Browse Results

Showing 6,776 through 6,800 of 28,899 results

Dynamic Mechanical Behaviors and Constitutive Model of Roller Compacted Concrete (Hydroscience and Engineering)

by Sherong Zhang Xiaohua Wang Chao Wang

This book systematically illustrates the dynamic mechanical behaviors and discusses the fundamentals of the constitutive modeling of roller-compacted concrete (RCC), influenced by the construction technique and mix design. Four typical problems are analyzed using laboratory tests, numerical simulation and theoretical analysis, i.e., to illustrate the special dynamic mechanical behaviors of RCC, to reveal the dynamic size-dependence of mechanical properties, to discuss the aggregate size effect on dynamic mechanical properties, and to modify the dynamic constitutive model for RCC. Generally, the constitutive modeling of RCC needs a comprehensive understanding of dynamic size-dependence and aggregate size effect of concrete that coupled with the strain-rate sensitivity. So that, readers can master the modified dynamic constitutive model of RCC to analyze and solve the problems in blast-resistance analysis and protective design of RCC dams.This book can be used as a postgraduate textbook for civil and hydraulic engineering in colleges and universities, and as an elective course for senior undergraduates. It can also be used as a reference for relevant professional scientific researchers and engineers in field of protective design of concrete structures.

Dynamic Meteorology: A Basic Course

by Adrian Gordon Warwick Grace Roland Byron-Scott Peter Schwerdtfeger

'Dynamic Meteorology: A Basic Course' is an introduction to the physics of the atmosphere. Starting from the basics, it provides students with an awareness of simple mathematics and enthusiastically proceeds to provide a thorough grounding in the fundamentals of meteorology. The authors lead students to a scientifically rigorous understanding of the behaviour of weather systems such as highs, lows, fronts, jet streams and tropical cyclones. From the 'ABC' of the laws of Avogrado, Boyle and Charles to the powerful omega equation and beyond, this is a simple exposition of dynamic meteorology. Why does the wind blow along the lines of isobars rather than across them? Why are low pressure systems on the weather map more intense than high-pressure systems? Why is there much less constraint on the strength of the wind around a cyclone than an anticyclone? An international team of academic experts in meteorology answer these and many other fundamental questions with simple mathematical equations. Covering both northern and southern hemispheres, 'Dynamic Meteorology' equips students of earth and environmental sciences with proper understanding of the essential mathematics necessary to unlock the mysteries of the natural world.

Dynamic of Soil in Ground-Borne Vibration Mitigation: Design, Application, and Predictive Approaches

by Mehran Naghizadeh

In the heart of big cities, a less obvious challenge exists right under our feet. The everyday activities of city life, like traffic, construction, and industrial work, do more than just create noise. They send vibrations through the ground, which can be problematic, sometimes even destabilizing buildings and affecting the people who live there. This modern issue needs a modern solution. This book introduces the concept of trenches filled with a material called geofoam, an innovative method to control these ground vibrations. Mehran Naghizadeh delves into a detailed study to see how placing these trenches in specific locations can help protect against these vibrations. The book walks through various automated 2D and 3D models, demonstrating how the trenches can be effectively used to protect areas close to and far from the source of vibrations. The study goes beyond just explaining what these trenches are and how they work. It looks into the reasons behind their design, examining different trench shapes and how each shape helps in managing these underground vibrations. The challenge is more complex than it seems. The ground we walk on is not just a single layer but has different layers with various properties. This book takes you on a journey to understand how these layers influence the effectiveness of our vibration warriors. It’s an exploration of how every layer in the soil contributes to managing vibrations.

Dynamic of Tubing String in Complex Oil and Gas Well: Theory and Application

by Xiaoqiang Guo Jun Liu Xinye Li

This book presents dynamic response, vibration characteristics, and nonlinear behavior of complex oil and gas well string by using a combination of theoretical methods, numerical simulation, and experimental analysis. It lays both theoretical and experimental foundation for the design of oil and gas well string parameters. The theoretical methods involved mainly include Hamilton's principle, finite element method, and energy method, while experimental methods involved include similarity principle, vibration testing method, and modal analysis method. It is a valuable reference for both scholars and practitioners working in the fields of petroleum, mining, and geological research, as well as research institutes related to oil and gas resource exploration.

