Browse Results

Showing 19,201 through 19,225 of 28,494 results

Physics of Oscillations and Waves: With Use Of Matlab And Python (Undergraduate Texts In Physics Ser.)

by Arnt Inge Vistnes

In this textbook a combination of standard mathematics and modern numerical methods is used to describe a wide range of natural wave phenomena, such as sound, light and water waves, particularly in specific popular contexts, e.g. colors or the acoustics of musical instruments. It introduces the reader to the basic physical principles that allow the description of the oscillatory motion of matter and classical fields, as well as resulting concepts including interference, diffraction, and coherence. Numerical methods offer new scientific insights and make it possible to handle interesting cases that can’t readily be addressed using analytical mathematics; this holds true not only for problem solving but also for the description of phenomena. Essential physical parameters are brought more into focus, rather than concentrating on the details of which mathematical trick should be used to obtain a certain solution. Readers will learn how time-resolved frequency analysis offers a deeper understanding of the interplay between frequency and time, which is relevant to many phenomena involving oscillations and waves. Attention is also drawn to common misconceptions resulting from uncritical use of the Fourier transform. The book offers an ideal guide for upper-level undergraduate physics students and will also benefit physics instructors. Program codes in Matlab and Python, together with interesting files for use in the problems, are provided as free supplementary material.

Physics of Petroleum Reservoirs (Springer Mineralogy)

by Xuetao Hu, Shuyong Hu, Fayang Jin and Su Huang

This book introduces in detail the physical and chemical phenomena and processes during petroleum production. It covers the properties of reservoir rocks and fluids, the related methods of determining these properties, the phase behavior of hydrocarbon mixtures, the microscopic mechanism of fluids flowing through reservoir rocks, and the primary theories and methods of enhancing oil recovery. It also involves the up-to-date progress in these areas. It can be used as a reference by researchers and engineers in petroleum engineering and a textbook for students majoring in the area related with petroleum exploitation.

The Physics of Planet Earth and Its Natural Wonders

by Dmitry Livanov

From earthquakes to the northern lights and tsunamis to glacier movement, the author explains thousands of phenomena in the world around us. All of this is done using language that is simple and understandable, and at the same time this book does not try to deceive the reader, as materials of this nature often do, but uses exact physical formulas where they are needed.This book serves as an invaluable reference for physics teachers and should inspire high school students to study physics. Many of them will very likely be able to understand that riveting events and phenomena lie behind those very same formulas that just yesterday seemed so boring.This is an excellent and unique way of easily submerging oneself into the world of science and a non-stop intellectual challenge that lures the reader in much more than any game of chess.Sir Andre Geim, 2010 Nobel Prize Laureate in PhysicsThere are plenty of high school students who continue to find science interesting today. Dmitry Livanov’s book, which is both useful and held in high regard, is written precisely with these young people in mind.This book can be used by teachers who want to expand the narrow scope of subject material in their classes and enable students to broaden their perspective about how to apply the laws of physics in order to understand such a complex natural object as planet Earth. This book will be of interest to high school students and graduates of high schools, specialized high schools and preparatory schools who want to test their understanding of physics, astronomy and geography. This book strengthens the foundation of scientific knowledge in today’s world, which repeatedly tests the strength of the collective body of science.Evgeniy Yamburg,Member of the Russian Academy of EducationPrincipal, School #109, Moscow Dmitry Livanov was able to write a book that is interesting both for those who are just beginning to become familiar with physics, and for those who for various reasons have forgotten much of what they knew at one time. He succeeded in doing this because he himself knows and loves physics and because physics—as the most important part of human culture—is interesting to him.I hope that readers of this book will not only recognize the usefulness and importance of physics, but also appreciate its beauty and allure.Andrey Furchenko,Doctor of Physics and Mathematics,Aide to the President of the Russian Federation

Physics of Quantum Rings

by Vladimir Fomin

This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.

