a brief introduction to mathematical optimization, addressing basic concepts related to swarm intelligence, such as randomness, random walks, and chaos theory. The text then: Describes the various swarm intelligence optimization methods, standardizing the variants, hybridizations, and algorithms whenever possible Discusses variants that focus more on binary, discrete, constrained, adaptive, and chaotic versions of the swarm optimizers Depicts real-world applications of the individual optimizers, emphasizing variable selection and fitness function design Details the similarities, differences, weaknesses, and strengths of each swarm optimization method Draws parallels between the operators and searching manners of the different algorithms Swarm Intelligence: Principles, Advances, and Applications presents a comprehensive treatment of modern swarm intelligence optimization methods, complete with illustrative examples and an extendable MATLAB® package for feature selection in wrapper mode applied on different data sets with benchmarking using different evaluation criteria. The book provides beginners with a solid foundation of swarm intelligence fundamentals, and offers experts valuable insight into new directions and hybridizations.

Swarm Intelligence: An Approach from Natural to Artificial (Concise Introductions to AI and Data Science)

by Kuldeep Singh Kaswan Jagjit Singh Dhatterwal Avadhesh Kumar

SWARM INTELLIGENCE This important authored book presents valuable new insights by exploring the boundaries shared by cognitive science, social psychology, artificial life, artificial intelligence, and evolutionary computation by applying these insights to solving complex engineering problems. Motivated by the capability of the biologically inspired algorithms, “Swarm Intelligence: An Approach from Natural to Artificial” focuses on ant, cat, crow, elephant, grasshopper, water wave and whale optimization, swarm cyborg and particle swarm optimization, and presents recent developments and applications concerning optimization with swarm intelligence techniques. The goal of the book is to offer a wide spectrum of sample works developed in leading research throughout the world about innovative methodologies of swarm intelligence and foundations of engineering swarm intelligent systems; as well as applications and interesting experiences using particle swarm optimization, which is at the heart of computational intelligence. Discussed in the book are applications of various swarm intelligence models to operational planning of energy plants, modeling, and control of robots, organic computing, techniques of cloud services, bioinspired optimization, routing protocols for next-generation networks inspired by collective behaviors of insect societies and cybernetic organisms. Audience The book is directed to researchers, practicing engineers, and students in computational intelligence who are interested in enhancing their knowledge of techniques and swarm intelligence.

Swarm Intelligence: From Social Bacteria to Humans

by Andrew Schumann

The notion of swarm intelligence was introduced for describing decentralized and self-organized behaviors of groups of animals. Then this idea was extrapolated to design groups of robots which interact locally to cumulate a collective reaction. Some natural examples of swarms are as follows: ant colonies, bee colonies, fish schooling, bird flocking, horse herding, bacterial colonies, multinucleated giant amoebae Physarum polycephalum, etc. In all these examples, individual agents behave locally with an emergence of their common effect. An intelligent behavior of swarm individuals is explained by the following biological reactions to attractants and repellents. Attractants are biologically active things, such as food pieces or sex pheromones, which attract individuals of swarm. Repellents are biologically active things, such as predators, which repel individuals of swarm. As a consequence, attractants and repellents stimulate the directed movement of swarms towards and away from the stimulus, respectively. It is worth noting that a group of people, such as pedestrians, follow some swarm patterns of flocking or schooling. For instance, humans prefer to avoid a person considered by them as a possible predator and if a substantial part of the group in the situation of escape panic (not less than 5%) changes the direction, then the rest follows the new direction, too. Some swarm patterns are observed among human beings under the conditions of their addictive behavior such as the behavior of alcoholics or gamers. The methodological framework of studying swarm intelligence is represented by unconventional computing, robotics, and cognitive science. In this book we aim to analyze new methodologies involved in studying swarm intelligence. We are going to bring together computer scientists and cognitive scientists dealing with swarm patterns from social bacteria to human beings. This book considers different models of simulating, controlling, and predicting the swarm behavior of different species from social bacteria to humans.

Swarm Intelligence: Foundation, Principles, and Engineering Applications (ISSN)

by Abhishek Sharma Abhinav Sharma Jitendra Kumar Pandey Mangey Ram

Swarm intelligence is one of the fastest growing subfields of artificial intelligence and soft computing. This field includes multiple optimization algorithms to solve NP-hard problems for which conventional methods are not effective. It inspires researchers in engineering sciences to learn theories from nature and incorporate them.Swarm Intelligence: Foundation, Principles, and Engineering Applications provides a comprehensive review of new swarm intelligence techniques and offers practical implementation of Particle Swarm Optimization (PSO) with MATLAB code. The book discusses the statistical analysis of swarm optimization techniques so that researchers can analyse their experiment design. It also includes algorithms in social sectors, oil and gas industries, and recent research findings of new optimization algorithms in the field of engineering describing the implementation in machine learning. This book is written for students of engineering, research scientists, and academicians involved in the engineering sciences.

