Browse Results

Showing 20,676 through 20,700 of 28,597 results

Quantitative Parameterization and 3D-run-out Modelling of Rockfalls at Steep Limestone Cliffs in the Bavarian Alps

by Bettina Sellmeier

This pioneering work deals with the parameterization of rockfalls in the context of 3D run-out modelling at a study site in the Bavarian Alps. The main objective was to cover not only low-magnitude, high-frequency rockfalls (

Quantitative Plate Tectonics

by Antonio Schettino

This textbook on plate tectonics is designed for students in geology and geophysics to acquire in-depth knowledge of quantitative methods in plate kinematics and dynamics. Quantitative Plate Tectonics can also be used as a reference book by geoscientists who desire to expand their knowledge beyond their own specialization, or by oil-and-gas professionals and ore deposit specialists that need to investigate the geodynamic context of formation of geologic resources. Finally, this book can be considered as a comprehensive monograph on plate tectonics, which addresses the different quantitative aspects of this broad discipline, which has been traditionally partitioned into separate or quasi-separate branches. Additional material, available at http://extras. springer. com, includes two computer programs for the analysis of marine magnetic anomalies and for plate kinematic modelling, as well as some important geophysical data sets and models. Solutions to the exercises are also included. A unified quantitative description of plate tectonics, combining geological and geophysical perspectives Professional software, manual verification examples and applications are available as additional material Includes detailed calculations, examples, and problem sets per chapter Well illustrated "Dr. Schettino has produced a book covering in a rigorous way the kinematics and dynamics of plate tectonics. The fundamental physics governing geodynamic processes is discussed quantitatively, the relevant equations are clearly derived, and the implications of results are illustrated with examples and problems. The book will repay careful reading not only by postgraduate students in geophysics and geology, but also by any Earth scientist who wishes to acquire a quantitative understanding of plate tectonics. "Giorgio Ranalli, Distinguished Research Professor, Department of Earth Sciences, Carleton university, Ottawa, Canada (author of "Rheology of the Earth", two editions, 1987 and 1995) "This text gives an excellent quantitative presentation of the kinematics and the dynamics of plate tectonics that integrates many aspects of the Earth sciences and provides a powerful model of the dynamic behaviour of the Earth. The geological and geophysical processes involved in elucidating the theory are clearly illustrated through a perfectly balanced level of mathematical and physical concepts including derivation of the relevant equations, examples and problems. The book is intended for advanced undergraduates, graduate students and professional earth scientists requiring an overview of the essential processes of plate tectonics. "Marco Ligi, Senior Researcher, National Research Council of Italy, Istituto di Scienze Marine, Bologna, Italy.

Quantitative Rechenverfahren der Theoretischen Chemie: Ein Einstieg in Hartree-Fock, Configuration Interaction und Dichtefunktionale (essentials)

by Daniel Püschner

Daniel Püschner stellt sowohl grundlegende Methoden der Computerchemie als auch heute genutzte moderne Methoden wie Coupled Cluster und die Dichtefunktionaltheorie vor. Mithilfe der Wellenfunktionstheorie wird in diesem essential gezeigt, wie die Energie eines Systems berechnet werden kann. Anschließend geht der Autor auf die Probleme der behandelten Methoden ein und zeigt, wie diese systematisch behoben werden können. Insbesondere in der Forschung ist die Computerchemie heutzutage nicht mehr wegzudenken. Obwohl die meisten Eigenschaften auch experimentell zugänglich sind, können Ergebnisse aus quantenmechanischen Rechnungen dabei helfen, die experimentellen Ergebnisse zu verstehen und zu interpretieren. Ein grundlegendes Verständnis ist daher auch für Experimentalchemiker unerlässlich, weshalb im Rahmen des Chemiestudiums die Grundlagen der Theoretischen Chemie behandelt werden. Für dieses essential werden Grundkenntnisse in den Bereichen der Mathematik und der Theoretischen Chemie ebenfalls vorausgesetzt.

