Browse Results

Showing 10,501 through 10,525 of 24,658 results

High School Math Solution, Integrated Math III, Volume 1

by Sandy Bartle Finocchi Amy Jones Lewis Josh Fisher Janet Sinopoli Victoria Fisher

NIMAC-sourced textbook

High School Math Solution, Integrated Math III, Volume 2

by Sandy Bartle Finocchi Amy Jones Lewis Josh Fisher Janet Sinopoli Victoria Fisher

NIMAC-sourced textbook

High-Temperature Superconducting Microwave Circuits and Applications

by Haiwen Liu Baoping Ren Xuehui Guan Pin Wen Tao Zuo

High-temperature superconducting (HTS) materials are becoming more and more attractive in the context of designing RF/microwave filters because of their lower losses and excellent performance. This book focuses on the superconducting microwave filter and its application in modern communication. It first presents the basic principles, HTS materials and processing and then introduces several types of multi-band HTS bandpass filter (BPF), discussing their properties and analyzing equivalent circuit models and their performances. This book is a valuable resource for students and researchers who are interested in wireless communication and RF/microwave design.

High Temperature Superconductivity (Scottish Graduate Ser. #39)

by D P Tunstall

High Temperature Superconductivity provides a broad survey of high temperature superconductivity, discussing the adaptations of experimental and theoretical techniques and methods that take advantage of the revolutionary properties of high temperature superconductors. Distinguished engineers, chemists, and experimental and theoretical physicists introduce their own particular area of the field before going on to explain current theories and techniques. The book is divided into three sections: materials, mechanisms, and devices. Topics covered include synthetic approaches to the growth of new materials; optical, magnetic, and electrical characterization of synthesized materials; strong correlations; the magnon pairing mechanism; and technical background of device performance in new materials. A coherent introduction to high temperature superconductivity, this volume will be invaluable to researchers in condensed matter physics, chemistry, materials science, and engineering.

The Higher Arithmetic

by H. Davenport

Now into its Eighth edition, The Higher Arithmetic introduces the classic concepts and theorems of number theory in a way that does not require the reader to have an in-depth knowledge of the theory of numbers The theory of numbers is considered to be the purest branch of pure mathematics and is also one of the most highly active and engaging areas of mathematics today. Since earlier editions, additional material written by J. H. Davenport has been added, on topics such as Wiles' proof of Fermat's Last Theorem, computers & number theory, and primality testing. Written to be accessible to the general reader, this classic book is also ideal for undergraduate courses on number theory, and covers all the necessary material clearly and succinctly.

Higher Education 4.0: The Digital Transformation of Classroom Lectures to Blended Learning

by Kevin Anthony Jones Sharma Ravishankar

This book chronicles a 10-year introduction of blended learning into the delivery at a leading technological university, with a longstanding tradition of technology-enabled teaching and learning, and state-of-the-art infrastructure. Hence, both teachers and students were familiar with the idea of online courses. Despite this, the longitudinal experiment did not proceed as expected. Though few technical problems, it required behavioural changes from teachers and learners, thus unearthing a host of socio-technical issues, challenges, and conundrums. With the undercurrent of design ideals such as “tech for good”, any industrial sector must examine whether digital platforms are credible substitutes or at best complementary. In this era of Industry 4.0, higher education, like any other industry, should not be about the creative destruction of what we value in universities, but their digital transformation. The book concludes with an agenda for large, repeatable Randomised Controlled Trials (RCTs) to validate digital platforms that could fulfil the aspirations of the key stakeholder groups – students, faculty, and regulators as well as delving into the role of Massive Open Online Courses (MOOCs) as surrogates for “fees-free” higher education and whether the design of such a HiEd 4.0 platform is even a credible proposition. Specifically, the book examines the data-driven evidence within a design-based research methodology to present outcomes of two alternative instructional designs evaluated – traditional lecturing and blended learning. Based on the research findings and statistical analysis, it concludes that the inexorable shift to online delivery of education must be guided by informed educational management and innovation.

