Browse Results

Showing 18,851 through 18,875 of 31,177 results

Physics and Engineering of Metallic Materials: Proceedings of Chinese Materials Conference 2018 (Springer Proceedings in Physics #217)

by Yafang Han

This book gathers selected papers from the Chinese Materials Conference 2018 (CMC2018) held in Xiamen City, Fujian, China, on July 12–16, 2018. The Chinese Materials Conference (CMC) is the Chinese Materials Research Society’s most important conference series and has been held annually since the early 1990s. The 2018 edition consisted of 32 domestic symposia, 2 international symposia and 1 international materials forum. This proceedings book covers the fields of powder metallurgy, advanced aluminum alloys, advanced magnesium alloys, superalloys, metal matrix composites, space materials science and technology, as well as nanoporous metal materials, and presents recent original research findings from more than 300 research groups at various universities and research institutes.

Physics and Finance (Undergraduate Lecture Notes in Physics)

by Volker Ziemann

This book introduces physics students to concepts and methods of finance. Despite being perceived as quite distant from physics, finance shares a number of common methods and ideas, usually related to noise and uncertainties. Juxtaposing the key methods to applications in both physics and finance articulates both differences and common features, this gives students a deeper understanding of the underlying ideas. Moreover, they acquire a number of useful mathematical and computational tools, such as stochastic differential equations, path integrals, Monte-Carlo methods, and basic cryptology. Each chapter ends with a set of carefully designed exercises enabling readers to test their comprehension.

Physics and Mathematics of Quantum Many-Body Systems (Graduate Texts in Physics)

by Hal Tasaki

This book is a self-contained advanced textbook on the mathematical-physical aspects of quantum many-body systems, which begins with a pedagogical presentation of the necessary background information before moving on to subjects of active research, including topological phases of matter. The book explores in detail selected topics in quantum spin systems and lattice electron systems, namely, long-range order and spontaneous symmetry breaking in the antiferromagnetic Heisenberg model in two or higher dimensions (Part I), Haldane phenomena in antiferromagnetic quantum spin chains and related topics in topological phases of quantum matter (Part II), and the origin of magnetism in various versions of the Hubbard model (Part III). Each of these topics represents certain nontrivial phenomena or features that are invariably encountered in a variety of quantum many-body systems, including quantum field theory, condensed matter systems, cold atoms, and artificial quantum systems designed for future quantum computers. The book’s main focus is on universal properties of quantum many-body systems. The book includes roughly 50 problems with detailed solutions. The reader only requires elementary linear algebra and calculus to comprehend the material and work through the problems. Given its scope and format, the book is suitable both for self-study and as a textbook for graduate or advanced undergraduate classes.

Physics and dynamics of clouds and precipitation

by Pao K. Wang

This key new textbook provides a state-of-the-art view of the physics of cloud and precipitation formation, covering the most important topics in the field: the microphysics, thermodynamics and cloud-scale dynamics. Highlights include: the condensation process explained with new insights from chemical physics studies; the impact of the particle curvature (the Kelvin equation) and solute effect (the Köhler equation); homogeneous and heterogeneous nucleation from recent molecular dynamic simulations; and the hydrodynamics of falling hydrometeors and their impact on collision growth. 3D cloud-model simulations demonstrate the dynamics and microphysics of deep convective clouds and cirrus formation, and each chapter contains problems enabling students to review and implement their new learning. Packed with detailed mathematical derivations and cutting-edge stereographic illustrations, this is an ideal text for graduate and advanced undergraduate courses, and also serves as a reference for academic researchers and professionals working in atmospheric science, meteorology, climatology, remote sensing and environmental science.

Physics for Game Developers: Science, math, and code for realistic effects

by David M Bourg Bryan Bywalec

If you want to enrich your game’s experience with physics-based realism, the expanded edition of this classic book details physics principles applicable to game development. You’ll learn about collisions, explosions, sound, projectiles, and other effects used in games on Wii, PlayStation, Xbox, smartphones, and tablets. You’ll also get a handle on how to take advantage of various sensors such as accelerometers and optical tracking devices.Authors David Bourg and Bryan Bywalec show you how to develop your own solutions to a variety of problems by providing technical background, formulas, and a few code examples. This updated book is indispensable whether you work alone or as part of a team.Refresh your knowledge of classical mechanics, including kinematics, force, kinetics, and collision responseExplore rigid body dynamics, using real-time 2D and 3D simulations to handle rotation and inertiaApply concepts to real-world problems: model the behavior of boats, airplanes, cars, and sports ballsEnhance your games with digital physics, using accelerometers, touch screens, GPS, optical tracking devices, and 3D displaysCapture 3D sound effects with the OpenAL audio API