Dynamic Optimization in Environmental Economics

by Elke Moser Willi Semmler Gernot Tragler Vladimir M. Veliov

The book presents new developments in the dynamic modeling and optimization methods in environmental economics and provides a huge range of applications dealing with the economics of natural resources, the impacts of climate change and of environmental pollution, and respective policy measures. The interrelationship between economic activities and environmental quality, the development of cleaner technologies, the switch from fossil to renewable resources and the proper use of policy instruments play an important role along the path towards a sustainable future. Biological, physical and economic processes are naturally involved in the subject, and postulate the main modelling, simulation and decision-making tools: the methods of dynamic optimization and dynamic games.

Dynamic Response and Deformation Characteristic of Saturated Soft Clay under Subway Vehicle Loading

by Yiqun Tang Jie Zhou Xingwei Ren Qi Yang

Involving several areas of geological engineering, geotechnical engineering and tunnel engineering, this book describes the soft soil deformation characteristics and dynamic responses induced by subway vibration load. Based on field monitoring and laboratory testing data, with both comprehensive micro-and macroanalysis, the authors present dynamic characteristics and deformation settlement of saturated soft clay surrounding subway tunnels using dynamic and static methodology. Mechanism of deformation, failure in microstructure of soft clay soil, dynamic response, macro deformation and settlement are all discussed and analyzed thoroughly and systematically. Some of the research findings in this book have been widely applied by large subway companies and will have broader application prospects in future. All the above make this book a valuable reference not only for technical engineers working in subway design or construction but also for advanced graduate students. Prof. Yiqun Tang works at the Department of Geotechnical Engineering, Tongji University, Shanghai, China.

Dynamic Response of Coasts and Estuaries to Human Impacts: Problems and Solutions (Coastal Research Library #40)

by Xiao Hua Wang

The coasts cover a diverse range of ecosystems within marine, estuarine, and freshwater environments. They are some of the most heavily populated and visited areas and are also some of the most threatened natural habitats. Coastal zones are critically important not only to the people who live there but for the health of the planet. Many world estuaries and coast environments are under tremendous stress in response to global warming and the increased anthropogenic forcing. Warmer waters, rising sea levels, tropical cyclones, storm surges and flooding, and coastal erosion are just some of the elements impacting coastal communities worldwide and transforming these environments. Coastal hazards such as storm events with associated storm surges are increasing in frequency and intensity, as are marine heatwaves that devastate coral reefs. Human activities like sewage discharge, overfishing, navigation channel dredging, land reclamation, the construction of shipping ports and marine plastics are also responsible for coastal pollution and degradation. Therefore, a good understanding of the current state of coastal environments and lessons learnt from these human influences is extremely valuable to restore and protect these habitats and ecosystems from further environmental degradation and even catastrophe. In this book, case studies are used to tell a story about how these environments respond to severe human-induced perturbations, and what has gone right and wrong from environmental and resource management point of view. The readership of the book include high level undergraduate Oceanography students and workers from Coastal Engineering and Management.

Dynamic Soil-Structure Interaction for Sustainable Infrastructures: Proceedings of the 2nd GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures, Egypt 2018 – The Official International Congress of the Soil-Structure Interaction Group in Egypt (SSIGE) (Sustainable Civil Infrastructures)

by Deepankar Choudhury Khalid M. El-Zahaby Izzat Idriss

This volume focuses on the role of soil-structure-interaction and soil dynamics. It discusses case studies as well as physical and numerical models of geo-structures. It covers: Soil-Structure-Interaction under static and dynamic loads, dynamic behavior of soils, and soil liquefaction. It is hoped that this volume will contribute to further advance the state-of-the-art for the next generation infrastructure as a key to creating a sustainable community affecting our future well-being as well as the economic climate. The volume is based on the best contributions to the 2nd GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures, Egypt 2018 – The official international congress of the Soil-Structure Interaction Group in Egypt (SSIGE).

Dynamic Spin-Fluctuation Theory of Metallic Magnetism

by Nikolai B. Melnikov Boris I. Reser

This book presents a theoretical framework for magnetism in ferromagnetic metals and alloys at finite temperatures. The objective of the book is twofold. First, it gives a detailed presentation of the dynamic spin-fluctuation theory that takes into account both local and long-wave spin fluctuations with any frequency. The authors provide a detailed explanation of the fundamental role of quantum spin fluctuations in the mechanism of metallic magnetism and illustrate the theory with concrete examples. The second objective of the book is to give an accurate and self-contained presentation of many-body techniques such as the functional integral method and Green's functions, via a number of worked examples. These computational methods are of great use to solid state physicists working in a range of specialties.The book is intended primarily for researchers, but can also be used as textbook. The introductory chapters offer clear and complete derivations of the fundamentals, which makes the presentation self-contained. The main text is followed by a number of well-organized appendices that contain a detailed presentation of the necessary many-body techniques and computational methods. The book also includes a list of symbols and detailed index. This volume will be of interest to a wide range of physicists interested in magnetism and solid state physics in general, both theoreticians and experimentalists.