Quantitative Regional Economic and Environmental Analysis for Sustainability in Korea

by Euijune Kim Brian H. S. Kim

This book focuses on the application of newly innovated analytical tools for sustainable development on regional economic and environmental issues in Korea. With a range of case studies, the authors explore a series of theoretical models and empirical methods including spatial CCE Model, multiregional Input-Output and econometric analysis, logit model, contingent valuation method, GIS, sample selection model, machine learning technique, stochastic frontier analysis, and panel analysis. These models and methods are tailored to spatial development issues such as agglomeration, clustering and industrial innovation, human capital and labor market, education and R&D investments and economic resilience for regional economies and unexpected disaster, and natural resources for environmental markets. Quantitative Regional Economic and Environmental Analysis for Sustainability in Korea is of particular interest to policy makers and practitioners, as well as research scholars active in sustainability science.

Quantitative Research on Street Interface Morphology: Comparison Between Chinese and Western Cities

by Yu Zhou

This book investigates the historical evolution, regional differences, and quantitative measurement on street interface, which forms the street space and plays a very important role in urban form. Empirical research reveals the street interface in Chinese cities are much more complicated than European and American cities. This book explores the reason and reveals the relationship between street interface and urban form in morphology. By constructing quantitative measurement method on street interface morphology, quantitative parameters can be used in urban planning guidelines in China. Both researchers and students working in architecture, urban design, urban planning and urban studies can benefit from this book.

Quantitative Seismic Interpretation

by Per Avseth Tapan Mukerji Gary Mavko

Demonstrating how rock physics can be applied to predict reservoir parameters, such as lithologies and pore fluids, from seismically derived attributes, this volume provides an integrated methodology and practical tools for quantitative interpretation, uncertainty assessment, and characterization of subsurface reservoirs. Including problem sets and a case-study for which seismic and well-log data and Matlab codes are provided on the Internet (http://publishing. cambridge. org/resources/0521816017), the book is intended for students of petroleum geoscience as well as professionals in the field.

Quantitative Social Science: An Introduction

by Kosuke Imai

An introductory textbook on data analysis and statistics written especially for students in the social sciences and allied fields Quantitative analysis is an increasingly essential skill for social science research, yet students in the social sciences and related areas typically receive little training in it--or if they do, they usually end up in statistics classes that offer few insights into their field. This textbook is a practical introduction to data analysis and statistics written especially for undergraduates and beginning graduate students in the social sciences and allied fields, such as economics, sociology, public policy, and data science. Quantitative Social Science engages directly with empirical analysis, showing students how to analyze data using the R programming language and to interpret the results--it encourages hands-on learning, not paper-and-pencil statistics. More than forty data sets taken directly from leading quantitative social science research illustrate how data analysis can be used to answer important questions about society and human behavior. Proven in the classroom, this one-of-a-kind textbook features numerous additional data analysis exercises and interactive R programming exercises, and also comes with supplementary teaching materials for instructors. Written especially for students in the social sciences and allied fields, including economics, sociology, public policy, and data science Provides hands-on instruction using R programming, not paper-and-pencil statistics Includes more than forty data sets from actual research for students to test their skills on Covers data analysis concepts such as causality, measurement, and prediction, as well as probability and statistical tools Features a wealth of supplementary exercises, including additional data analysis exercises and interactive programming exercises Offers a solid foundation for further study Comes with additional course materials online, including notes, sample code, exercises and problem sets with solutions, and lecture slides