Physics of Quantum Rings (NanoScience and Technology)

by Vladimir M. Fomin

This book, now in its second edition, introduces readers to quantum rings as a special class of modern high-tech material structures at the nanoscale. It deals, in particular, with their formation by means of molecular beam epitaxy and droplet epitaxy of semiconductors, and their topology-driven electronic, optical and magnetic properties. A highly complex theoretical model is developed to adequately represent the specific features of quantum rings. The results presented here are intended to facilitate the development of low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings. This second edition includes both new and significantly revised chapters. It provides extensive information on recent advances in the physics of quantum rings related to the spin-orbit interaction and spin dynamics (spin interference in Rashba rings, tunable exciton topology on type II InAs/GaAsSb quantum nanostructures), the electron-phonon interaction in ring-like structures, quantum interference manifestations in novel materials (graphene nanoribbons, MoS2), and the effects of electrical field and THz radiation on the optical properties of quantum rings. The new edition also shares insights into the properties of various novel architectures, including coupled quantum ring-quantum dot chains and concentric quantum rings, topologic states of light in self-assembled ring-like cavities, and optical and plasmon m.odes in Möbius-shaped resonators.

Physics of Self-Organization and Evolution

by Werner Ebeling Rainer Feistel

This thoroughly updated version of the German authoritative work on self-organization has been completely rewritten by internationally renowned experts and experienced book authors to also include a review of more recent literature. It retains the original enthusiasm and fascination surrounding thermodynamic systems far from equilibrium, synergetics, and the origin of life, representing an easily readable book and tutorial on this exciting field. The book is unique in covering in detail the experimental and theoretical fundamentals of self-organizing systems as well as such selected features as random processes, structural networks and multistable systems, while focusing on the physical and theoretical modeling of natural selection and evolution processes. The authors take examples from physics, chemistry, biology and social systems, and include results hitherto unpublished in English. The result is a one-stop resource relevant for students and scientists in physics or related interdisciplinary fields, including mathematical physics, biophysics, information science and nanotechnology.

Physics of the Atmosphere and Climate

by Murry L. Salby

Murry Salby's new book provides an integrated treatment of the processes controlling the Earth-atmosphere system, developed from first principles through a balance of theory and applications. This book builds on Salby's previous book, Fundamentals of Atmospheric Physics. The scope has been expanded into climate, with the presentation streamlined for undergraduates in science, mathematics, and engineering. Advanced material, suitable for graduate students and as a resource for researchers, has been retained but distinguished from the basic development. The book provides a conceptual yet quantitative understanding of the controlling influences, integrated through theory and major applications. It leads readers through a methodical development of the diverse physical processes that shape weather, global energetics, and climate. End-of-chapter problems of varying difficulty develop student knowledge and its quantitative application, supported by answers and detailed solutions online for instructors.

Physics of the Atmosphere, Climatology and Environmental Monitoring: Modern Problems of Atmospheric Physics, Climatology and Environmental Monitoring (Springer Proceedings in Earth and Environmental Sciences)

by Robert Zakinyan Arthur Zakinyan

This proceedings book presents a discussion by leading scientists and specialists of the latest scientific results, developed methods, technologies and technical means of research and pilot work in the field of geosciences and environmental management. An important task is to familiarize young specialists, teachers, graduate students and students with the current state and the latest world achievements in this field of knowledge. Currently, there is a rapid and significant climate change, which manifests itself not only in global warming, but also in noticeable changes in other atmospheric and climatic characteristics among others.

The Physics of the Dark Photon: A Primer (SpringerBriefs in Physics)

by Marco Fabbrichesi Emidio Gabrielli Gaia Lanfranchi

This book is about the dark photon which is a new gauge boson whose existence has been conjectured. Due to its interaction with the ordinary, visible photon, such a particle can be experimentally detected via specific signatures. In this book, the authors review the physics of the dark photon from the theoretical and experimental point of view. They discuss the difference between the massive and the massless case, highlighting how the two phenomena arise from the same vector portal between the dark and the visible sector. A review of the cosmological and astrophysical observations is provided, together with the connection to dark matter physics. Then, a perspective on current and future experimental limits on the parameters of the massless and massive dark photon is given, as well as the related bounds on milli-charged fermions. The book is intended for graduate students and young researchers who are embarking on dark photon research, and offers them a clear and up-to-date introduction to the subject.

Physics of the Earth

by Frank D Stacey Paul M Davis

The fourth edition of Physics of the Earth maintains the original philosophy of this classic graduate textbook on fundamental solid earth geophysics, while being completely revised, updated, and restructured into a more modular format to make individual topics even more accessible. Building on the success of previous editions, which have served generations of students and researchers for nearly forty years, this new edition will be an invaluable resource for graduate students looking for the necessary physical and mathematical foundations to embark on their own research careers in geophysics. Several completely new chapters have been added and a series of appendices, presenting fundamental data and advanced mathematical concepts, and an extensive reference list, are provided as tools to aid readers wishing to pursue topics beyond the level of the book. Over 140 student exercises of varying levels of difficulty are also included, and full solutions are available online at www. cambridge. org/9780521873628.

