- Table View
- List View
Physics of Granular Suspensions: Micro-mechanics of Geophysical Flows (CISM International Centre for Mechanical Sciences #612)
by Marco Mazzuoli Laurent LacazeThis book provides graduate students and scientists with fundamental knowledge on the mechanics of granular suspensions as well as on the mathematical and numerical techniques that can be adopted to investigate geophysical flows. To this end, three formidably complex problems (sediment transport, flow-like landslide inception, and gravity currents) are considered. The reader will find a thorough combination of elements of fluid and solid mechanics, rheology, geotechnics, geomorphology, civil, and coastal engineering. The first part of the book introduces the problem of granular suspensions from the mathematical viewpoint, focusing on issues that characterise geophysical flows such as turbulence, the effects of inter-particle contacts, and strong velocity gradients. In the second part, different models that were successfully used to investigate the mechanics of granular suspensions in environmental flows are presented.
Physics of Lakes
by Irina P. Chubarenko Kolumban Hutter Yongqi WangThis first volume in the treatise on the Physics of Lakes deals with the formulation of the mathematical and physical background. A large number of lakes on Earth are described, presenting their morphology as well as the causes of their response to the driving environment. Because the physics of lakes cannot be described without the language used in mathematics, these subjects are introduced first by using the simplest approach and with utmost care, assuming only a limited college knowledge of classical Newtonian physics, and continues with increasing complexity and elegance, starting with the fundamental equations of Lake Hydrodynamics in the form of 'primitive equations' and leading to a detailed treatment of angular momentum and vorticity. Following the presentation of these fundamentals turbulence modeling is introduced with Reynolds, Favre and other non-ergodic filters. The derivation of averaged field equations is presented with different closure schemes, including the k-ε model for a Boussinesq fluid and early anisotropic closure schemes. This is followed by expositions of surface gravity waves without rotation and an analysis of the role played by the distribution of mass within water bodies on the Earth, leading to a study of internal waves. The vertical structure of wind-induced currents in homogeneous and stratified waters and the Ekman theory and some of its extensions close this first volume of Physics of Lakes. The last chapter collects formulas for the phenomenological coefficients of water.
Physics of Liquid Matter (Soft and Biological Matter)
by Paola Gallo Mauro RovereThis book offers a didactic and a self-contained treatment of the physics of liquid and flowing matter with a statistical mechanics approach. Experimental and theoretical methods that were developed to study fluids are now frequently applied to a number of more complex systems generically referred to as soft matter. As for simple liquids, also for complex fluids it is important to understand how their macroscopic behavior is determined by the interactions between the component units. Moreover, in recent years new and relevant insights have emerged from the study of anomalous phases and metastable states of matter. In addition to the traditional topics concerning fluids in normal conditions, the authors of this book discuss recent developments in the field of disordered systems in condensed and soft matter. In particular they emphasize computer simulation techniques that are used in the study of soft matter and the theories and study of slow glassy dynamics. For these reasons the book includes a specific chapter about metastability, supercooled liquids and glass transition.The book is written for graduate students and active researchers in the field.
Physics of Magnetic Flux Tubes (Astrophysics and Space Science Library #417)
by Margarita RyutovaThis book presents the physics of magnetic flux tubes, including their fundamental properties and collective phenomena in an ensemble of flux tubes. The physics of magnetic flux tubes is vital for understanding fundamental processes in the solar atmosphere that are shaped and governed by magnetic fields. The concept of magnetic flux tubes is also central to various magnetized media ranging from laboratory plasma and Earth's magnetosphere to planetary, stellar and galactic environments.The book covers both theory and observations. Theoretical models presented in analytical and phenomenological forms that are tailored to practical applications. These are welded together with empirical data extending from the early pioneering observations to the most recent state-of-the-art data.This new edition of the book is updated and contains a significant amount of new material throughout as well as four new chapters and 48 problems with solutions. Most problems make use of original papers containing fundamental results. This way, the original paper, often based on complex theory, turns into a convenient tool for practical use and quantitative analysis.