Quantitative Stochastic Homogenization and Large-Scale Regularity (Grundlehren der mathematischen Wissenschaften #352)

by Scott Armstrong Tuomo Kuusi Jean-Christophe Mourrat

The focus of this book is the large-scale statistical behavior of solutions of divergence-form elliptic equations with random coefficients, which is closely related to the long-time asymptotics of reversible diffusions in random media and other basic models of statistical physics. Of particular interest is the quantification of the rate at which solutions converge to those of the limiting, homogenized equation in the regime of large scale separation, and the description of their fluctuations around this limit. This self-contained presentation gives a complete account of the essential ideas and fundamental results of this new theory of quantitative stochastic homogenization, including the latest research on the topic, and is supplemented with many new results. The book serves as an introduction to the subject for advanced graduate students and researchers working in partial differential equations, statistical physics, probability and related fields, as well as a comprehensive reference for experts in homogenization. Being the first text concerned primarily with stochastic (as opposed to periodic) homogenization and which focuses on quantitative results, its perspective and approach are entirely different from other books in the literature.

Quantitative Techniques in Participatory Forest Management

by Eugenio Martínez-Falero

Forest management has evolved from a mercantilist view to a multi-functional one that integrates economic, social, and ecological aspects. However, the issue of sustainability is not yet resolved. Quantitative Techniques in Participatory Forest Management brings together global research in three areas of application: inventory of the forest variables that determine the main environmental indices, description and design of new environmental indices, and the application of sustainability indices for regional implementations. All these quantitative techniques create the basis for the development of scientific methodologies of participatory sustainable forest management.

The Quantization of Gravity (Fundamental Theories of Physics #194)

by Claus Gerhardt

​A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions for each of the eigenvalues $\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological constant. The hyperbolic equation then has a sequence of smooth solutions which are products of temporal eigenfunctions and spatial eigendistributions. Due to this "spectral resolution" of the wave equation quantum statistics can also be applied to the quantized systems. These quantum statistical results could help to explain the nature of dark matter and dark energy.

Quantized Detector Networks: The Theory of Observation (Cambridge Monographs on Mathematical Physics)

by George Jaroszkiewicz

Scientists have been debating the meaning of quantum mechanics for over a century. This book for graduate students and researchers gets to the root of the problem; the contextual nature of empirical truth, the laws of observation and how these impact on our understanding of quantum physics. Bridging the gap between non-relativistic quantum mechanics and quantum field theory, this novel approach to quantum mechanics extends the standard formalism to cover the observer and their apparatus. The author demystifies some of the aspects of quantum mechanics that have traditionally been regarded as extraordinary, such as wave-particle duality and quantum superposition, by emphasizing the scientific principles rather than the mathematical modelling involved. Including key experiments and worked examples throughout to encourage the reader to focus on empirically sound concepts, this book avoids metaphysical speculation and also alerts the reader to the use of computer algebra to explore quantum experiments of virtually limitless complexity.

Quantum Aspects of Black Holes (Fundamental Theories of Physics #178)

by Xavier Calmet

Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.

Quantum Chemical Approach for Organic Ferromagnetic Material Design

by Yuriko Aoki Yuuichi Orimoto Akira Imamura

This brief provides an overview of theoretical research in organic ferromagnetic material design using quantum chemical approaches based on molecular orbital theory from primary H#65533;ckel to ab initio levels of theory. Most of the content describes the authors' approach to identify simple and efficient guidelines for magnetic design, which have not been described in other books. Individual chapters cover quantum chemistry methods that may be used to find hydrocarbon systems with degenerate non-bonding molecular orbitals that interact with each other, to identify high-spin-preferred systems using an analytical index that allows for simple design of high-spin systems as well as to analyze the effect of high-spin stability through orbital interactions. The extension of these methods to large systems is discussed. This book is a valuable resource for students and researchers who are interested in quantum chemistry related to magnetic property.