The Physics of the Interstellar Medium

by J.E. Dyson D.A. Williams

This third edition of The Physics of the Interstellar Medium continues to introduce advanced undergraduates to the fundamental processes and the wide range of disciplines needed to understand observations of the interstellar medium and its role in the Milky Way galaxy. The book is suitable for undergraduate students studying physics, astronomy, and astrophysics. The book also provides concise and straightforward discussions of interstellar physics and chemistry that are useful for more experienced readers. The book leads readers through the range of physical processes operating on both large and small scales that occur in the interstellar medium. It explores the relationship between the dusty, tenuous gas in interstellar space and the formation of stars and planets. This new edition also describes exciting developments in the field of astrochemistry and its interaction with interstellar physics, and the roles played by interstellar dust grains in interstellar physics and chemistry. Simple models in each chapter, together with problems at the end of each chapter, encompass interdisciplinary applications in atomic, molecular, solid state, and surface physics, and gas dynamics. This popular textbook provides a useful overview and grounding in the study of the interstellar medium and brings insight into many aspects of physics. Features An authoritative textbook in the field at this academic level Provides a wide introduction to the interstellar medium whilst remaining accessible and concise Revised throughout, presenting a modern understanding of the interstellar medium

Physics of the Sun: A First Course

by Dermott J. Mullan

With an emphasis on numerical modelling, Physics of the Sun: A First Course presents a quantitative examination of the physical structure of the Sun and the conditions of its extended atmosphere. It gives step-by-step instructions for calculating the numerical values of various physical quantities in different regions of the Sun. Fully updated throughout, with the latest results in solar physics, this second edition covers a wide range of topics on the Sun and stellar astrophysics, including the structure of the Sun, solar radiation, the solar atmosphere, and Sun-space interactions. It explores how the physical conditions in the visible surface of the Sun are determined by the opacity of the material in the atmosphere. It also presents the empirical properties of convection in the Sun, discusses the physical conditions which must be satisfied for nuclear reactions to occur in the core, and describes how radiation transports energy from the core outwards. This text enables a practical appreciation of the physical models of solar processes. Numerical modelling problems and step-by-step instructions are featured throughout, to empower students to calculate, using their own codes, the interior structure of different parts of the Sun and the frequencies of p-modes and g-modes. They encourage a firm grasp of the numerical values of actual physical parameters as a function of radial location in the Sun. It is an ideal introduction to solar physics for advanced undergraduate and graduate students in physics and astronomy, in addition to research professionals looking to incorporate modelling into their practises. Extensive bibliographies at the end of each chapter enable the reader to explore the latest research articles in the field. Features Fully updated with the latest results from the spacecraft Hinode, Stereo, Solar Dynamics Observatory (SDO), Interface Region Imaging Spectrograph (IRIS), and Parker Solar Probe Presents step-by-step explanations for calculating numerical models of the photosphere, convection zone, and radiative interior with exercises and simulation problems to test learning Describes the structure of polytropic spheres and the acoustic power in the Sun and the process of thermal conduction in different physical conditions

Physics of the Terrestrial Environment, Subtle Matter and Height of the Atmosphere: Conceptions of the Atmosphere and the Nature of Air in the Age of Enlightenment

by Eric Chassefiere

The discovery, in the middle of the 17th century, of both the weight of air and the law governing its elasticity transformed the status of the atmosphere from that of a purely mathematical object to that of a complex and highly variable physical system.In the context of rapidly intensifying experimentation and observation, the nature of the atmosphere was therefore the subject of a host of hypotheses, which 18th century scholars tried to reconcile with a coherent physical approach. In particular, this was achieved by the conceptualization of invisible or “subtle” materials, thought to be closely linked to atmospheric stratification.Subtle matter was introduced, largely to reconcile contradictory results concerning the estimation of the height of the atmosphere. These estimations were based on different methods, mainly using the observation of meteors and the refracted and reflected light of stars.Taking as its common thread the question of the height of the atmosphere, which was omnipresent in the texts at the time, this book traces the history of the discovery of the atmosphere and the many questions it generated.