Dynamic Sustainabilities: "Technology, Environment, Social Justice"

by Ian Scoones Melissa Leach Andrew Charles Stirling

Linking environmental sustainability with poverty reduction and social justice, and making science and technology work for the poor, have become central practical, political and moral challenges of our times. These must be met in a world of rapid, interconnected change in environments, societies and economies, and globalised, fragmented governance arrangements. Yet despite growing international attention and investment, policy attempts often fail. Why is this, and what can be done about it? How might we understand and address emergent threats from epidemic disease, or the challenges of water scarcity in dryland India? In the context of climate change, how might seed systems help African farmers meet their needs, and how might appropriate energy strategies be developed? This book lays out a new 'pathways approach' to address sustainability challenges such as these in today's dynamic world. Through an appreciation of dynamics, complexity, uncertainty, differing narratives and the values-based aims of sustainability, the pathways approach allows us to see how some approaches are dominant, even though they do not produce the desired results, and how to create successful alternative 'pathways' of responding to the challenges we face. As well as offering new ways of thinking about sustainability, the book also suggests a series of practical ways forward - in tools and methods, forms of political engagement, and styles of knowledge-making and communication. Throughout the book, the practicalities of the pathways approach are illustrated using four case studies: water in dryland India, agricultural seeds in Africa, responses to epidemic disease and energy systems/climate change. Published in association with the Economic and Social Research Council (ESRC)

Dynamic Tectonics and Karst

by Stefan Shanov Konstantin Kostov

The karstic caves are favorable sites for tectonic events detecting, representing a conservative medium of three-dimensional framework where the tectonic deformations are well preserved. They also provide an environment conducive to dating and determining the geometrical parameters of past seismotectonic events. During the last three decades the study of dynamic tectonics and recent geodynamics in karst terrains has been subject of numerous publications, but it has not been systematically approached in a comprehensive monograph. This book collects the current state of knowledge on the relationship between karst and dynamic tectonics and presents a new methodology to its study. It puts forward several approaches for studying of recent geodynamics in karst terrains, such as tectonic stress fields reconstructions using structural analysis of the fracturing, geophysical studies of the rock anisotropy and fault-plane solutions from earthquakes, analysis of the spatial orientation and absolute dating of deformed speleothems, instrumental and mechanical measurements, monitoring and modeling - all supported with case studies from several karst areas worldwide, e. g. in Albania, Bulgaria, Cuba and France.

Dynamic Water-System Control

by A.H. Lobbrecht

Typically a large number of interests with conflicting requirements are involved in the management of a water system. The computer-based method of management introduced in this text - dynamic control - is designed to determine the most effective operational strategy.

Dynamical Characteristics of Inertia-Gravity Waves in the Antarctic Mesosphere: Analyses Combining High-Resolution Observations and Modeling (Springer Theses)

by Ryosuke Shibuya

This book examines the origins and dynamical characteristics of atmospheric inertia-gravity waves in the Antarctic mesosphere. Gravity waves are relatively small-scale atmospheric waves with a restoring force of buoyancy that can transport momentum upward from the troposphere to the middle atmosphere. In previous studies, the dynamical characteristics of mesospheric gravity waves have not been fully examined using numerical simulations, since performing a numerical simulation with a high resolution and a high model-top requires considerable computational power. However, recent advances in computational capabilities have allowed us to perform numerical simulations using atmospheric general circulation models, which cover the troposphere to the mesosphere with a sufficiently fine horizontal resolution to resolve small-scale gravity waves. The book first describes the simulation of mesospheric gravity waves using a high-resolution non-hydrostatic atmospheric model with a high model top. The accuracy of the numerical results was confirmed by the first Mesosphere-Stratosphere-Troposphere/Incoherent Scattering (MST/IS) radar observation in the Antarctic. It also depicts the origins and propagation processes of mesospheric gravity waves on the basis of the results of the high-resolution numerical model. The behaviors of mesospheric gravity waves can be clearly explained using both fundamental and cutting-edge theories of fluid dynamics