Quantum Critical Phenomena of Valence Transition: Heavy Fermion Metals and Related Systems (Springer Tracts in Modern Physics #289)

by Shinji Watanabe Kazumasa Miyake

This book comprehensively presents an unconventional quantum criticality caused by valence fluctuations, which offers theoretical understanding of unconventional Fermi-liquid properties in cerium- and ytterbium-based heavy fermion metals including CeCu2(Si,Ge)2 and CeRhIn5 under pressure, and quasicrystal β-YbAlB4 and Yb15Al34Au51. The book begins with an introduction to fundamental concepts for heavy fermion systems, valence fluctuation, and quantum phase transition, including self-consistent renormalization group theory. A subsequent chapter is devoted to a comprehensive description of the theory of the unconventional quantum criticality based on a valence transition, featuring explicit temperature dependence of various physical quantities, which allows for comparisons to relevant experiments. Lastly, it discusses how ubiquitous the valence fluctuation is, presenting candidate materials not only in heavy fermions, but also in strongly correlated electrons represented by high-Tc superconductor cuprates. Introductory chapters provide useful materials for learning fundamentals of heavy fermion systems and their theory. Further, experimental topics relevant to valence fluctuations are valuable resources for those who are new to the field to easily catch up with experimental background and facts.

Quantum Dynamics for Classical Systems: With Applications of the Number Operator

by Fabio Bagarello

Introduces number operators with a focus on the relationship between quantum mechanics and social science Mathematics is increasingly applied to classical problems in finance, biology, economics, and elsewhere. Quantum Dynamics for Classical Systems describes how quantum tools—the number operator in particular—can be used to create dynamical systems in which the variables are operator-valued functions and whose results explain the presented model. The book presents mathematical results and their applications to concrete systems and discusses the methods used, results obtained, and techniques developed for the proofs of the results. The central ideas of number operators are illuminated while avoiding excessive technicalities that are unnecessary for understanding and learning the various mathematical applications. The presented dynamical systems address a variety of contexts and offer clear analyses and explanations of concluded results. Additional features in Quantum Dynamics for Classical Systems include: Applications across diverse fields including stock markets and population migration as well as a unique quantum perspective on these classes of models Illustrations of the use of creation and annihilation operators for classical problems Examples of the recent increase in research and literature on the many applications of quantum tools in applied mathematics Clarification on numerous misunderstandings and misnomers while shedding light on new approaches in the field Quantum Dynamics for Classical Systems is an ideal reference for researchers, professionals, and academics in applied mathematics, economics, physics, biology, and sociology. The book is also excellent for courses in dynamical systems, quantum mechanics, and mathematical models.

Quantum Entanglement in Electron Optics: Generation, Characterization, and Applications (Springer Series on Atomic, Optical, and Plasma Physics #67)

by Naresh Chandra Rama Ghosh

This monograph forms an interdisciplinary study in atomic, molecular, and quantum information (QI) science. Here a reader will find that applications of the tools developed in QI provide new physical insights into electron optics as well as properties of atoms & molecules which, in turn, are useful in studying QI both at fundamental and applied levels. In particular, this book investigates entanglement properties of flying electronic qubits generated in some of the well known processes capable of taking place in an atom or a molecule following the absorption of a photon. Here, one can generate Coulombic or fine-structure entanglement of electronic qubits. The properties of these entanglements differ not only from each other, but also from those when spin of an inner-shell photoelectron is entangled with the polarization of the subsequent fluorescence. Spins of an outer-shell electron and of a residual photoion can have free or bound entanglement in a laboratory.

Quantum Entanglement in Electron Optics

by Rama Ghosh Naresh Chandra

This monograph forms an interdisciplinary study in atomic, molecular, and quantum information (QI) science. Here a reader will find that applications of the tools developed in QI provide new physical insights into electron optics as well as properties of atoms & molecules which, in turn, are useful in studying QI both at fundamental and applied levels. In particular, this book investigates entanglement properties of flying electronic qubits generated in some of the well known processes capable of taking place in an atom or a molecule following the absorption of a photon. Here, one can generate Coulombic or fine-structure entanglement of electronic qubits. The properties of these entanglements differ not only from each other, but also from those when spin of an inner-shell photoelectron is entangled with the polarization of the subsequent fluorescence. Spins of an outer-shell electron and of a residual photoion can have free or bound entanglement in a laboratory.