Physics of Biological Oscillators: New Insights into Non-Equilibrium and Non-Autonomous Systems (Understanding Complex Systems)

by Aneta Stefanovska Peter V. E. McClintock

This book, based on a selection of invited presentations from a topical workshop, focusses on time-variable oscillations and their interactions. The problem is challenging, because the origin of the time variability is usually unknown. In mathematical terms, the oscillations are non-autonomous, reflecting the physics of open systems where the function of each oscillator is affected by its environment. Time-frequency analysis being essential, recent advances in this area, including wavelet phase coherence analysis and nonlinear mode decomposition, are discussed. Some applications to biology and physiology are described.Although the most important manifestation of time-variable oscillations is arguably in biology, they also crop up in, e.g. astrophysics, or for electrons on superfluid helium. The book brings together the research of the best international experts in seemingly very different disciplinary areas.

Physics of Coal and Mining Processes

by Anatoly D. Alexeev

Around the world, on average, four coal miners die for each million tons of coal recovered. Improving the safety of mining work while responding to the need for increased coal production, however, is impossible without further development of the physics of mining processes. A relatively new branch of science, it tackles problems that arise during m

Physics of Complex Systems: Discovery in the Age of Gödel

by Dragutin T. Mihailović Darko Kapor Siniša Crvenković Anja Mihailović

This book analyses the physics of complex systems to elaborate the problems encountered in teaching and research. Inspired by the of Kurt Gödel (including his incompleteness theorems) it considers the concept of time, the idea of models and the concept of complexity before trying to assess the state of physics in general. Using both general and practical examples, the idea of information is discussed, emphasizing its physical interpretation, debates ideas in depth using examples and evidence to provide detailed considerations on the topics. Based on the authors’ own research on these topics, this book puts forward the idea that the application of information measures can provide new results in the study of complex systems. Helpful for those already familiar with the concepts who wish to deepen their critical understanding, Physics of Complex Systems will be extremely valuable both for people that are already involved in complex systems and also readers beginning their journey into the subject. This work will encourage readers to follow and continue these ideas, enabling them to investigate the various topics further.

Physics of Earth’s Radiation Belts: Theory and Observations (Astronomy and Astrophysics Library)

by Hannu E. Koskinen Emilia K. Kilpua

This open access book serves as textbook on the physics of the radiation belts surrounding the Earth. Discovered in 1958 the famous Van Allen Radiation belts were among the first scientific discoveries of the Space Age. Throughout the following decades the belts have been under intensive investigation motivated by the risks of radiation hazards they expose to electronics and humans on spacecraft in the Earth’s inner magnetosphere. This textbook teaches the field from basic theory of particles and plasmas to observations which culminated in the highly successful Van Allen Probes Mission of NASA in 2012-2019. Using numerous data examples the authors explain the relevant concepts and theoretical background of the extremely complex radiation belt region, with the emphasis on giving a comprehensive and coherent understanding of physical processes affecting the dynamics of the belts. The target audience are doctoral students and young researchers who wish to learn about the physical processes underlying the acceleration, transport and loss of the radiation belt particles in the perspective of the state-of-the-art observations.

Physics of Flow in Porous Media

by Alex Hansen Jens Feder Eirik Grude Flekkøy

An invaluable reference for graduate students and academic researchers, this book introduces the basic terminology, methods and theory of the physics of flow in porous media. Geometric concepts, such as percolation and fractals, are explained and simple simulations are created, providing readers with both the knowledge and the analytical tools to deal with real experiments. It covers the basic hydrodynamics of porous media and how complexity emerges from it, as well as establishing key connections between hydrodynamics and statistical physics. Covering current concepts and their uses, this book is of interest to applied physicists and computational/theoretical Earth scientists and engineers seeking a rigorous theoretical treatment of this topic. Physics of Flow in Porous Media fills a gap in the literature by providing a physics-based approach to a field that is mostly dominated by engineering approaches.

