Browse Results

Showing 10,351 through 10,375 of 24,658 results

Harcourt Math: Practice Workbook (Grade #3)

by Harcourt School Publishers

A Grade 3 Math practice book.

Harcourt Math: Practice Workbook (Grade Two)

by Harcourt School Publishers

The math practice workbook for grade two deals with numbers and operations, digit addition and subtraction, money, time and data, geometry and patterns, and measurements and fractions.

Harcourt Math: Practice Workbook (Grade #4)

by Harcourt School Publishers

A grade four mathematics book.

Harcourt Math: Practice Workbook (Grade #5)

by Harcourt School Publishers

Write and solve an equation for each problem. Explain what the variable represents.

Harcourt Math: Grade 5

by Harcourt School Publishers

Grade 5 Harcourt math

Harcourt Math: Level 5 (Harcourt School Publishers Math Ser.)

by Harcourt School Publishers Staff

The authors of Harcourt Math want you to enjoy learning math and to feel confident that you can do it. We invite you to share your math book with family members. Take them on a guided tour through your book!

Harcourt Math

by Evan M. Maletsky

NIMAC-sourced textbook

Harcourt Math (Grade #6)

by Evan M. Maletsky

The authors of Harcourt Math want you to be a good mathematician, but most of all we want you to enjoy learning math and feel confident that you can do it. We invite you to share your book with family members. Take them on a guided tour through your book!

Harcourt Math

by Evan M. Maletsky Angela Giglio Andrews Jennie M. Bennett

NIMAC-sourced textbook

Harcourt Math (California Edition)

by Harcourt School Publishers

This book makes a student enjoy learning math and to feel confident that he CAN DO. The unit lessons of the book contain: Understand Numbers and Operations, Data, Graphing, and Time, Multiplication and Division Facts, Multiply by 1- and 2-Digit Numbers, Divide by 1- and 2-Digit Divisors, Fractions and Decimals, Measurement, Algebra, and Graphing, Geometry, and Probability.

Hard X-Ray Imaging of Solar Flares

by Michele Piana A. Gordon Emslie Anna Maria Massone Brian R. Dennis

The idea for this text emerged over several years as the authors participated in research projects related to analysis of data from NASA's RHESSI Small Explorer mission. The data produced over the operational lifetime of this mission inspired many investigations related to a specific science question: the when, where, and how of electron acceleration during solar flares in the stressed magnetic environment of the active Sun.A vital key to unlocking this science problem is the ability to produce high-quality images of hard X-rays produced by bremsstrahlung radiation from electrons accelerated during a solar flare. The only practical way to do this within the technological and budgetary limitations of the RHESSI era was to opt for indirect modalities in which imaging information is encoded as a set of two-dimensional spatial Fourier components. Radio astronomers had employed Fourier imaging for many years. However, differently than for radio astronomy, X-ray images produced by RHESSI had to be constructed from a very limited number of sparsely distributed and very noisy Fourier components. Further, Fourier imaging is hardly intuitive, and extensive validation of the methods was necessary to ensure that they produced images with sufficient accuracy and fidelity for scientific applications.This book summarizes the results of this development of imaging techniques specifically designed for this form of data. It covers a set of published works that span over two decades, during which various imaging methods were introduced, validated, and applied to observations. Also considering that a new Fourier-based telescope, STIX, is now entering its nominal phase on-board the ESA Solar Orbiter, it became more and more apparent to the authors that it would be a good idea to put together a compendium of these imaging methods and their applications. Hence the book you are now reading.

The Hardy Space H1 with Non-doubling Measures and Their Applications

by Dachun Yang Dongyong Yang Guoen Hu

The present book offers an essential but accessible introduction to the discoveries first made in the 1990s that the doubling condition is superfluous for most results for function spaces and the boundedness of operators. It shows the methods behind these discoveries, their consequences and some of their applications. It also provides detailed and comprehensive arguments, many typical and easy-to-follow examples, and interesting unsolved problems. The theory of the Hardy space is a fundamental tool for Fourier analysis, with applications for and connections to complex analysis, partial differential equations, functional analysis and geometrical analysis. It also extends to settings where the doubling condition of the underlying measures may fail.