Quantum f-Divergences in von Neumann Algebras: Reversibility of Quantum Operations (Mathematical Physics Studies)

by Fumio Hiai

Relative entropy has played a significant role in various fields of mathematics and physics as the quantum version of the Kullback–Leibler divergence in classical theory. Many variations of relative entropy have been introduced so far with applications to quantum information and related subjects. Typical examples are three different classes, called the standard, the maximal, and the measured f-divergences, all of which are defined in terms of (operator) convex functions f on (0,∞) and have respective mathematical and information theoretical backgrounds. The α-Rényi relative entropy and its new version called the sandwiched α-Rényi relative entropy have also been useful in recent developments of quantum information.In the first half of this monograph, the different types of quantum f-divergences and the Rényi-type divergences mentioned above in the general von Neumann algebra setting are presented for study. While quantum information has been developing mostly in the finite-dimensional setting, it is widely believed that von Neumann algebras provide the most suitable framework in studying quantum information and related subjects. Thus, the advance of quantum divergences in von Neumann algebras will be beneficial for further development of quantum information. Quantum divergences are functions of two states (or more generally, two positive linear functionals) on a quantum system and measure the difference between the two states. They are often utilized to address such problems as state discrimination, error correction, and reversibility of quantum operations. In the second half of the monograph, the reversibility/sufficiency theory for quantum operations (quantum channels) between von Neumann algebras via quantum f-divergences is explained, thus extending and strengthening Petz' previous work.For the convenience of the reader, an appendix including concise accounts of von Neumann algebras is provided.

Quantum Field Theory: From Basics to Modern Topics

by François Gelis

This modern text combines fundamental principles with advanced topics and recent techniques in a rigorous and self-contained treatment of quantum field theory.Beginning with a review of basic principles, starting with quantum mechanics and special relativity, students can refresh their knowledge of elementary aspects of quantum field theory and perturbative calculations in the Standard Model. Results and tools relevant to many applications are covered, including canonical quantization, path integrals, non-Abelian gauge theories, and the renormalization group. Advanced topics are explored, with detail given on effective field theories, quantum anomalies, stable extended field configurations, lattice field theory, and field theory at a finite temperature or in the strong field regime. Two chapters are dedicated to new methods for calculating scattering amplitudes (spinor-helicity, on-shell recursion, and generalized unitarity), equipping students with practical skills for research. Accessibly written, with numerous worked examples and end-of-chapter problems, this is an essential text for graduate students. The breadth of coverage makes it an equally excellent reference for researchers.

Quantum Field Theory: A Diagrammatic Approach

by Ronald Kleiss

Quantum field theory (QFT), the language of particle physics, is crucial to a physicist's graduate education. Based on lecture notes for courses taught for many years at Radboud University in the Netherlands, this book presents an alternative approach to teaching QFT using Feynman diagrams. A diagrammatic approach to understanding QFT exposes young physicists to an orthogonal introduction to the theory, bringing new ways to understand challenges in the field. Diagrammatic techniques using Feynman diagrams are used didactically, starting from simple discussions in lower dimensions to more complex topics in the Standard Model. Worked-out examples and exercises help the reader develop a deep understanding and intuition that enhances their problem-solving skills and understanding of QFT. Classroom-tested, this accessible textbook is valuable for physics graduates and for researchers.

Quantum Field Theory: An Introduction (Graduate Texts in Physics)

by Gordon Walter Semenoff

This textbook is intended to be used in an introductory course in quantum field theory. It assumes the standard undergraduate education of a physics major and it is designed to appeal to a wide array of physics graduate students, from those studying theoretical and experimental high energy physics to those interested in condensed matter, optical, atomic, nuclear and astrophysicists. It includes a thorough development of the field theoretic approach to nonrelativistic many-body physics as a step in developing a broad-based working knowledge of some of the basic aspects of quantum field theory. It presents a logical, step by step systematic development of relativistic field theory and of functional techniques and their applications to perturbation theory with Feynman diagrams, renormalization, and basic computations in quantum electrodynamics.