Physics of Geochemical Mechanics and Deep Neural Network Modeling with Diffusion Augmentation: Applications to Earthquake Prediction (Advances in Geological Science)

by Mitsuhiro Toriumi

This book provides a new data augmentation method based on the local stochastic distribution patterns in natural time series data of global and regional seismicity rates and their correlated seismicity rates. The augmentation procedure is called the diffusion – denoising augmentation method from the local Gaussian distribution of segmented data of long time series. This method makes it possible to apply the deep machine learning necessary to neural network prediction of rare large earthquakes in the global and regional earth system.The book presents the physical background of the processes showing the development of characteristic features in the global and regional correlated seismicity dynamics, which are manifested by the successive time series of 1990–2023. Physical processes of the correlated global seismicity change and the earth’s rotation, fluctuation of plate motion, and the earth’s ellipsoid ratio (C20 of satellite gravity change) are proposed in this book. The equivalency between Gaussian seismicity network dynamics and the minimal nonlinear dynamics model of correlated seismicity rates is also provided. In addition, the book contains simulated models of the shear crack jog wave, precipitation of minerals in the jog, and jog accumulation inducing shear crack propagation which leads to earthquakes in the plate boundary rocks under permeable fluid flow.

Physics of Granular Suspensions: Micro-mechanics of Geophysical Flows (CISM International Centre for Mechanical Sciences #612)

by Marco Mazzuoli Laurent Lacaze

This book provides graduate students and scientists with fundamental knowledge on the mechanics of granular suspensions as well as on the mathematical and numerical techniques that can be adopted to investigate geophysical flows. To this end, three formidably complex problems (sediment transport, flow-like landslide inception, and gravity currents) are considered. The reader will find a thorough combination of elements of fluid and solid mechanics, rheology, geotechnics, geomorphology, civil, and coastal engineering. The first part of the book introduces the problem of granular suspensions from the mathematical viewpoint, focusing on issues that characterise geophysical flows such as turbulence, the effects of inter-particle contacts, and strong velocity gradients. In the second part, different models that were successfully used to investigate the mechanics of granular suspensions in environmental flows are presented.

Physics of Lakes

by Irina P. Chubarenko Kolumban Hutter Yongqi Wang

This first volume in the treatise on the Physics of Lakes deals with the formulation of the mathematical and physical background. A large number of lakes on Earth are described, presenting their morphology as well as the causes of their response to the driving environment. Because the physics of lakes cannot be described without the language used in mathematics, these subjects are introduced first by using the simplest approach and with utmost care, assuming only a limited college knowledge of classical Newtonian physics, and continues with increasing complexity and elegance, starting with the fundamental equations of Lake Hydrodynamics in the form of 'primitive equations' and leading to a detailed treatment of angular momentum and vorticity. Following the presentation of these fundamentals turbulence modeling is introduced with Reynolds, Favre and other non-ergodic filters. The derivation of averaged field equations is presented with different closure schemes, including the k-ε model for a Boussinesq fluid and early anisotropic closure schemes. This is followed by expositions of surface gravity waves without rotation and an analysis of the role played by the distribution of mass within water bodies on the Earth, leading to a study of internal waves. The vertical structure of wind-induced currents in homogeneous and stratified waters and the Ekman theory and some of its extensions close this first volume of Physics of Lakes. The last chapter collects formulas for the phenomenological coefficients of water.

Physics of Liquid Matter (Soft and Biological Matter)

by Paola Gallo Mauro Rovere

This book offers a didactic and a self-contained treatment of the physics of liquid and flowing matter with a statistical mechanics approach. Experimental and theoretical methods that were developed to study fluids are now frequently applied to a number of more complex systems generically referred to as soft matter. As for simple liquids, also for complex fluids it is important to understand how their macroscopic behavior is determined by the interactions between the component units. Moreover, in recent years new and relevant insights have emerged from the study of anomalous phases and metastable states of matter. In addition to the traditional topics concerning fluids in normal conditions, the authors of this book discuss recent developments in the field of disordered systems in condensed and soft matter. In particular they emphasize computer simulation techniques that are used in the study of soft matter and the theories and study of slow glassy dynamics. For these reasons the book includes a specific chapter about metastability, supercooled liquids and glass transition.The book is written for graduate students and active researchers in the field.