Physics of Oscillations and Waves: With Use Of Matlab And Python (Undergraduate Texts In Physics Ser.)
by Arnt Inge VistnesIn this textbook a combination of standard mathematics and modern numerical methods is used to describe a wide range of natural wave phenomena, such as sound, light and water waves, particularly in specific popular contexts, e.g. colors or the acoustics of musical instruments. It introduces the reader to the basic physical principles that allow the description of the oscillatory motion of matter and classical fields, as well as resulting concepts including interference, diffraction, and coherence. Numerical methods offer new scientific insights and make it possible to handle interesting cases that can’t readily be addressed using analytical mathematics; this holds true not only for problem solving but also for the description of phenomena. Essential physical parameters are brought more into focus, rather than concentrating on the details of which mathematical trick should be used to obtain a certain solution. Readers will learn how time-resolved frequency analysis offers a deeper understanding of the interplay between frequency and time, which is relevant to many phenomena involving oscillations and waves. Attention is also drawn to common misconceptions resulting from uncritical use of the Fourier transform. The book offers an ideal guide for upper-level undergraduate physics students and will also benefit physics instructors. Program codes in Matlab and Python, together with interesting files for use in the problems, are provided as free supplementary material.
Physics of Petroleum Reservoirs (Springer Mineralogy)
by Xuetao Hu, Shuyong Hu, Fayang Jin and Su HuangThis book introduces in detail the physical and chemical phenomena and processes during petroleum production. It covers the properties of reservoir rocks and fluids, the related methods of determining these properties, the phase behavior of hydrocarbon mixtures, the microscopic mechanism of fluids flowing through reservoir rocks, and the primary theories and methods of enhancing oil recovery. It also involves the up-to-date progress in these areas. It can be used as a reference by researchers and engineers in petroleum engineering and a textbook for students majoring in the area related with petroleum exploitation.
Physics of Quantum Rings
by Vladimir FominThis book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.
Physics of Quantum Rings (NanoScience and Technology)
by Vladimir M. FominThis book, now in its second edition, introduces readers to quantum rings as a special class of modern high-tech material structures at the nanoscale. It deals, in particular, with their formation by means of molecular beam epitaxy and droplet epitaxy of semiconductors, and their topology-driven electronic, optical and magnetic properties. A highly complex theoretical model is developed to adequately represent the specific features of quantum rings. The results presented here are intended to facilitate the development of low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings. This second edition includes both new and significantly revised chapters. It provides extensive information on recent advances in the physics of quantum rings related to the spin-orbit interaction and spin dynamics (spin interference in Rashba rings, tunable exciton topology on type II InAs/GaAsSb quantum nanostructures), the electron-phonon interaction in ring-like structures, quantum interference manifestations in novel materials (graphene nanoribbons, MoS2), and the effects of electrical field and THz radiation on the optical properties of quantum rings. The new edition also shares insights into the properties of various novel architectures, including coupled quantum ring-quantum dot chains and concentric quantum rings, topologic states of light in self-assembled ring-like cavities, and optical and plasmon m.odes in Möbius-shaped resonators.
Physics of Self-Organization and Evolution
by Werner Ebeling Rainer FeistelThis thoroughly updated version of the German authoritative work on self-organization has been completely rewritten by internationally renowned experts and experienced book authors to also include a review of more recent literature. It retains the original enthusiasm and fascination surrounding thermodynamic systems far from equilibrium, synergetics, and the origin of life, representing an easily readable book and tutorial on this exciting field. The book is unique in covering in detail the experimental and theoretical fundamentals of self-organizing systems as well as such selected features as random processes, structural networks and multistable systems, while focusing on the physical and theoretical modeling of natural selection and evolution processes. The authors take examples from physics, chemistry, biology and social systems, and include results hitherto unpublished in English. The result is a one-stop resource relevant for students and scientists in physics or related interdisciplinary fields, including mathematical physics, biophysics, information science and nanotechnology.