Higher Education Policy Analysis Using Quantitative Techniques: Data, Methods and Presentation (Quantitative Methods in the Humanities and Social Sciences)

by Marvin Titus

This textbook introduces graduate students in education and policy research to data and statistical methods in state-level higher education policy analysis. It also serves as a methodological guide to students, practitioners, and researchers who want a clear approach to conducting higher education policy analysis that involves the use of institutional- and state-level secondary data and quantitative methods ranging from descriptive to advanced statistical techniques. This book is unique in that it introduces readers to various types of data sources and quantitative methods utilized in policy research and in that it demonstrates how results of statistical analyses should be presented to higher education policy makers. It helps to bridge the gap between researchers, policy makers, and practitioners both within education policy and between other fields.Coverage includes identifying pertinent data sources, the creation and management of customized data sets, teaching beginning and advanced statistical methods and analyses, and the presentation of analyses for different audiences (including higher education policy makers).

Higher Engineering Mathematics

by John Bird

Now in its eighth edition, Higher Engineering Mathematics has helped thousands of students succeed in their exams. Theory is kept to a minimum, with the emphasis firmly placed on problem-solving skills, making this a thoroughly practical introduction to the advanced engineering mathematics that students need to master. The extensive and thorough topic coverage makes this an ideal text for upper-level vocational courses and for undergraduate degree courses. It is also supported by a fully updated companion website with resources for both students and lecturers. It has full solutions to all 2,000 further questions contained in the 277 practice exercises.

Higher Geometry: An Introduction to Advanced Methods in Analytic Geometry

by Frederick S. Woods

For students of mathematics with a sound background in analytic geometry and some knowledge of determinants, this volume has long been among the best available expositions of advanced work on projective and algebraic geometry. Developed from Professor Woods' lectures at the Massachusetts Institute of Technology, it bridges the gap between intermediate studies in the field and highly specialized works.With exceptional thoroughness, it presents the most important general concepts and methods of advanced algebraic geometry (as distinguished from differential geometry). It offers a thorough study of one-, two-, three-, and four-dimensional coordinated systems, the concepts they entail, and their associated geometrical elements. This study culminates with a discussion of n-dimensional geometry in an abstract sense, of which the earlier subjects form concrete illustrations.As each system of coordinates is introduced, the meaning of the linear and quadratic equations is studied, with principal emphasis on the interpretation of equations as well as on a knowledge of useful geometrical facts. The principle of duality is kept at the forefront, and the nature of imaginary elements and the conventional character of the locus of infinity, dependent upon the type of coordinates used, are carefully explained.

Higher Index Theory (Cambridge Studies in Advanced Mathematics #189)

by Rufus Willett Guoliang Yu

Index theory studies the solutions to differential equations on geometric spaces, their relation to the underlying geometry and topology, and applications to physics. If the space of solutions is infinite dimensional, it becomes necessary to generalise the classical Fredholm index using tools from the K-theory of operator algebras. This leads to higher index theory, a rapidly developing subject with connections to noncommutative geometry, large-scale geometry, manifold topology and geometry, and operator algebras. Aimed at geometers, topologists and operator algebraists, this book takes a friendly and concrete approach to this exciting theory, focusing on the main conjectures in the area and their applications outside of it. A well-balanced combination of detailed introductory material (with exercises), cutting-edge developments and references to the wider literature make this a valuable guide to this active area for graduate students and experts alike.

Higher Mathematics for Science and Engineering

by Aliakbar Montazer Haghighi Abburi Anil Kumar Dimitar P. Mishev

This textbook provides a comprehensive, thorough and up-to-date treatment of topics of mathematics that an engineer and scientist would need, at the basic levels that contents of engineering and sciences are built by. For this purpose, natural readers would be junior and senior undergraduate students, who normally have the content of this book under different names on their degree plans. Also, engineers and scientists will benefit from this book since the book is a comprehensive volume for such audiences.This book is written in a way that it balances both theory and practical applications of topics from linear algebra, matrix theory, calculus of multivariable, theory of complex variables, several transforms, ordinary and partial differential equations, difference equations, optimization, probability, statistics, theory of reliability and finally, applications from variety of areas of sciences and engineering.