Physics of Magnetic Flux Tubes (Astrophysics and Space Science Library #417)

by Margarita Ryutova

This book presents the physics of magnetic flux tubes, including their fundamental properties and collective phenomena in an ensemble of flux tubes. The physics of magnetic flux tubes is vital for understanding fundamental processes in the solar atmosphere that are shaped and governed by magnetic fields. The concept of magnetic flux tubes is also central to various magnetized media ranging from laboratory plasma and Earth's magnetosphere to planetary, stellar and galactic environments.The book covers both theory and observations. Theoretical models presented in analytical and phenomenological forms that are tailored to practical applications. These are welded together with empirical data extending from the early pioneering observations to the most recent state-of-the-art data.This new edition of the book is updated and contains a significant amount of new material throughout as well as four new chapters and 48 problems with solutions. Most problems make use of original papers containing fundamental results. This way, the original paper, often based on complex theory, turns into a convenient tool for practical use and quantitative analysis.

Physics of Oscillations and Waves: With Use Of Matlab And Python (Undergraduate Texts In Physics Ser.)

by Arnt Inge Vistnes

In this textbook a combination of standard mathematics and modern numerical methods is used to describe a wide range of natural wave phenomena, such as sound, light and water waves, particularly in specific popular contexts, e.g. colors or the acoustics of musical instruments. It introduces the reader to the basic physical principles that allow the description of the oscillatory motion of matter and classical fields, as well as resulting concepts including interference, diffraction, and coherence. Numerical methods offer new scientific insights and make it possible to handle interesting cases that can’t readily be addressed using analytical mathematics; this holds true not only for problem solving but also for the description of phenomena. Essential physical parameters are brought more into focus, rather than concentrating on the details of which mathematical trick should be used to obtain a certain solution. Readers will learn how time-resolved frequency analysis offers a deeper understanding of the interplay between frequency and time, which is relevant to many phenomena involving oscillations and waves. Attention is also drawn to common misconceptions resulting from uncritical use of the Fourier transform. The book offers an ideal guide for upper-level undergraduate physics students and will also benefit physics instructors. Program codes in Matlab and Python, together with interesting files for use in the problems, are provided as free supplementary material.

Physics of Petroleum Reservoirs (Springer Mineralogy)

by Xuetao Hu, Shuyong Hu, Fayang Jin and Su Huang

This book introduces in detail the physical and chemical phenomena and processes during petroleum production. It covers the properties of reservoir rocks and fluids, the related methods of determining these properties, the phase behavior of hydrocarbon mixtures, the microscopic mechanism of fluids flowing through reservoir rocks, and the primary theories and methods of enhancing oil recovery. It also involves the up-to-date progress in these areas. It can be used as a reference by researchers and engineers in petroleum engineering and a textbook for students majoring in the area related with petroleum exploitation.

Physics of Quantum Rings

by Vladimir Fomin

This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.

Physics of Quantum Rings (NanoScience and Technology)

by Vladimir M. Fomin

This book, now in its second edition, introduces readers to quantum rings as a special class of modern high-tech material structures at the nanoscale. It deals, in particular, with their formation by means of molecular beam epitaxy and droplet epitaxy of semiconductors, and their topology-driven electronic, optical and magnetic properties. A highly complex theoretical model is developed to adequately represent the specific features of quantum rings. The results presented here are intended to facilitate the development of low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings. This second edition includes both new and significantly revised chapters. It provides extensive information on recent advances in the physics of quantum rings related to the spin-orbit interaction and spin dynamics (spin interference in Rashba rings, tunable exciton topology on type II InAs/GaAsSb quantum nanostructures), the electron-phonon interaction in ring-like structures, quantum interference manifestations in novel materials (graphene nanoribbons, MoS2), and the effects of electrical field and THz radiation on the optical properties of quantum rings. The new edition also shares insights into the properties of various novel architectures, including coupled quantum ring-quantum dot chains and concentric quantum rings, topologic states of light in self-assembled ring-like cavities, and optical and plasmon m.odes in Möbius-shaped resonators.