Hardy Spaces: Elements Of Advanced Analysis (Cambridge Studies in Advanced Mathematics #179)

by Nikolaï Nikolski

The theory of Hardy spaces is a cornerstone of modern analysis. It combines techniques from functional analysis, the theory of analytic functions and Lesbesgue integration to create a powerful tool for many applications, pure and applied, from signal processing and Fourier analysis to maximum modulus principles and the Riemann zeta function. This book, aimed at beginning graduate students, introduces and develops the classical results on Hardy spaces and applies them to fundamental concrete problems in analysis. The results are illustrated with numerous solved exercises that also introduce subsidiary topics and recent developments. The reader's understanding of the current state of the field, as well as its history, are further aided by engaging accounts of important contributors and by the surveys of recent advances (with commented reference lists) that end each chapter. Such broad coverage makes this book the ideal source on Hardy spaces.

Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces

by Ryan Alvarado Marius Mitrea

Systematically constructing an optimal theory, this monograph develops and explores several approaches to Hardy spaces in the setting of Alhlfors-regular quasi-metric spaces. The text is divided into two main parts, with the first part providing atomic, molecular, and grand maximal function characterizations of Hardy spaces and formulates sharp versions of basic analytical tools for quasi-metric spaces, such as a Lebesgue differentiation theorem with minimal demands on the underlying measure, a maximally smooth approximation to the identity and a Calderon-Zygmund decomposition for distributions. These results are of independent interest. The second part establishes very general criteria guaranteeing that a linear operator acts continuously from a Hardy space into a topological vector space, emphasizing the role of the action of the operator on atoms. Applications include the solvability of the Dirichlet problem for elliptic systems in the upper-half space with boundary data from Hardy spaces. The tools established in the first part are then used to develop a sharp theory of Besov and Triebel-Lizorkin spaces in Ahlfors-regular quasi-metric spaces. The monograph is largely self-contained and is intended for mathematicians, graduate students and professionals with a mathematical background who are interested in the interplay between analysis and geometry.

Hardy Type Inequalities on Time Scales

by Ravi P. Agarwal Donal O'Regan Samir H. Saker

The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via convexity, Copson type inequalities, Copson-Beesack type inequalities, Liendeler type inequalities, Levinson type inequalities and Pachpatte type inequalities, Bennett type inequalities, Chan type inequalities, and Hardy type inequalities with two different weight functions. These dynamic inequalities contain the classical continuous and discrete inequalities as special cases when T = R and T = N and can be extended to different types of inequalities on different time scales such as T = hN, h > 0, T = qN for q > 1, etc. In this book the authors followed the history and development of these inequalities. Each section in self-contained and one can see the relationship between the time scale versions of the inequalities and the classical ones. To the best of the authors' knowledge this is the first book devoted to Hardy-type inequalities and their extensions on time scales.

Harmonic Analysis and Applications: Mathematics And Applications (Studies In Advanced Mathematics Ser. #23)

by John J. Benedetto

Harmonic analysis plays an essential role in understanding a host of engineering, mathematical, and scientific ideas. In Harmonic Analysis and Applications, the analysis and synthesis of functions in terms of harmonics is presented in such a way as to demonstrate the vitality, power, elegance, usefulness, and the intricacy and simplicity of the subject. This book is about classical harmonic analysis - a textbook suitable for students, and an essay and general reference suitable for mathematicians, physicists, and others who use harmonic analysis.Throughout the book, material is provided for an upper level undergraduate course in harmonic analysis and some of its applications. In addition, the advanced material in Harmonic Analysis and Applications is well-suited for graduate courses. The course is outlined in Prologue I. This course material is excellent, not only for students, but also for scientists, mathematicians, and engineers as a general reference. Chapter 1 covers the Fourier analysis of integrable and square integrable (finite energy) functions on R. Chapter 2 of the text covers distribution theory, emphasizing the theory's useful vantage point for dealing with problems and general concepts from engineering, physics, and mathematics. Chapter 3 deals with Fourier series, including the Fourier analysis of finite and infinite sequences, as well as functions defined on finite intervals. The mathematical presentation, insightful perspectives, and numerous well-chosen examples and exercises in Harmonic Analysis and Applications make this book well worth having in your collection.