A Dynamical Perspective on the ɸ4 Model: Past, Present and Future (Nonlinear Systems and Complexity #26)

by Panayotis G. Kevrekidis Jesús Cuevas-Maraver

This book presents a careful selection of the most important developments of the \phi^4 model, offering a judicious summary of this model with a view to future prospects and the challenges ahead. Over the past four decades, the \phi^4 model has been the basis for a broad array of developments in the physics and mathematics of nonlinear waves. From kinks to breathers, from continuum media to discrete lattices, from collisions of solitary waves to spectral properties, and from deterministic to stochastic models of \phi^4 (and \phi^6, \phi^8, \phi^12 variants more recently), this dynamical model has served as an excellent test bed for formulating and testing the ideas of nonlinear science and solitary waves.

The Dynamical Projectors Method: Hydro and Electrodynamics

by Sergey Leble Anna Perelomova

The dynamical projectors method proves to reduce a multicomponent problem to the simplest one-component problem with its solution determined by specific initial or boundary conditions. Its universality and application in many different physical problems make it particularly useful in hydrodynamics, electrodynamics, plasma physics, and boundary layer problems. A great variety of underlying mechanisms are included making this book useful for those working in wave theory, hydrodynamics, electromagnetism, and applications. "The authors developed a universal and elegant tool – dynamical projector method. Using this method for very complicated hydro-thermodynamic and electrodynamics problem settings, they were able to get a lot of interesting analytical results in areas where before often just numerical methods were applicable." —L. A. Bordag, University of Applied Sciences Zittau/Görlitz, Zittau, Germany "The book is intended for professionals working in various fields of linear and nonlinear mathematical physics, partial differential equations and theoretical physics. The book is written clearly, and in my opinion, its material will be useful and easy to understand for professionals and for students familiar with ordinary and partial differential equations." —Sergey Dobrokhotov, Russian Academy of Sciences, Moscow, Russia

Dynamical Properties of Baryon Resonances in the Holographic QCD (Springer Theses)

by Daisuke Fujii

This book focuses on the study of the dynamical properties of hadron resonances, especially their transition processes by electromagnetic and strong interactions, by using the holographic quantum chromodynamics (QCD) model. Understanding the nature of hadrons leads to revealing non-perturbative phenomena that are prominent in the low-energy region of QCD. However, there remain many open questions regarding the nature of resonant states. Holographic QCD is one of the most powerful methods to elucidate non-perturbative phenomena in QCD. We will attempt to investigate the dynamical properties of hadron resonances using the Sakai-Sugimoto model, which has achieved much success in the study of hadron physics. In particular, we studied the transition process of hadrons through the calculation of the form factors of them employing the approach of holographic QCD. The book contains a systematic review of the treatment of hadron physics by the Sakai-Sugimoto model. It further covers how to calculate the form factors of baryons through the calculation of the n-point function from holographic QCD. It also includes remarks on the modern understanding of hadron physics. The method of collective coordinate quantization of solitons—Skyrmion and Instanton—is also explained in a concise manner. These are useful not only for students and young researchers interested in this field.

Dynamical System and Chaos: An Introduction with Applications (UNITEXT for Physics)

by Rui Dilão

This textbook introduces the language and the techniques of the theory of dynamical systems of finite dimension for an audience of physicists, engineers, and mathematicians at the beginning of graduation. Author addresses geometric, measure, and computational aspects of the theory of dynamical systems. Some freedom is used in the more formal aspects, using only proofs when there is an algorithmic advantage or because a result is simple and powerful. The first part is an introductory course on dynamical systems theory. It can be taught at the master's level during one semester, not requiring specialized mathematical training. In the second part, the author describes some applications of the theory of dynamical systems. Topics often appear in modern dynamical systems and complexity theories, such as singular perturbation theory, delayed equations, cellular automata, fractal sets, maps of the complex plane, and stochastic iterations of function systems are briefly explored for advanced students. The author also explores applications in mechanics, electromagnetism, celestial mechanics, nonlinear control theory, and macroeconomy. A set of problems consolidating the knowledge of the different subjects, including more elaborated exercises, are provided for all chapters.