Physics of The Universe: Integrating Physics and Earth & Space Science, NGSS
by Tracey Greenwood Kent Pryor Benjamin J. Westleigh David SoleNIMAC-sourced textbook
Physics of Tsunamis
by Boris W. Levin Mikhail A. NosovThis second edition reflects significant progress in tsunami research, monitoring and mitigation within the last decade. Primarily meant to summarize the state-of-the-art knowledge on physics of tsunamis, it describes up-to-date models of tsunamis generated by a submarine earthquake, landslide, volcanic eruption, meteorite impact, and moving atmospheric pressure inhomogeneities. Models of tsunami propagation and run-up are also discussed. The book investigates methods of tsunami monitoring including coastal mareographs, deep-water pressure gauges, GPS buoys, satellite altimetry, the study of ionospheric disturbances caused by tsunamis and the study of paleotsunamis. Non-linear phenomena in tsunami source and manifestations of water compressibility are discussed in the context of their contribution to the wave amplitude and energy. The practical method of calculating the initial elevation on a water surface at a seismotectonic tsunami source is expounded. Potential and eddy traces of a tsunamigenic earthquake in the ocean are examined in terms of their applicability to tsunami warning. The first edition of this book was published in 2009. Since then, a few catastrophic events occurred, including the 2011 Tohoku tsunami, which is well known all over the world. The book is intended for researchers, students and specialists in oceanography, geophysics, seismology, hydro-acoustics, geology, and geomorphology, including the engineering and insurance industries.
Physics of the Atmosphere and Climate
by Murry L. SalbyMurry Salby's new book provides an integrated treatment of the processes controlling the Earth-atmosphere system, developed from first principles through a balance of theory and applications. This book builds on Salby's previous book, Fundamentals of Atmospheric Physics. The scope has been expanded into climate, with the presentation streamlined for undergraduates in science, mathematics, and engineering. Advanced material, suitable for graduate students and as a resource for researchers, has been retained but distinguished from the basic development. The book provides a conceptual yet quantitative understanding of the controlling influences, integrated through theory and major applications. It leads readers through a methodical development of the diverse physical processes that shape weather, global energetics, and climate. End-of-chapter problems of varying difficulty develop student knowledge and its quantitative application, supported by answers and detailed solutions online for instructors.
Physics of the Atmosphere, Climatology and Environmental Monitoring: Modern Problems of Atmospheric Physics, Climatology and Environmental Monitoring (Springer Proceedings in Earth and Environmental Sciences)
by Robert Zakinyan Arthur ZakinyanThis proceedings book presents a discussion by leading scientists and specialists of the latest scientific results, developed methods, technologies and technical means of research and pilot work in the field of geosciences and environmental management. An important task is to familiarize young specialists, teachers, graduate students and students with the current state and the latest world achievements in this field of knowledge. Currently, there is a rapid and significant climate change, which manifests itself not only in global warming, but also in noticeable changes in other atmospheric and climatic characteristics among others.
Physics of the Earth
by Frank D Stacey Paul M DavisThe fourth edition of Physics of the Earth maintains the original philosophy of this classic graduate textbook on fundamental solid earth geophysics, while being completely revised, updated, and restructured into a more modular format to make individual topics even more accessible. Building on the success of previous editions, which have served generations of students and researchers for nearly forty years, this new edition will be an invaluable resource for graduate students looking for the necessary physical and mathematical foundations to embark on their own research careers in geophysics. Several completely new chapters have been added and a series of appendices, presenting fundamental data and advanced mathematical concepts, and an extensive reference list, are provided as tools to aid readers wishing to pursue topics beyond the level of the book. Over 140 student exercises of varying levels of difficulty are also included, and full solutions are available online at www. cambridge. org/9780521873628.