Harmonic Analysis and Applications (Springer Optimization and Its Applications #168)

by Michael Th. Rassias

This edited volume presents state-of-the-art developments in various areas in which Harmonic Analysis is applied. Contributions cover a variety of different topics and problems treated such as structure and optimization in computational harmonic analysis, sampling and approximation in shift invariant subspaces of L2(ℝ), optimal rank one matrix decomposition, the Riemann Hypothesis, large sets avoiding rough patterns, Hardy Littlewood series, Navier–Stokes equations, sleep dynamics exploration and automatic annotation by combining modern harmonic analysis tools, harmonic functions in slabs and half-spaces, Andoni –Krauthgamer –Razenshteyn characterization of sketchable norms fails for sketchable metrics, random matrix theory, multiplicative completion of redundant systems in Hilbert and Banach function spaces. Efforts have been made to ensure that the content of the book constitutes a valuable resource for graduate students as well as senior researchers working on Harmonic Analysis and its various interconnections with related areas.

Harmonic Analysis and Integral Geometry (Chapman & Hall/CRC Research Notes in Mathematics Series)

by Massimo A Picardello

Comprising a selection of expository and research papers, Harmonic Analysis and Integral Geometry grew from presentations offered at the July 1998 Summer University of Safi, Morocco-an annual, advanced research school and congress. This lively and very successful event drew the attendance of many top researchers, who offered both individual lecture

Harmonic Analysis and the Theory of Probability (Dover Books on Mathematics)

by Salomon Bochner

Nineteenth-century studies of harmonic analysis were closely linked with the work of Joseph Fourier on the theory of heat and with that of P. S. Laplace on probability. During the 1920s, the Fourier transform developed into one of the most effective tools of modern probabilistic research; conversely, the demands of the probability theory stimulated further research into harmonic analysis.Mathematician Salomon Bochner wrote a pair of landmark books on the subject in the 1930s and 40s. In this volume, originally published in 1955, he adopts a more probabilistic view and emphasizes stochastic processes and the interchange of stimuli between probability and analysis. Non-probabilistic topics include Fourier series and integrals in many variables; the Bochner integral; the transforms of Plancherel, Laplace, Poisson, and Mellin; applications to boundary value problems, to Dirichlet series, and to Bessel functions; and the theory of completely monotone functions.The primary significance of this text lies in the last two chapters, which offer a systematic presentation of an original concept developed by the author and partly by LeCam: Bochner's characteristic functional, a Fourier transform on a Euclidean-like space of infinitely many dimensions. The characteristic functional plays a role in stochastic processes similar to its relationship with numerical random variables, and thus constitutes an important part of progress in the theory of stochastic processes.

Harmonic Analysis on Exponential Solvable Lie Groups

by Hidenori Fujiwara Jean Ludwig

This book is the first one that brings together recent results on the harmonic analysis of exponential solvable Lie groups. There still are many interesting open problems, and the book contributes to the future progress of this research field. As well, various related topics are presented to motivate young researchers. The orbit method invented by Kirillov is applied to study basic problems in the analysis on exponential solvable Lie groups. This method tells us that the unitary dual of these groups is realized as the space of their coadjoint orbits. This fact is established using the Mackey theory for induced representations, and that mechanism is explained first. One of the fundamental problems in the representation theory is the irreducible decomposition of induced or restricted representations. Therefore, these decompositions are studied in detail before proceeding to various related problems: the multiplicity formula, Plancherel formulas, intertwining operators, Frobenius reciprocity, and associated algebras of invariant differential operators. The main reasoning in the proof of the assertions made here is induction, and for this there are not many tools available. Thus a detailed analysis of the objects listed above is difficult even for exponential solvable Lie groups, and it is often assumed that G is nilpotent. To make the situation clearer and future development possible, many concrete examples are provided. Various topics presented in the nilpotent case still have to be studied for solvable Lie groups that are not nilpotent. They all present interesting and important but difficult problems, however, which should be addressed in the near future. Beyond the exponential case, holomorphically induced representations introduced by Auslander and Kostant are needed, and for that reason they are included in this book.