Swarm Intelligence: Trends and Applications

by Wellington Pinheiro dos Santos Juliana Carneiro Gomes Valter Augusto de Freitas Barbosa

This book presents the fundamentals of swarm intelligence, from classic algorithms to emerging techniques. It presents comprehensive theoretical foundations and examples using the main Computational Intelligence methods in programming languages ​​such as Python, Java and MATLAB®. Real-world applications are also presented in areas as diverse as Medicine, Biology and industrial applications. The book is organized into two parts. The first part provides an introduction to swarming algorithms and hybrid techniques. In the second part, real world applications of swarm intelligence are presented to illustrate how swarm algorithms can be used in applications of optimization and pattern recognition, reviewing the principal methods and methodologies in swarm intelligence.

Swarm Intelligence Algorithms: Modifications and Applications

by Adam Slowik

Nature-based algorithms play an important role among artificial intelligence algorithms. Among them are global optimization algorithms called swarm intelligence algorithms. These algorithms that use the behavior of simple agents and various ways of cooperation between them, are used to solve specific problems that are defined by the so-called objective function. Swarm intelligence algorithms are inspired by the social behavior of various animal species, e.g. ant colonies, bird flocks, bee swarms, schools of fish, etc. The family of these algorithms is very large and additionally includes various types of modifications to enable swarm intelligence algorithms to solve problems dealing with areas other than those for which they were originally developed. This book presents 24 swarm algorithms together with their modifications and practical applications. Each chapter is devoted to one algorithm. It contains a short description along with a pseudo-code showing the various stages of its operation. In addition, each chapter contains a description of selected modifications of the algorithm and shows how it can be used to solve a selected practical problem. This book should also be useful for undergraduate and postgraduate students studying nature-based optimization algorithms, and can be a helpful tool for learning these algorithms, along with their modifications and practical applications. In addition, it can be a useful source of knowledge for scientists working in the field of artificial intelligence, as well as for engineers interested in using this type of algorithms in their work. If the reader wishes to expand his knowledge beyond the basics of swarm intelligence algorithms presented in this book and is interested in more detailed information, we recommend the book "Swarm Intelligence Algorithms: A Tutorial" (Edited by A. Slowik, CRC Press, 2020). It contains a detailed explanation of how each algorithm works, along with relevant program codes in Matlab and the C ++ programming language, as well as numerical examples illustrating step-by-step how individual algorithms work.

Swarm Intelligence Algorithms: A Tutorial

by Adam Slowik

Swarm intelligence algorithms are a form of nature-based optimization algorithms. Their main inspiration is the cooperative behavior of animals within specific communities. This can be described as simple behaviors of individuals along with the mechanisms for sharing knowledge between them, resulting in the complex behavior of the entire community. Examples of such behavior can be found in ant colonies, bee swarms, schools of fish or bird flocks. Swarm intelligence algorithms are used to solve difficult optimization problems for which there are no exact solving methods or the use of such methods is impossible, e.g. due to unacceptable computational time. This book thoroughly presents the basics of 24 algorithms selected from the entire family of swarm intelligence algorithms. Each chapter deals with a different algorithm describing it in detail and showing how it works in the form of a pseudo-code. In addition, the source code is provided for each algorithm in Matlab and in the C ++ programming language. In order to better understand how each swarm intelligence algorithm works, a simple numerical example is included in each chapter, which guides the reader step by step through the individual stages of the algorithm, showing all necessary calculations. This book can provide the basics for understanding how swarm intelligence algorithms work, and aid readers in programming these algorithms on their own to solve various computational problems. This book should also be useful for undergraduate and postgraduate students studying nature-based optimization algorithms, and can be a helpful tool for learning the basics of these algorithms efficiently and quickly. In addition, it can be a useful source of knowledge for scientists working in the field of artificial intelligence, as well as for engineers interested in using this type of algorithms in their work. If the reader already has basic knowledge of swarm intelligence algorithms, we recommend the book: "Swarm Intelligence Algorithms: Modifications and Applications" (Edited by A. Slowik, CRC Press, 2020), which describes selected modifications of these algorithms and presents their practical applications.