Physics of Tsunamis

by Mikhail A. Nosov Boris W. Levin

This second edition reflects significant progress in tsunami research, monitoring and mitigation within the last decade. Primarily meant to summarize the state-of-the-art knowledge on physics of tsunamis, it describes up-to-date models of tsunamis generated by a submarine earthquake, landslide, volcanic eruption, meteorite impact, and moving atmospheric pressure inhomogeneities. Models of tsunami propagation and run-up are also discussed. The book investigates methods of tsunami monitoring including coastal mareographs, deep-water pressure gauges, GPS buoys, satellite altimetry, the study of ionospheric disturbances caused by tsunamis and the study of paleotsunamis. Non-linear phenomena in tsunami source and manifestations of water compressibility are discussed in the context of their contribution to the wave amplitude and energy. The practical method of calculating the initial elevation on a water surface at a seismotectonic tsunami source is expounded. Potential and eddy traces of a tsunamigenic earthquake in the ocean are examined in terms of their applicability to tsunami warning. The first edition of this book was published in 2009. Since then, a few catastrophic events occurred, including the 2011 Tohoku tsunami, which is well known all over the world. The book is intended for researchers, students and specialists in oceanography, geophysics, seismology, hydro-acoustics, geology, and geomorphology, including the engineering and insurance industries.

Physics of The Universe: Integrating Physics and Earth & Space Science, NGSS

by Kent Pryor Benjamin J. Westleigh Tracey Greenwood David Sole

NIMAC-sourced textbook

The Physics of Wall Street: A Brief History of Predicting the Unpredictable

by James Owen Weatherall

A look inside the world of &“quants&” and how science can (and can&’t) predict financial markets: &“Entertaining and enlightening&” (The New York Times). After the economic meltdown of 2008, Warren Buffett famously warned, &“beware of geeks bearing formulas.&” But while many of the mathematicians and software engineers on Wall Street failed when their abstractions turned ugly in practice, a special breed of physicists has a much deeper history of revolutionizing finance. Taking us from fin-de-siècle Paris to Rat Pack–era Las Vegas, from wartime government labs to Yippie communes on the Pacific coast, James Owen Weatherall shows how physicists successfully brought their science to bear on some of the thorniest problems in economics, from options pricing to bubbles. The crisis was partly a failure of mathematical modeling. But even more, it was a failure of some very sophisticated financial institutions to think like physicists. Models—whether in science or finance—have limitations; they break down under certain conditions. And in 2008, sophisticated models fell into the hands of people who didn&’t understand their purpose, and didn&’t care. It was a catastrophic misuse of science. The solution, however, is not to give up on models; it&’s to make them better. This book reveals the people and ideas on the cusp of a new era in finance, from a geophysicist using a model designed for earthquakes to predict a massive stock market crash to a physicist-run hedge fund earning 2,478.6% over the course of the 1990s. Weatherall shows how an obscure idea from quantum theory might soon be used to create a far more accurate Consumer Price Index. The Physics of Wall Street will change how we think about our economic future. &“Fascinating history . . . Happily, the author has a gift for making complex concepts clear to lay readers.&” —Booklist

Physics with Excel and Python: Using the Same Data Structure Volume I: Basics, Exercises and Tasks

by Dieter Mergel

This book is intended to serve as a basic introduction to scientific computing by treating problems from various areas of physics - mechanics, optics, acoustics, and statistical reasoning in the context of the evaluation of measurements. After working through these examples, students are able to independently work on physical problems that they encounter during their studies. For every exercise, the author introduces the physical problem together with a data structure that serves as an interface to programming in Excel and Python. When a solution is achieved in one application, it can easily be translated into the other one and presumably any other platform for scientific computing. This is possible because the basic techniques of vector and matrix calculation and array broadcasting are also achieved with spreadsheet techniques, and logical queries and for-loops operate on spreadsheets from simple Visual Basic macros. So, starting to learn scientific calculation with Excel, e.g., at High School, is a targeted road to scientific computing. The primary target groups of this book are students with a major or minor subject in physics, who have interest in computational techniques and at the same time want to deepen their knowledge of physics. Math, physics and computer science teachers and Teacher Education students will also find a companion in this book to help them integrate computer techniques into their lessons. Even professional physicists who want to venture into Scientific Computing may appreciate this book.