Higher Mathematics, Second Edition

by Robert Barclay Brian Logan Mike Smith

The complete textbook for the SQA Higher Maths course, updated in accordance with latest syllabus guidelines.- Arranged by topic, but with complete flexibility to teach in preferred order - Unique 'hinge-point' questions to test readiness to progress further in each topic - or go back and revise - Written by three outstanding and experienced teachers, examiners and authors

Higher Maths: Practice Papers for SQA Exams

by Bob Barclay

Practise for your SQA exams with three specially-commissioned Hodder Gibson Practice Exam Papers.- Practise with model papers written and checked by experienced markers and examiners- Get extra advice with specially-written study-skills guidance sections- Gain vital extra marks and avoid common mistakes with examiner tips

Higher-Order Differential Equations and Elasticity (Mathematics and Physics for Science and Technology)

by Luis Manuel Braga da Costa Campos

Higher-Order Differential Equations and Elasticity is the third book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This third book consists of two chapters (chapters 5 and 6 of the set). The first chapter in this book concerns non-linear differential equations of the second and higher orders. It also considers special differential equations with solutions like envelopes not included in the general integral. The methods presented include special differential equations, whose solutions include the general integral and special integrals not included in the general integral for myriad constants of integration. The methods presented include dual variables and differentials, related by Legendre transforms, that have application in thermodynamics. The second chapter concerns deformations of one (two) dimensional elastic bodies that are specified by differential equations of: (i) the second-order for non-stiff bodies like elastic strings (membranes); (ii) fourth-order for stiff bodies like bars and beams (plates). The differential equations are linear for small deformations and gradients and non-linear otherwise. The deformations for beams include bending by transverse loads and buckling by axial loads. Buckling and bending couple non-linearly for plates. The deformations depend on material properties, for example isotropic or anisotropic elastic plates, with intermediate cases such as orthotropic or pseudo-isotropic. Discusses differential equations having special integrals not contained in the general integral, like the envelope of a family of integral curves Presents differential equations of the second and higher order, including non-linear and with variable coefficients Compares relation of differentials with the principles of thermodynamics Describes deformations of non-stiff elastic bodies like strings and membranes and buckling of stiff elastic bodies like bars, beams, and plates Presents linear and non-linear waves in elastic strings, membranes, bars, beams, and plates

Higher-Order Growth Curves and Mixture Modeling with Mplus: A Practical Guide (Multivariate Applications Series)

by Kandauda A.S. Wickrama Tae Kyoung Lee Catherine Walker O’Neal Frederick O. Lorenz

This practical introduction to second-order and growth mixture models using Mplus introduces simple and complex techniques through incremental steps. The authors extend latent growth curves to second-order growth curve and mixture models and then combine the two using normal and non-normal (e.g., categorical) data. To maximize understanding, each model is presented with basic structural equations, figures with associated syntax that highlight what the statistics mean, Mplus applications, and an interpretation of results. Examples from a variety of disciplines demonstrate the use of the models and exercises allow readers to test their understanding of the techniques. A comprehensive introduction to confirmatory factor analysis, latent growth curve modeling, and growth mixture modeling is provided so the book can be used by readers of various skill levels. The book’s datasets are available on the web. New to this edition: * Two new chapters providing a stepwise introduction and practical guide to the application of second-order growth curves and mixture models with categorical outcomes using the Mplus program. Complete with exercises, answer keys, and downloadable data files. * Updated illustrative examples using Mplus 8.0 include conceptual figures, Mplus program syntax, and an interpretation of results to show readers how to carry out the analyses with actual data. This text is ideal for use in graduate courses or workshops on advanced structural equation, multilevel, longitudinal or latent variable modeling, latent growth curve and mixture modeling, factor analysis, multivariate statistics, or advanced quantitative techniques (methods) across the social and behavioral sciences.

Higher-Order Growth Curves and Mixture Modeling with Mplus: A Practical Guide (Multivariate Applications Series)

by Kandauda K.A.S. Wickrama Tae Kyoung Lee Catherine Walker O’Neal Frederick O. Lorenz