Swarm Intelligence Algorithms (Two Volume Set): A Tutorial

by Adam Slowik

Swarm intelligence algorithms are a form of nature-based optimization algorithms. Their main inspiration is the cooperative behavior of animals within specific communities. This can be described as simple behaviors of individuals along with the mechanisms for sharing knowledge between them, resulting in the complex behavior of the entire community. Examples of such behavior can be found in ant colonies, bee swarms, schools of fish or bird flocks. Swarm intelligence algorithms are used to solve difficult optimization problems for which there are no exact solving methods or the use of such methods is impossible, e.g. due to unacceptable computational time. This set comprises two volumes: Swarm Intelligence Algorithms: A Tutorial and Swarm Intelligence Algorithms: Modifications and Applications. The first volume thoroughly presents the basics of 24 algorithms selected from the entire family of swarm intelligence algorithms. It contains a detailed explanation of how each algorithm works, along with relevant program codes in Matlab and the C ++ programming language, as well as numerical examples illustrating step-by-step how individual algorithms work. The second volume describes selected modifications of these algorithms and presents their practical applications. This book presents 24 swarm algorithms together with their modifications and practical applications. Each chapter is devoted to one algorithm. It contains a short description along with a pseudo-code showing the various stages of its operation. In addition, each chapter contains a description of selected modifications of the algorithm and shows how it can be used to solve a selected practical problem.

Swarm Intelligence and Deep Evolution: Evolutionary Approach to Artificial Intelligence

by Hitoshi Iba

The book provides theoretical and practical knowledge about swarm intelligence and evolutionary computation. It describes the emerging trends in deep learning that involve the integration of swarm intelligence and evolutionary computation with deep learning, i.e., deep neuroevolution and deep swarms. The study reviews the research on network structures and hyperparameters in deep learning, and attracting attention as a new trend in AI. A part of the coverage of the book is based on the results of practical examples as well as various real-world applications. The future of AI, based on the ideas of swarm intelligence and evolution is also covered. The book is an introductory work for researchers. Approaches to the realization of AI and the emergence of intelligence are explained, with emphasis on evolution and learning. It is designed for beginners who do not have any knowledge of algorithms or biology, and explains the basics of neural networks and deep learning in an easy-to-understand manner. As a practical exercise in neuroevolution, the book shows how to learn to drive a racing car and a helicopter using MindRender. MindRender is an AI educational software that allows the readers to create and play with VR programs, and provides a variety of examples so that the readers will be able to create and understand AI.

Swarm Intelligence and Evolutionary Algorithms in Healthcare and Drug Development

by Sandeep Kumar Anand Nayyar Anand Paul

Healthcare sector is characterized by difficulty, dynamism and variety. In 21st century, healthcare domain is surrounded by tons of challenges in terms of Disease detection, prevention, high costs, skilled technicians and better infrastructure. In order to handle these challenges, Intelligent Healthcare management technologies are required to play an effective role in improvising patient’s life. Healthcare organizations also need to continuously discover useful and actionable knowledge to gain insight from tons of data for various purposes for saving lives, reducing medical operations errors, enhancing efficiency, reducing costs and making the whole world a healthy world. Applying Swarm Intelligence and Evolutionary Algorithms in Healthcare and Drug Development is essential nowadays. The objective of this book is to highlight various Swarm Intelligence and Evolutionary Algorithms techniques for various medical issues in terms of Cancer Diagnosis, Brain Tumor, Diabetic Retinopathy, Heart disease as well as drug design and development. The book will act as one-stop reference for readers to think and explore Swarm Intelligence and Evolutionary Algorithms seriously for real-time patient diagnosis, as the book provides solutions to various complex diseases found critical for medical practitioners to diagnose in real-world. Key Features: Highlights the importance and applications of Swarm Intelligence and Evolutionary Algorithms in Healthcare industry. Elaborates Swarm Intelligence and Evolutionary Algorithms for Cancer Detection. In-depth coverage of computational methodologies, approaches and techniques based on Swarm Intelligence and Evolutionary Algorithms for detecting Brain Tumour including deep learning to optimize brain tumor diagnosis. Provides a strong foundation for Diabetic Retinopathy detection using Swarm and Evolutionary algorithms. Focuses on applying Swarm Intelligence and Evolutionary Algorithms for Heart Disease detection and diagnosis. Comprehensively covers the role of Swarm Intelligence and Evolutionary Algorithms for Drug Design and Discovery. The book will play a significant role for Researchers, Medical Practitioners, Healthcare Professionals and Industrial Healthcare Research and Development wings to conduct advanced research in Healthcare using Swarm Intelligence and Evolutionary Algorithms techniques.