Physics of Self-Organization and Evolution

by Werner Ebeling Rainer Feistel

This thoroughly updated version of the German authoritative work on self-organization has been completely rewritten by internationally renowned experts and experienced book authors to also include a review of more recent literature. It retains the original enthusiasm and fascination surrounding thermodynamic systems far from equilibrium, synergetics, and the origin of life, representing an easily readable book and tutorial on this exciting field. The book is unique in covering in detail the experimental and theoretical fundamentals of self-organizing systems as well as such selected features as random processes, structural networks and multistable systems, while focusing on the physical and theoretical modeling of natural selection and evolution processes. The authors take examples from physics, chemistry, biology and social systems, and include results hitherto unpublished in English. The result is a one-stop resource relevant for students and scientists in physics or related interdisciplinary fields, including mathematical physics, biophysics, information science and nanotechnology.

Physics of The Universe: Integrating Physics and Earth & Space Science, NGSS

by Tracey Greenwood Kent Pryor Benjamin J. Westleigh David Sole

NIMAC-sourced textbook

Physics of Tsunamis

by Boris W. Levin Mikhail A. Nosov

This second edition reflects significant progress in tsunami research, monitoring and mitigation within the last decade. Primarily meant to summarize the state-of-the-art knowledge on physics of tsunamis, it describes up-to-date models of tsunamis generated by a submarine earthquake, landslide, volcanic eruption, meteorite impact, and moving atmospheric pressure inhomogeneities. Models of tsunami propagation and run-up are also discussed. The book investigates methods of tsunami monitoring including coastal mareographs, deep-water pressure gauges, GPS buoys, satellite altimetry, the study of ionospheric disturbances caused by tsunamis and the study of paleotsunamis. Non-linear phenomena in tsunami source and manifestations of water compressibility are discussed in the context of their contribution to the wave amplitude and energy. The practical method of calculating the initial elevation on a water surface at a seismotectonic tsunami source is expounded. Potential and eddy traces of a tsunamigenic earthquake in the ocean are examined in terms of their applicability to tsunami warning. The first edition of this book was published in 2009. Since then, a few catastrophic events occurred, including the 2011 Tohoku tsunami, which is well known all over the world. The book is intended for researchers, students and specialists in oceanography, geophysics, seismology, hydro-acoustics, geology, and geomorphology, including the engineering and insurance industries.

Physics of the Atmosphere and Climate

by Murry L. Salby

Murry Salby's new book provides an integrated treatment of the processes controlling the Earth-atmosphere system, developed from first principles through a balance of theory and applications. This book builds on Salby's previous book, Fundamentals of Atmospheric Physics. The scope has been expanded into climate, with the presentation streamlined for undergraduates in science, mathematics, and engineering. Advanced material, suitable for graduate students and as a resource for researchers, has been retained but distinguished from the basic development. The book provides a conceptual yet quantitative understanding of the controlling influences, integrated through theory and major applications. It leads readers through a methodical development of the diverse physical processes that shape weather, global energetics, and climate. End-of-chapter problems of varying difficulty develop student knowledge and its quantitative application, supported by answers and detailed solutions online for instructors.

Physics of the Atmosphere, Climatology and Environmental Monitoring: Modern Problems of Atmospheric Physics, Climatology and Environmental Monitoring (Springer Proceedings in Earth and Environmental Sciences)

by Robert Zakinyan Arthur Zakinyan

This proceedings book presents a discussion by leading scientists and specialists of the latest scientific results, developed methods, technologies and technical means of research and pilot work in the field of geosciences and environmental management. An important task is to familiarize young specialists, teachers, graduate students and students with the current state and the latest world achievements in this field of knowledge. Currently, there is a rapid and significant climate change, which manifests itself not only in global warming, but also in noticeable changes in other atmospheric and climatic characteristics among others.

Physics of the Earth

by Frank D Stacey Paul M Davis

The fourth edition of Physics of the Earth maintains the original philosophy of this classic graduate textbook on fundamental solid earth geophysics, while being completely revised, updated, and restructured into a more modular format to make individual topics even more accessible. Building on the success of previous editions, which have served generations of students and researchers for nearly forty years, this new edition will be an invaluable resource for graduate students looking for the necessary physical and mathematical foundations to embark on their own research careers in geophysics. Several completely new chapters have been added and a series of appendices, presenting fundamental data and advanced mathematical concepts, and an extensive reference list, are provided as tools to aid readers wishing to pursue topics beyond the level of the book. Over 140 student exercises of varying levels of difficulty are also included, and full solutions are available online at www. cambridge. org/9780521873628.

Refine Search

Showing 18,851 through 18,875 of 31,177 results