Physics with Photons Using the ATLAS Run 2 Data: Calibration and Identification, Measurement of the Higgs Boson Mass and Search for Supersymmetry in Di-Photon Final State (Springer Theses)

by Stefano Manzoni

The work presented in this book is based on the proton-proton collision data from the Large Hadron Collider at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector in 2015 and 2016. The research program of the ATLAS experiment includes the precise measurement of the parameters of the Standard Model, and the search for signals of physics beyond the SM. Both these approaches are pursued in this thesis, which presents two different analyses: the measurement of the Higgs boson mass in the di-photon decay channel, and the search for production of supersymmetric particles (gluinos, squarks or winos) in a final state containing two photons and missing transverse momentum. Finally, ATLAS detector performance studies, which are key ingredients for the two analyses outlined before, are also carried out and described.

Physics—Problems, Solutions, and Computer Calculations: Vol. 1 Mechanics, Properties of Matter, and Heat

by Wan Muhamad Wan Hassan

Knowledge of and skill in physics are essential foundations for studies in science and engineering. This book offers students an introduction to the basic concepts and principles of physics. It covers various topics specifically related to physical mechanics, the properties of matter, and heat. Each chapter begins with a summary of concepts, principles, definitions, and formulae to be discussed, as well as ending with problems and solutions that illustrate the specific topic. Steps are detailed to help build reasoning and understanding. There are 300 worked problems and 100 exercises in the book, as well as 306 figures to help the reader visualize the processes being addressed. Computer calculations and solutions are carried out using wxMaxima to give insight and help build computational skills. The book is aimed at first-year undergraduate students studying introductory physics, and would also be useful for physics teachers in their instruction, particularly the exercises at the end of each chapter.

Physik für Studierende der Biowissenschaften, Chemie und Medizin

by Gerhard Rufa

Dieses Lehrbuch bietet eine klar strukturierte Einführung in die Physik, wobei die Grundlagen, wie sie für Studierende mit Physik im Nebenfach benötigt werden, in einer leicht verständlichen Weise dargestellt werden. Die physikalischen Begriffe und Gesetzmäßigkeiten werden anhand vieler Abbildungen sowie durch Beispiele aus dem täglichen Leben, den Biowissenschaften, der Chemie und der Medizin erläutert. Vorkenntnisse aus der Physik werden nicht vorausgesetzt, sodass Studierende sich selbstständig das physikalische Grundlagenwissen erarbeiten können und ein Verständnis der abstrakten physikalischen Begriffe und Gesetzmäßigkeiten erhalten.Ergänzt wird dieses Lehrbuch von dem separaten Übungsbuch Physik für Studierende der Biowissenschaften, Chemie und Medizin, das eine Vielzahl von Übungsserien und Testserien mit ausführlichen Lösungen und Erklärungen enthält. Es hilft Studierenden, sich anhand ausgewählter physikalischer Probleme Schritt für Schritt die Physik und auch die erforderliche Mathematik zu erarbeiten. Beide Bücher eignen sich somit hervorragend als Ergänzung zur Vorlesung sowie für die Klausurvorbereitung.

Physik und Finanzen

by Volker Ziemann

Dieses Buch führt Physikstudenten in die Konzepte und Methoden der Finanzwissenschaft ein. Obwohl die Finanzwissenschaft als recht weit von der Physik entfernt wahrgenommen wird, teilt sie eine Reihe gemeinsamer Methoden und Ideen, die in der Regel mit Rauschen und Unsicherheiten zu tun haben. Durch die Gegenüberstellung der wichtigsten Methoden mit Anwendungen in der Physik und im Finanzwesen werden sowohl die Unterschiede als auch die Gemeinsamkeiten deutlich, was den Studierenden ein tieferes Verständnis der zugrunde liegenden Ideen vermittelt. Darüber hinaus lernen sie eine Reihe nützlicher mathematischer und rechnerischer Werkzeuge kennen, wie stochastische Differentialgleichungen, Pfadintegrale, Monte-Carlo-Methoden und grundlegende Kryptologie. Jedes Kapitel endet mit einer Reihe sorgfältig ausgearbeiteter Übungen, mit denen die Leser ihr Verständnis überprüfen können.

Physik unserer Umwelt: Die Atmosphäre

by Thomas Wagner Walter Roedel

Das Buch basiert auf einer zweisemestrigen Vorlesung an der Universität Heidelberg über die Physik der Atmosphäre. Der Autor erklärt einerseits das System Atmosphäre und vermittelt andererseits umweltrelevante Aspekte. Die Neuauflage wurde zum Teil grundlegend überarbeitet. So wurden für die Kapitel zu Spurenstoffen und zur Klimamodellierung die neuesten Forschungserkenntnisse eingearbeitet, das Kapitel über Aerosole um Abschnitte zu deren chemischer Bedeutung ergänzt. Mit umfangreichem Register sowie ausführlichen Quellen- und Literaturangaben.