Swarm Intelligence and Evolutionary Computation: Theory, Advances and Applications in Machine Learning and Deep Learning

by Georgios N. Kouziokas

The aim of this book is to present and analyse theoretical advances and also emerging practical applications of swarm and evolutionary intelligence. It comprises nine chapters. Chapter 1 provides a theoretical introduction of the computational optimization techniques regarding the gradient-based methods such as steepest descent, conjugate gradient, newton and quasi-Newton methods and also the non-gradient methods such as genetic algorithm and swarm intelligence algorithms. Chapter 2, discusses evolutionary computation techniques and genetic algorithm. Swarm intelligence theory and particle swarm optimization algorithm are reviewed in Chapter 3. Also, several variations of particle swarm optimization algorithm are analysed and explained such as Geometric PSO, PSO with mutation, Chaotic PSO with mutation, multi-objective PSO and Quantum mechanics – based PSO algorithm. Chapter 4 deals with two essential colony bio-inspired algorithms: Ant colony optimization (ACO) and Artificial bee colony (ABC). Chapter 5, presents and analyses Cuckoo search and Bat swarm algorithms and their latest variations. In chapter 6, several other metaheuristic algorithms are discussed such as: Firefly algorithm (FA), Harmony search (HS), Cat swarm optimization (CSO) and their improved algorithm modifications. The latest Bio-Inspired Swarm Algorithms are discussed in chapter 7, such as: Grey Wolf Optimization (GWO) Algorithm, Whale Optimization Algorithm (WOA), Grasshopper Optimization Algorithm (GOA) and other algorithm variations such as binary and chaotic versions. Chapter 8 presents machine learning applications of swarm and evolutionary algorithms. Illustrative real-world examples are presented with real datasets regarding neural network optimization and feature selection, using: genetic algorithm, Geometric PSO, Chaotic Harmony Search, Chaotic Cuckoo Search, and Evolutionary Algorithm and also crime forecasting using swarm optimized SVM. In chapter 9, applications of swarm intelligence on deep long short-term memory (LSTM) networks and Deep Convolutional Neural Networks (CNNs) are discussed, including LSTM hyperparameter tuning and Covid19 diagnosis from chest X-Ray images. The aim of the book is to present and discuss several state-of-theart swarm intelligence and evolutionary algorithms together with their variances and also several illustrative applications on machine learning and deep learning.

Swarm Intelligence and its Applications in Biomedical Informatics

by A. Sheik Abdullah

Swarm Intelligence and Its Applications in Biomedical Informatics discusses Artificial Intelligence (AI) applications in medicine and biology, as well as challenges and opportunities presented in these arenas. It covers healthcare big data analytics, mobile health, personalized medicine, and clinical trial data management. This book shows how AI can be used for early disease diagnosis, prediction, and prognosis, and it offers healthcare case studies that demonstrate the application of AI and Machine Learning. Key Features: • Covers all major topics of swarm intelligence research and development such as novel-based search methods and novel optimization algorithm: applications of swarm intelligence to management problems and swarm intelligence for real-world application.• Provides a unique insight into the complex problems of bioinformatics and the innovative solutions which make up ‘intelligent bioinformatics’.• Covers a wide range of topics on the role of AI, Machine Learning, and Big Data for healthcare applications and deals with the ethical issues and concerns associated with it.• Explores applications in different areas of healthcare and highlights the current research. This book is designed as a reference text, and it aims primarily at advanced undergraduates and postgraduate students studying computer science and bioinformatics. Researchers and professionals will find this book useful.

Swarm Intelligence Applications for the Cities of the Future

by Leonor Marques Mano Domingos Maria José Sousa

This book explores the transformative power of swarm intelligence and digital innovations in shaping the cities of the future. It presents a comprehensive analysis of how social learning, citizen engagement, advanced technology, design, construction, planning and public policies converge to create cities that are sustainable, resilient, and inclusive.The initial chapters stress the importance of collective intelligence in urban development, using technologies like Virtual Reality to increase citizen participation and democratise decision-making. Public policies play a key role in driving the digital transformation needed for greener cities, with frameworks and tools to enhance transparency and accountability. Digital technologies in policymaking ensure that policies are adaptive, data-driven, and responsive to real-time challenges. Internet of Things systems are explored for their role in improving public safety, urban resilience, and energy efficiency through digital twins, blockchain, and sensor networks. Swarm intelligence is highlighted for optimising energy management, reducing consumption, and promoting renewable resources. Healthcare integration into urban planning and sustainability is also discussed, with a comparative analysis of cities showing how tech innovation enhances resilience against climate change. Swarm intelligence beyond cities is also explored, such as for disaster response, healthcare, environmental conservation, and agriculture. Autonomous systems like drones and nanobots are shown to improve efficiency across various sectors.Overall, this book advocates for a holistic approach to urban development, integrating digital technologies and collective intelligence to create cities that are technologically advanced, socially equitable, and environmentally sustainable.