Physics of the Sun: A First Course
by Dermott J. MullanWith an emphasis on numerical modelling, Physics of the Sun: A First Course presents a quantitative examination of the physical structure of the Sun and the conditions of its extended atmosphere. It gives step-by-step instructions for calculating the numerical values of various physical quantities in different regions of the Sun. Fully updated throughout, with the latest results in solar physics, this second edition covers a wide range of topics on the Sun and stellar astrophysics, including the structure of the Sun, solar radiation, the solar atmosphere, and Sun-space interactions. It explores how the physical conditions in the visible surface of the Sun are determined by the opacity of the material in the atmosphere. It also presents the empirical properties of convection in the Sun, discusses the physical conditions which must be satisfied for nuclear reactions to occur in the core, and describes how radiation transports energy from the core outwards. This text enables a practical appreciation of the physical models of solar processes. Numerical modelling problems and step-by-step instructions are featured throughout, to empower students to calculate, using their own codes, the interior structure of different parts of the Sun and the frequencies of p-modes and g-modes. They encourage a firm grasp of the numerical values of actual physical parameters as a function of radial location in the Sun. It is an ideal introduction to solar physics for advanced undergraduate and graduate students in physics and astronomy, in addition to research professionals looking to incorporate modelling into their practises. Extensive bibliographies at the end of each chapter enable the reader to explore the latest research articles in the field. Features Fully updated with the latest results from the spacecraft Hinode, Stereo, Solar Dynamics Observatory (SDO), Interface Region Imaging Spectrograph (IRIS), and Parker Solar Probe Presents step-by-step explanations for calculating numerical models of the photosphere, convection zone, and radiative interior with exercises and simulation problems to test learning Describes the structure of polytropic spheres and the acoustic power in the Sun and the process of thermal conduction in different physical conditions
Physics of the Terrestrial Environment, Subtle Matter and Height of the Atmosphere: Conceptions of the Atmosphere and the Nature of Air in the Age of Enlightenment
by Eric ChassefiereThe discovery, in the middle of the 17th century, of both the weight of air and the law governing its elasticity transformed the status of the atmosphere from that of a purely mathematical object to that of a complex and highly variable physical system.In the context of rapidly intensifying experimentation and observation, the nature of the atmosphere was therefore the subject of a host of hypotheses, which 18th century scholars tried to reconcile with a coherent physical approach. In particular, this was achieved by the conceptualization of invisible or “subtle” materials, thought to be closely linked to atmospheric stratification.Subtle matter was introduced, largely to reconcile contradictory results concerning the estimation of the height of the atmosphere. These estimations were based on different methods, mainly using the observation of meteors and the refracted and reflected light of stars.Taking as its common thread the question of the height of the atmosphere, which was omnipresent in the texts at the time, this book traces the history of the discovery of the atmosphere and the many questions it generated.
Physics with Excel and Python: Using the Same Data Structure Volume I: Basics, Exercises and Tasks
by Dieter MergelThis book is intended to serve as a basic introduction to scientific computing by treating problems from various areas of physics - mechanics, optics, acoustics, and statistical reasoning in the context of the evaluation of measurements. After working through these examples, students are able to independently work on physical problems that they encounter during their studies. For every exercise, the author introduces the physical problem together with a data structure that serves as an interface to programming in Excel and Python. When a solution is achieved in one application, it can easily be translated into the other one and presumably any other platform for scientific computing. This is possible because the basic techniques of vector and matrix calculation and array broadcasting are also achieved with spreadsheet techniques, and logical queries and for-loops operate on spreadsheets from simple Visual Basic macros. So, starting to learn scientific calculation with Excel, e.g., at High School, is a targeted road to scientific computing. The primary target groups of this book are students with a major or minor subject in physics, who have interest in computational techniques and at the same time want to deepen their knowledge of physics. Math, physics and computer science teachers and Teacher Education students will also find a companion in this book to help them integrate computer techniques into their lessons. Even professional physicists who want to venture into Scientific Computing may appreciate this book.