Dynamical Systems: Theories and Applications

by Zeraoulia Elhadj

Chaos is the idea that a system will produce very different long-term behaviors when the initial conditions are perturbed only slightly. Chaos is used for novel, time- or energy-critical interdisciplinary applications. Examples include high-performance circuits and devices, liquid mixing, chemical reactions, biological systems, crisis management, secure information processing, and critical decision-making in politics, economics, as well as military applications, etc. This book presents the latest investigations in the theory of chaotic systems and their dynamics. The book covers some theoretical aspects of the subject arising in the study of both discrete and continuous-time chaotic dynamical systems. This book presents the state-of-the-art of the more advanced studies of chaotic dynamical systems.

Dynamical Systems and Nonlinear Waves in Plasmas

by Asit Saha Santo Banerjee

Dynamical systems and Nonlinear Waves in Plasmas is written in a clear and comprehensible style to serve as a compact volume for advanced postgraduate students and researchers working in the areas of Applied Physics, Applied Mathematics, Dynamical Systems, Nonlinear waves in Plasmas or other nonlinear media. It provides an introduction to the background of dynamical systems, waves, oscillations and plasmas. Basic concepts of dynamical systems and phase plane analysis for the study of dynamical properties of nonlinear waves in plasmas are presented. Different kinds of waves in plasmas are introduced. Reductive perturbative technique and its applications to derive different kinds of nonlinear evolution equations in plasmas are discussed. Analytical wave solutions of these nonlinear evolution equations are presented using the concept of bifurcation theory of planar dynamical systems in a very simple way. Bifurcations of both small and arbitrary amplitudes of various nonlinear acoustic waves in plasmas are presented using phase plots and time-series plots. Super nonlinear waves and its bifurcation behaviour are discussed for various plasma systems. Multiperiodic, quasiperiodic and chaotic motions of nonlinear plasma waves are discussed in presence of external periodic force. Multistability of plasma waves is investigated. Stable oscillation of plasma waves is also presented in dissipative plasmas. The book is meant for undergraduate and postgraduate students studying plasma physics. It will also serve a reference to the researchers, scientists and faculties to pursue the dynamics of nonlinear waves and its properties in plasmas. It describes the concept of dynamical systems and is useful in understanding exciting features, such as solitary wave, periodic wave, supernonlinear wave, chaotic, quasiperiodic and coexisting structures of nonlinear waves in plasmas. The concepts and approaches, discussed in the book, will also help the students and professionals to study such features in other nonlinear media.

Dynamical Systems-Based Soil Mechanics

by Paul Joseph

This book is a short yet rigorous course on a new paradigm in soil mechanics, one that holds that soil deformation occurs as a simple friction-based Poisson process in which soil particles move to their final position at random shear strains. It originates from work by Casagrande’s soil mechanics group at Harvard University that found that an aggregate of soil particles when sheared reaches a "steady-state" condition, a finding in line with the thermodynamics of dissipative systems. The book unpacks this new paradigm as it applies to soils. The theory explains fundamental, ubiquitous soil behaviors and relationships used in soils engineering daily thousands of times across the world, but whose material bases so far have been unknown. These include for example, why for one-dimensional consolidation, the e-log ? line is linear, and why C?/Cc is a constant for a given soil. The subtext of the book is that with this paradigm, the scientific method of trying to falsify hypotheses fully drives advances in the field, i.e., that soil mechanics now strictly qualifies as a science that, in turn, informs geotechnical engineering. The audience for the book is senior undergraduates, graduate students, academics, and researchers as well as industry professionals, particularly geotechnical engineers. It will also be useful to structural engineers, highway engineers, military engineers, persons in the construction industry, as well as planetary scientists. Because its fundamental findings hold for any mass of particles like soils, the theory applies not just to soils, but also to powders, grains etc. so long as these are under pseudo-static (no inertial effects) conditions.