Harmonic Analysis on Free Groups

by Alessandro Figa-Talamanca

This book presents an account of recent results on the theory of representations and the harmonic analysis of free groups. It emphasizes the analogy with the theory of representations of noncompact semisimple Lie groups and restricts the focus to a class of irreducible unitary representations.

Harmonic Analysis on Homogeneous Spaces: Second Edition (Dover Books on Mathematics)

by Nolan R. Wallach

This book is suitable for advanced undergraduate and graduate students in mathematics with a strong background in linear algebra and advanced calculus. Early chapters develop representation theory of compact Lie groups with applications to topology, geometry, and analysis, including the Peter-Weyl theorem, the theorem of the highest weight, the character theory, invariant differential operators on homogeneous vector bundles, and Bott's index theorem for such operators. Later chapters study the structure of representation theory and analysis of non-compact semi-simple Lie groups, including the principal series, intertwining operators, asymptotics of matrix coefficients, and an important special case of the Plancherel theorem.Teachers will find this volume useful as either a main text or a supplement to standard one-year courses in Lie groups and Lie algebras. The treatment advances from fairly simple topics to more complex subjects, and exercises appear at the end of each chapter. Eight helpful Appendixes develop aspects of differential geometry, Lie theory, and functional analysis employed in the main text.

Harmonic Analysis on Symmetric Spaces--Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane

by Audrey Terras

This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincaré upper half plane This book is intended for beginning graduate students in mathematics or researchers in physics or engineering Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections and updates have been incorporated in this new edition. Updates include discussions of P. Sarnak and others' work on quantum chaos, the work of T. Sunada, Marie-France Vignéras, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?", A. Lubotzky, R. Phillips and P. Sarnak's examples of Ramanujan graphs, and, finally, the author's comparisons of continuous theory with the finite analogues. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincaré upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups Γ, tessellations of H from such discrete group actions, automorphic forms, and the Selberg trace formula and its applications in spectral theory as well as number theory.

Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and Generalizations

by Audrey Terras

This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations. It is intended for beginning graduate students in mathematics or researchers in physics or engineering. As with the introductory book entitled "Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincaré Upper Half Plane, the style is informal with an emphasis on motivation, concrete examples, history, and applications. The symmetric spaces considered here are quotients X=G/K, where G is a non-compact real Lie group, such as the general linear group GL(n,P) of all n x n non-singular real matrices, and K=O(n), the maximal compact subgroup of orthogonal matrices. Other examples are Siegel's upper half "plane" and the quaternionic upper half "plane". In the case of the general linear group, one can identify X with the space Pn of n x n positive definite symmetric matrices.Many corrections and updates have been incorporated in this new edition. Updates include discussions of random matrix theory and quantum chaos, as well as recent research on modular forms and their corresponding L-functions in higher rank. Many applications have been added, such as the solution of the heat equation on Pn, the central limit theorem of Donald St. P. Richards for Pn, results on densest lattice packing of spheres in Euclidean space, and GL(n)-analogs of the Weyl law for eigenvalues of the Laplacian in plane domains. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, fundamental domains in X for discrete groups Γ (such as the modular group GL(n,Z) of n x n matrices with integer entries and determinant ±1), connections with the problem of finding densest lattice packings of spheres in Euclidean space, automorphic forms, Hecke operators, L-functions, and the Selberg trace formula and its applications in spectral theory as well as number theory.

Harmonic Analysis on the Real Line: A Path in the Theory (Pathways in Mathematics)

by Elijah Liflyand

This book sketches a path for newcomers into the theory of harmonic analysis on the real line. It presents a collection of both basic, well-known and some less known results that may serve as a background for future research around this topic. Many of these results are also a necessary basis for multivariate extensions. An extensive bibliography, as well as hints to open problems are included. The book can be used as a skeleton for designing certain special courses, but it is also suitable for self-study.

Refine Search

Showing 10,351 through 10,375 of 24,658 results