Physics with Photons Using the ATLAS Run 2 Data: Calibration and Identification, Measurement of the Higgs Boson Mass and Search for Supersymmetry in Di-Photon Final State (Springer Theses)
by Stefano ManzoniThe work presented in this book is based on the proton-proton collision data from the Large Hadron Collider at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector in 2015 and 2016. The research program of the ATLAS experiment includes the precise measurement of the parameters of the Standard Model, and the search for signals of physics beyond the SM. Both these approaches are pursued in this thesis, which presents two different analyses: the measurement of the Higgs boson mass in the di-photon decay channel, and the search for production of supersymmetric particles (gluinos, squarks or winos) in a final state containing two photons and missing transverse momentum. Finally, ATLAS detector performance studies, which are key ingredients for the two analyses outlined before, are also carried out and described.
Physics, Nature and Society: A Guide to Order and Complexity in Our World (The Frontiers Collection)
by Joaquín MarroThis wide-ranging and accessible book serves as a fascinating guide to the strategies and concepts that help us understand the boundaries between physics, on the one hand, and sociology, economics, and biology on the other. From cooperation and criticality to flock dynamics and fractals, the author addresses many of the topics belonging to the broad theme of complexity. He chooses excellent examples (requiring no prior mathematical knowledge) to illuminate these ideas and their implications. The lively style and clear description of the relevant models will appeal both to novices and those with an existing knowledge of the field.
Physics—Problems, Solutions, and Computer Calculations: Vol. 1 Mechanics, Properties of Matter, and Heat
by Wan Muhamad Wan HassanKnowledge of and skill in physics are essential foundations for studies in science and engineering. This book offers students an introduction to the basic concepts and principles of physics. It covers various topics specifically related to physical mechanics, the properties of matter, and heat. Each chapter begins with a summary of concepts, principles, definitions, and formulae to be discussed, as well as ending with problems and solutions that illustrate the specific topic. Steps are detailed to help build reasoning and understanding. There are 300 worked problems and 100 exercises in the book, as well as 306 figures to help the reader visualize the processes being addressed. Computer calculations and solutions are carried out using wxMaxima to give insight and help build computational skills. The book is aimed at first-year undergraduate students studying introductory physics, and would also be useful for physics teachers in their instruction, particularly the exercises at the end of each chapter.
Physik für Studierende der Biowissenschaften, Chemie und Medizin
by Gerhard RufaDieses Lehrbuch bietet eine klar strukturierte Einführung in die Physik, wobei die Grundlagen, wie sie für Studierende mit Physik im Nebenfach benötigt werden, in einer leicht verständlichen Weise dargestellt werden. Die physikalischen Begriffe und Gesetzmäßigkeiten werden anhand vieler Abbildungen sowie durch Beispiele aus dem täglichen Leben, den Biowissenschaften, der Chemie und der Medizin erläutert. Vorkenntnisse aus der Physik werden nicht vorausgesetzt, sodass Studierende sich selbstständig das physikalische Grundlagenwissen erarbeiten können und ein Verständnis der abstrakten physikalischen Begriffe und Gesetzmäßigkeiten erhalten.Ergänzt wird dieses Lehrbuch von dem separaten Übungsbuch Physik für Studierende der Biowissenschaften, Chemie und Medizin, das eine Vielzahl von Übungsserien und Testserien mit ausführlichen Lösungen und Erklärungen enthält. Es hilft Studierenden, sich anhand ausgewählter physikalischer Probleme Schritt für Schritt die Physik und auch die erforderliche Mathematik zu erarbeiten. Beide Bücher eignen sich somit hervorragend als Ergänzung zur Vorlesung sowie für die Klausurvorbereitung.
Physik und Finanzen
by Volker ZiemannDieses Buch führt Physikstudenten in die Konzepte und Methoden der Finanzwissenschaft ein. Obwohl die Finanzwissenschaft als recht weit von der Physik entfernt wahrgenommen wird, teilt sie eine Reihe gemeinsamer Methoden und Ideen, die in der Regel mit Rauschen und Unsicherheiten zu tun haben. Durch die Gegenüberstellung der wichtigsten Methoden mit Anwendungen in der Physik und im Finanzwesen werden sowohl die Unterschiede als auch die Gemeinsamkeiten deutlich, was den Studierenden ein tieferes Verständnis der zugrunde liegenden Ideen vermittelt. Darüber hinaus lernen sie eine Reihe nützlicher mathematischer und rechnerischer Werkzeuge kennen, wie stochastische Differentialgleichungen, Pfadintegrale, Monte-Carlo-Methoden und grundlegende Kryptologie. Jedes Kapitel endet mit einer Reihe sorgfältig ausgearbeiteter Übungen, mit denen die Leser ihr Verständnis überprüfen können.