Dynamical Systems with Applications using Python

by Stephen Lynch

This textbook provides a broad introduction to continuous and discrete dynamical systems. With its hands-on approach, the text leads the reader from basic theory to recently published research material in nonlinear ordinary differential equations, nonlinear optics, multifractals, neural networks, and binary oscillator computing. Dynamical Systems with Applications Using Python takes advantage of Python’s extensive visualization, simulation, and algorithmic tools to study those topics in nonlinear dynamical systems through numerical algorithms and generated diagrams.After a tutorial introduction to Python, the first part of the book deals with continuous systems using differential equations, including both ordinary and delay differential equations. The second part of the book deals with discrete dynamical systems and progresses to the study of both continuous and discrete systems in contexts like chaos control and synchronization, neural networks, and binary oscillator computing. These later sections are useful reference material for undergraduate student projects. The book is rounded off with example coursework to challenge students’ programming abilities and Python-based exam questions. This book will appeal to advanced undergraduate and graduate students, applied mathematicians, engineers, and researchers in a range of disciplines, such as biology, chemistry, computing, economics, and physics. Since it provides a survey of dynamical systems, a familiarity with linear algebra, real and complex analysis, calculus, and ordinary differential equations is necessary, and knowledge of a programming language like C or Java is beneficial but not essential.

Dynamically Coupled Rigid Body-Fluid Flow Systems

by Banavara N. Shashikanth

This book presents a unified study of dynamically coupled systems involving a rigid body and an ideal fluid flow from the perspective of Lagrangian and Hamiltonian mechanics. It compiles theoretical investigations on the topic of dynamically coupled systems using a framework grounded in Kirchhoff’s equations. The text achieves a balance between geometric mechanics, or the modern theories of reduction of Lagrangian and Hamiltonian systems, and classical fluid mechanics, with a special focus on the applications of these principles. Following an introduction to Kirchhoff’s equations of motion, the book discusses several extensions of Kirchhoff’s work, particularly related to vortices. It addresses the equations of motions of these systems and their Lagrangian and Hamiltonian formulations. The book is suitable to mathematicians, physicists and engineers with a background in Lagrangian and Hamiltonian mechanics and theoretical fluid mechanics. It includes a brief introductory overview of geometric mechanics in the appendix.

Dynamics and Diversity: Soil Fertility and Farming Livelihoods in Africa

by Ian Scoones

Soils are critical to agriculture and, in turn, to food supply and livelihoods. Sustainable management of soils is crucial for a large proportion of the population of Africa. Contrary to many claims, soil fertility is improved and managed successfully by small-scale farmers there. Careful studies from widely different areas reveal how closely bound up soil management is with complex social, cultural and ecological factors - requiring a far more subtly tuned approach to development policy and practice. This work is a study of how the context of livelihood systems has to inform development policy and practice.

Dynamics and Predictability of Large-Scale High-Impact Weather and Climate Events (Special Publications of the International Union of Geodesy and Geophysics)

by Jianping Li Richard Swinbank Richard Grotjahn Hans Volkert

Based largely on an International Commission on Dynamical Meteorology (ICDM) workshop, this timely volume, written by leading researchers in the field, covers a range of important research issues related to high-impact weather and extreme climate events. Dynamical linkages between these extremes and various atmospheric and ocean phenomena are examined, including Atlantic Multidecadal, North Atlantic, and Madden–Julian Oscillations; Annular Modes; tropical cyclones; and Asian monsoons. This book also examines the predictability of high-impact weather and extreme climate events on multiple time scales. Highlighting recent research and new advances in the field, this book enhances understanding of dynamical and physical processes associated with these events to help managers and policy makers make informed decisions to manage risk and prevent or mitigate disasters. It also provides guidance on future research directions in atmospheric science, meteorology, climate science, and weather forecasting, for experts and young scientists. Emphasises the predictability of extreme events, providing useful background information to help policymakers and managers plan for climate extremes and shorter-term forecasts of severe weather events. Provides a context for future research in the field of high-impact weather and climate extremes by compiling a wide variety of diagnostic and dynamical tools. Presents a less technical explanation of the dynamical processes involved in extreme weather events, making it accessible to a wider audience.

Dynamics and Relativity

by Jeffrey Forshaw Gavin Smith

A new title in the Manchester Physics Series, this introductory text emphasises physical principles behind classical mechanics and relativity. It assumes little in the way of prior knowledge, introducing relevant mathematics and carefully developing it within a physics context. Designed to provide a logical development of the subject, the book is divided into four sections, introductory material on dynamics, and special relativity, which is then followed by more advanced coverage of dynamics and special relativity. Each chapter includes problems ranging in difficulty from simple to challenging with?solutions for solving problems. Includes?solutions for solving problemsNumerous worked examples included throughout the bookMathematics is carefully explained and developed within a physics environmentSensitive to topics that can appear daunting or confusing

Refine Search

Showing 6,776 through 6,800 of 28,899 results