Physik unserer Umwelt: Die Atmosphäre

by Thomas Wagner Walter Roedel

Das Buch basiert auf einer zweisemestrigen Vorlesung an der Universität Heidelberg über die Physik der Atmosphäre. Der Autor erklärt einerseits das System Atmosphäre und vermittelt andererseits umweltrelevante Aspekte. Die Neuauflage wurde zum Teil grundlegend überarbeitet. So wurden für die Kapitel zu Spurenstoffen und zur Klimamodellierung die neuesten Forschungserkenntnisse eingearbeitet, das Kapitel über Aerosole um Abschnitte zu deren chemischer Bedeutung ergänzt. Mit umfangreichem Register sowie ausführlichen Quellen- und Literaturangaben.

Physik unserer Umwelt: Die Atmosphäre

by Thomas Wagner Walter Roedel

Das vorliegende Lehrbuch bietet eine Einführung in die Physik der Atmosphäre, wie sie im Rahmen der Umweltphysik gelehrt wird. Zuerst wird dem Leser die Funktionsweise des Systems Atmosphäre verständlich gemacht. Dazu werden Themen wie Strahlungs- und Energiehaushalt, atmosphärische Dynamik, Zirkulationen, Niederschlagsbildung und der Wasserkreislauf behandelt. Zudem werden die umweltrelevanten Aspekte der Meteorologie und der Atmosphärenphysik herausgearbeitet. Hierzu dienen unter anderem eine ausführliche Darstellung von Diffusions- und Transportprozessen sowie zahlreiche Abschnitte über das Verhalten von Spurenstoffen, mit Schwerpunkt auf strahlungsrelevanten Spurengasen und Aerosolen. Eine Diskussion von Klima-Entwicklungen und deren Bewertung rundet den Inhalt ab und bietet damit einen umfassenden Überblick über das Thema. Änderungen gegenüber der 5. Auflage betreffen insbesondere die letzten 3 Kapitel. Einerseits wurde in den letzten 6 Jahren eine Vielzahl neuer Forschungsergebnisse verfügbar. Andererseits hat sich in diesem Zeitraum auch der Zustand unseres Planeten weiter dramatisch verändert. In der neuen Auflage werden hierzu die neuesten verfügbaren Messdaten und Studien berücksichtigt. Das Buch wendet sich ebenso an Studierende der Physik und der Geowissenschaften wie an Wissenschaftler(innen) und Lehrer(innen), die sich für ihre berufliche Arbeit eine Einführung in die atmosphärische Physik und in die Umweltmeteorologie wünschen. Ein umfangreiches Register ermöglicht das schnelle Auffinden eines Themas, die große Zahl von Quellen- und Literaturangaben erleichtert den Zugang zu weiteren Informationen.

Physiological Adaptations for Breeding in Birds

by Tony D. Williams

Physiological Adaptations for Breeding in Birds is the most current and comprehensive account of research on avian reproduction. It develops two unique themes: the consideration of female avian reproductive physiology and ecology, and an emphasis on individual variation in life-history traits. Tony Williams investigates the physiological, metabolic, energetic, and hormonal mechanisms that underpin individual variation in the key female-specific reproductive traits and the trade-offs between these traits that determine variation in fitness.The core of the book deals with the avian reproductive cycle, from seasonal gonadal development, through egg laying and incubation, to chick rearing. Reproduction is considered in the context of the annual cycle and through an individual's entire life history. The book focuses on timing of breeding, clutch size, egg size and egg quality, and parental care. It also provides a primer on female reproductive physiology and considers trade-offs and carryover effects between reproduction and other life-history stages. In each chapter, Williams describes individual variation in the trait of interest and the evolutionary context for trait variation. He argues that there is only a rudimentary, and in some cases nonexistent, understanding of the physiological mechanisms that underpin individual variation in the major reproductive life-history traits, and that research efforts should refocus on these key unresolved problems by incorporating detailed physiological studies into existing long-term population studies, generating a new synthesis of physiology, ecology, and evolutionary biology.

Refine Search

Showing 19,201 through 19,225 of 28,494 results