Physik unserer Umwelt: Die Atmosphäre
by Thomas Wagner Walter RoedelDas Buch basiert auf einer zweisemestrigen Vorlesung an der Universität Heidelberg über die Physik der Atmosphäre. Der Autor erklärt einerseits das System Atmosphäre und vermittelt andererseits umweltrelevante Aspekte. Die Neuauflage wurde zum Teil grundlegend überarbeitet. So wurden für die Kapitel zu Spurenstoffen und zur Klimamodellierung die neuesten Forschungserkenntnisse eingearbeitet, das Kapitel über Aerosole um Abschnitte zu deren chemischer Bedeutung ergänzt. Mit umfangreichem Register sowie ausführlichen Quellen- und Literaturangaben.
Physik unserer Umwelt: Die Atmosphäre
by Thomas Wagner Walter RoedelDas Buch basiert auf einer zweisemestrigen Vorlesung an der Universität Heidelberg über die Physik der Atmosphäre. Der Autor erklärt einerseits das System Atmosphäre und vermittelt andererseits umweltrelevante Aspekte. Die Neuauflage wurde zum Teil grundlegend überarbeitet. So wurden für die Kapitel zu Spurenstoffen und zur Klimamodellierung die neuesten Forschungserkenntnisse eingearbeitet, das Kapitel über Aerosole um Abschnitte zu deren chemischer Bedeutung ergänzt. Mit umfangreichem Register sowie ausführlichen Quellen- und Literaturangaben.
Physik unserer Umwelt: Die Atmosphäre
by Thomas Wagner Walter RoedelDas vorliegende Lehrbuch bietet eine Einführung in die Physik der Atmosphäre, wie sie im Rahmen der Umweltphysik gelehrt wird. Zuerst wird dem Leser die Funktionsweise des Systems Atmosphäre verständlich gemacht. Dazu werden Themen wie Strahlungs- und Energiehaushalt, atmosphärische Dynamik, Zirkulationen, Niederschlagsbildung und der Wasserkreislauf behandelt. Zudem werden die umweltrelevanten Aspekte der Meteorologie und der Atmosphärenphysik herausgearbeitet. Hierzu dienen unter anderem eine ausführliche Darstellung von Diffusions- und Transportprozessen sowie zahlreiche Abschnitte über das Verhalten von Spurenstoffen, mit Schwerpunkt auf strahlungsrelevanten Spurengasen und Aerosolen. Eine Diskussion von Klima-Entwicklungen und deren Bewertung rundet den Inhalt ab und bietet damit einen umfassenden Überblick über das Thema. Änderungen gegenüber der 5. Auflage betreffen insbesondere die letzten 3 Kapitel. Einerseits wurde in den letzten 6 Jahren eine Vielzahl neuer Forschungsergebnisse verfügbar. Andererseits hat sich in diesem Zeitraum auch der Zustand unseres Planeten weiter dramatisch verändert. In der neuen Auflage werden hierzu die neuesten verfügbaren Messdaten und Studien berücksichtigt. Das Buch wendet sich ebenso an Studierende der Physik und der Geowissenschaften wie an Wissenschaftler(innen) und Lehrer(innen), die sich für ihre berufliche Arbeit eine Einführung in die atmosphärische Physik und in die Umweltmeteorologie wünschen. Ein umfangreiches Register ermöglicht das schnelle Auffinden eines Themas, die große Zahl von Quellen- und Literaturangaben erleichtert den Zugang zu weiteren Informationen.