Swarm Intelligence Based Optimization

by Patrick Siarry Lhassane Idoumghar Julien Lepagnot

This book constitutes the thoroughly refereed post-conference proceedings of the 1st International Conference on Swarm Intelligence Based Optimization, ICSIBO 2014, held in Mulhouse, France, in May 2014. The 20 full papers presented were carefully reviewed and selected from 48 submissions. Topics of interest presented and discussed in the conference focuses on the theoretical progress of swarm intelligence metaheuristics and their applications in areas such as: theoretical advances of swarm intelligence metaheuristics, combinatorial, discrete, binary, constrained, multi-objective, multi-modal, dynamic, noisy, and large-scale optimization, artificial immune systems, particle swarms, ant colony, bacterial foraging, artificial bees, fireflies algorithm, hybridization of algorithms, parallel/distributed computing, machine learning, data mining, data clustering, decision making and multi-agent systems based on swarm intelligence principles, adaptation and applications of swarm intelligence principles to real world problems in various domains.

Swarm Intelligence for Cloud Computing

by Indrajit Pan

Swarm Intelligence in Cloud Computing is an invaluable treatise for researchers involved in delivering intelligent optimized solutions for reliable deployment, infrastructural stability, and security issues of cloud-based resources. Starting with a bird’s eye view on the prevalent state-of-the-art techniques, this book enriches the readers with the knowledge of evolving swarm intelligent optimized techniques for addressing different cloud computing issues including task scheduling, virtual machine allocation, load balancing and optimization, deadline handling, power-aware profiling, fault resilience, cost-effective design, and energy efficiency. The book offers comprehensive coverage of the most essential topics, including: Role of swarm intelligence on cloud computing services Cloud resource sharing strategies Cloud service provider selection Dynamic task and resource scheduling Data center resource management. Indrajit Pan is an Associate Professor in Information Technology of RCC Institute of Information Technology, India. He received his PhD from Indian Institute of Engineering Science and Technology, Shibpur, India. With an academic experience of 14 years, he has published around 40 research publications in different international journals, edited books, and conference proceedings. Mohamed Abd Elaziz is a Lecturer in the Mathematical Department of Zagazig University, Egypt. He received his PhD from the same university. He is the author of more than 100 articles. His research interests include machine learning, signal processing, image processing, cloud computing, and evolutionary algorithms. Siddhartha Bhattacharyya is a Professor in Computer Science and Engineering of Christ University, Bangalore. He received his PhD from Jadavpur University, India. He has published more than 230 research publications in international journals and conference proceedings in his 20 years of academic experience.

Swarm Intelligence for Iris Recognition

by Zaheera Zainal Abidin

Iris recognition is one of the highest accuracy techniques used in biometric systems. The accuracy of the iris recognition system is measured by False Reject Rate (FRR), which measures the authenticity of a user who is incorrectly rejected by the system due to changes in iris features (such as aging and health condition) and external factors that affect iris image, for instance, high noise rate. External factors such as technical fault, occlusion, and source of lighting that causes the image acquisition to produce distorted iris images create error, hence are incorrectly rejected by the biometric system. FRR can be reduced using wavelets and Gabor filters, cascaded classifiers, ordinal measures, multiple biometric modalities, and a selection of unique iris features. Nonetheless, in the long duration of the matching process, existing methods were unable to identify the authenticity of the user since the iris structure itself produces a template changed due to aging. In fact, the iris consists of unique features such as crypts, furrows, collarette, pigment blotches, freckles, and pupils that are distinguishable among humans. Earlier research was done by selecting unique iris features. However, these had low accuracy levels. A new way of identifying and matching the iris template using the nature-inspired algorithm is described in this book. It provides an overview of iris recognition that is based on nature-inspired environment technology. The book is useful for students from universities, polytechnics, community colleges; practitioners; and industry practitioners.