Quantum Field Theory and the Standard Model

by Matthew D. Schwartz

Providing a comprehensive introduction to quantum field theory, this textbook covers the development of particle physics from its foundations to the discovery of the Higgs boson. Its combination of clear physical explanations, with direct connections to experimental data, and mathematical rigor make the subject accessible to students with a wide variety of backgrounds and interests. Assuming only an undergraduate-level understanding of quantum mechanics, the book steadily develops the Standard Model and state-of-the-art calculation techniques. It includes multiple derivations of many important results, with modern methods such as effective field theory and the renormalization group playing a prominent role. Numerous worked examples and end-of-chapter problems enable students to reproduce classic results and to master quantum field theory as it is used today. Based on a course taught by the author over many years, this book is ideal for an introductory to advanced quantum field theory sequence or for independent study.

Quantum Field Theory for Economics and Finance

by Belal Ehsan Baaquie

An introduction to how the mathematical tools from quantum field theory can be applied to economics and finance, providing a wide range of quantum mathematical techniques for designing financial instruments. The ideas of Lagrangians, Hamiltonians, state spaces, operators and Feynman path integrals are demonstrated to be the mathematical underpinning of quantum field theory, and which are employed to formulate a comprehensive mathematical theory of asset pricing as well as of interest rates, which are validated by empirical evidence. Numerical algorithms and simulations are applied to the study of asset pricing models as well as of nonlinear interest rates. A range of economic and financial topics are shown to have quantum mechanical formulations, including options, coupon bonds, nonlinear interest rates, risky bonds and the microeconomic action functional. This is an invaluable resource for experts in quantitative finance and in mathematics who have no specialist knowledge of quantum field theory.

Quantum Foundations, Probability and Information (STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health)

by Andrei Khrennikov Bourama Toni

Composed of contributions from leading experts in quantum foundations, this volume presents viewpoints on a number of complex problems through informational, probabilistic, and mathematical perspectives and features novel mathematical models of quantum and subquantum phenomena. Rich with multi-disciplinary mathematical content, this book includes applications of partial differential equations in quantum field theory, differential geometry, oscillatory processes and vibrations, and Feynman integrals for quickly growing potential functions. Due to rapid growth in the field in recent years, this volume aims to promote interdisciplinary collaboration in the areas of quantum probability, information, communication and foundation, and mathematical physics. Many papers discuss complex yet novel problems that depart from the mainstream of quantum physical studies. Others devote explanation to fundamental problems of the conventional quantum theory, including its mathematical formalism. Overall, authors cover a diverse set of topics, including quantum and classical field theory and oscillatory processing, quantum mechanics from a Darwinian evolutionary perspective, and biological applications of quantum theory.Together in one volume, these essays will be useful to experts in the corresponding areas of quantum theory. Theoreticians, experimenters, mathematicians, and even philosophers in quantum physics and quantum probability and information theory can consider this book a valuable resource.

Quantum Geochemistry (Springer Geochemistry)

by Giulio Armando Ottonello

This book summarizes recent impressive improvements in the application of Quantum Mechanics, coupled with the significant increase in both speed and storage capabilities of modern computers, that allow to depict the energy and reactive properties of chemically complex materials through first principles and destroy the dogmatic assumption that the natural complexity cannot be modeled. It presents methods of Quantum Chemistry applied to various fields of geoscience. The book aims to convey to the audience, methods and procedures apt to obtain sound thermodynamic and thermo-physical data for earth’s materials under various aggregation states. The attention of this book focusses on the applicative aspects of the various procedures, with reference to the underlying theory.

Refine Search

Showing 20,676 through 20,700 of 28,597 results