Swarm Intelligence Methods for Statistical Regression

by Soumya Mohanty

A core task in statistical analysis, especially in the era of Big Data, is the fitting of flexible, high-dimensional, and non-linear models to noisy data in order to capture meaningful patterns. This can often result in challenging non-linear and non-convex global optimization problems. The large data volume that must be handled in Big Data applications further increases the difficulty of these problems. Swarm Intelligence Methods for Statistical Regression describes methods from the field of computational swarm intelligence (SI), and how they can be used to overcome the optimization bottleneck encountered in statistical analysis. Features Provides a short, self-contained overview of statistical data analysis and key results in stochastic optimization theory Focuses on methodology and results rather than formal proofs Reviews SI methods with a deeper focus on Particle Swarm Optimization (PSO) Uses concrete and realistic data analysis examples to guide the reader Includes practical tips and tricks for tuning PSO to extract good performance in real world data analysis challenges

Swarm Intelligence Optimization: Algorithms and Applications

by Abhishek Kumar Rashmi Agrawal Pramod Singh Rathore Vicente Garrcia Diaz

Resource optimization has always been a thrust area of research, and as the Internet of Things (IoT) is the most talked about topic of the current era of technology, it has become the need of the hour. Therefore, the idea behind this book was to simplify the journey of those who aspire to understand resource optimization in the IoT. To this end, included in this book are various real-time/offline applications and algorithms/case studies in the fields of engineering, computer science, information security, and cloud computing, along with the modern tools and various technologies used in systems, leaving the reader with a high level of understanding of various techniques and algorithms used in resource optimization.

Swarm Optimization for Biomedical Applications

by Saurav Mallik Zhongming Zhao Nanda Dulal Jana Prabhu Jayagopal Tapas Si Sandeep Kumar Mathivanan

Biomedical engineering is a rapidly growing interdisciplinary area that is providing solutions to biological and medical problems and improving the healthcare system. It is connected to various applications like protein structure prediction, computer-aided drug design, and computerized medical diagnosis based on image and signal data, which accomplish low-cost, accurate, and reliable solutions for improving healthcare services. With the recent advancements, machine learning (ML) and deep learning (DL) techniques are widely used in biomedical engineering to develop intelligent decision-making healthcare systems in real-time. However, accuracy and reliability in model performance can be a concern in tackling data generated from medical images and signals, making it challenging for researchers and practitioners. Therefore, optimized models can produce quality healthcare services to handle the complexities involved in biomedical research. Various optimization techniques have been employed to optimize parameters, hyper-parameters, and architectural information of ML/DL models explicitly applied to biological, medical, and signal data. The swarm intelligence approach has the potential to solve complex non-linear optimization problems. It mimics the collective behavior of social swarms such as ant colonies, honey bees, and bird flocks. The cooperative nature of swarms can search global settings of ML/DL models, which efficiently provide the solution to biomedical engineering applications. Finally, the book aims to provide the utility of swarm optimization and similar optimization techniques to design ML/DL models to improve the solutions related to biomedical engineering.

Swarm Robotics: A Formal Approach

by Heiko Hamann

This book provides an introduction to Swarm Robotics, which is the application of methods from swarm intelligence to robotics. It goes on to present methods that allow readers to understand how to design large-scale robot systems by going through many example scenarios on topics such as aggregation, coordinated motion (flocking), task allocation, self-assembly, collective construction, and environmental monitoring. The author explains the methodology behind building multiple, simple robots and how the complexity emerges from the multiple interactions between these robots such that they are able to solve difficult tasks. The book can be used as a short textbook for specialized courses or as an introduction to Swarm Robotics for graduate students, researchers, and professionals who want a concise introduction to the field.

Swarm Systems in Art and Architecture: State of the Art (Computational Synthesis and Creative Systems)

by Mahsoo Salimi

This book presents the recent computational developments inspired by swarms in art known as swarm art and discusses applying swarm intelligence concepts in architecture. Non-human art is a great leap in the evolution of contemporary art, removing the requirement of an artist’s production from the creative process. Furthermore, it is a critical declaration in opposition to the anthropomorphic vision which is so destructive for all other life forms and the planet’s ecology. When accepted and integrated into human culture, non-human art done by artificial systems or machines boosts creativity and stimulates innovative fusions. We analyze 120 swarm systems with unique and diverse conceptual contexts, agent design, and audience engagement that can be utilized as inspiration for future projects or to design new swarm algorithms by artists, architects, or computer scientists.

Refine Search

Showing 54,801 through 54,825 of 60,533 results