This practical introduction to second-order and growth mixture models using Mplus introduces simple and complex techniques through incremental steps. The authors extend latent growth curves to second-order growth curve and mixture models and then combine the two. To maximize understanding, each model is presented with basic structural equations, figures with associated syntax that highlight what the statistics mean, Mplus applications, and an interpretation of results. Examples from a variety of disciplines demonstrate the use of the models and exercises allow readers to test their understanding of the techniques. A comprehensive introduction to confirmatory factor analysis, latent growth curve modeling, and growth mixture modeling is provided so the book can be used by readers of various skill levels. The book’s datasets are available on the web. Highlights include: -Illustrative examples using Mplus 7.4 include conceptual figures, Mplus program syntax, and an interpretation of results to show readers how to carry out the analyses with actual data. -Exercises with an answer key allow readers to practice the skills they learn. -Applications to a variety of disciplines appeal to those in the behavioral, social, political, educational, occupational, business, and health sciences. -Data files for all the illustrative examples and exercises at www.routledge.com/9781138925151 allow readers to test their understanding of the concepts. -Point to Remember boxes aid in reader comprehension or provide in-depth discussions of key statistical or theoretical concepts. Part 1 introduces basic structural equation modeling (SEM) as well as first- and second-order growth curve modeling. The book opens with the basic concepts from SEM, possible extensions of conventional growth curve models, and the data and measures used throughout the book. The subsequent chapters in part 1 explain the extensions. Chapter 2 introduces conventional modeling of multidimensional panel data, including confirmatory factor analysis (CFA) and growth curve modeling, and its limitations. The logical and theoretical extension of a CFA to a second-order growth curve, known as curve-of-factors model (CFM), are explained in Chapter 3. Chapter 4 illustrates the estimation and interpretation of unconditional and conditional CFMs. Chapter 5 presents the logical and theoretical extension of a parallel process model to a second-order growth curve, known as factor-of-curves model (FCM). Chapter 6 illustrates the estimation and interpretation of unconditional and conditional FCMs. Part 2 reviews growth mixture modeling including unconditional growth mixture modeling (Ch. 7) and conditional growth mixture models (Ch. 8). How to extend second-order growth curves (curve-of-factors and factor-of-curves models) to growth mixture models is highlighted in Chapter 9. Ideal as a supplement for use in graduate courses on (advanced) structural equation, multilevel, longitudinal, or latent variable modeling, latent growth curve and mixture modeling, factor analysis, multivariate statistics, or advanced quantitative techniques (methods) taught in psychology, human development and family studies, business, education, health, and social sciences, this book’s practical approach also appeals to researchers. Prerequisites include a basic knowledge of intermediate statistics and structural equation modeling.

Higher-Order Systems (Understanding Complex Systems)

by Federico Battiston Giovanni Petri

The book discusses the potential of higher-order interactions to model real-world relational systems. Over the last decade, networks have emerged as the paradigmatic framework to model complex systems. Yet, as simple collections of nodes and links, they are intrinsically limited to pairwise interactions, limiting our ability to describe, understand, and predict complex phenomena which arise from higher-order interactions. Here we introduce the new modeling framework of higher-order systems, where hypergraphs and simplicial complexes are used to describe complex patterns of interactions among any number of agents. This book is intended both as a first introduction and an overview of the state of the art of this rapidly emerging field, serving as a reference for network scientists interested in better modeling the interconnected world we live in.

Higher Segal Spaces (Lecture Notes in Mathematics #2244)

by Tobias Dyckerhoff Mikhail Kapranov

This monograph initiates a theory of new categorical structures that generalize the simplicial Segal property to higher dimensions. The authors introduce the notion of a d-Segal space, which is a simplicial space satisfying locality conditions related to triangulations of d-dimensional cyclic polytopes. Focus here is on the 2-dimensional case. Many important constructions are shown to exhibit the 2-Segal property, including Waldhausen’s S-construction, Hecke-Waldhausen constructions, and configuration spaces of flags. The relevance of 2-Segal spaces in the study of Hall and Hecke algebras is discussed.Higher Segal Spaces marks the beginning of a program to systematically study d-Segal spaces in all dimensions d. The elementary formulation of 2-Segal spaces in the opening chapters is accessible to readers with a basic background in homotopy theory. A chapter on Bousfield localizations provides a transition to the general theory, formulated in terms of combinatorial model categories, that features in the main part of the book. Numerous examples throughout assist readers entering this exciting field to move toward active research; established researchers in the area will appreciate this work as a reference.

Higher Structures in Geometry and Physics

by Ping Xu Anthony Giaquinto Alberto S. Cattaneo

This book is centered around higher algebraic structures stemming from the work of Murray Gerstenhaber and Jim Stasheff that are now ubiquitous in various areas of mathematics-- such as algebra, algebraic topology, differential geometry, algebraic geometry, mathematical physics-- and in theoretical physics such as quantum field theory and string theory. These higher algebraic structures provide a common language essential in the study of deformation quantization, theory of algebroids and groupoids, symplectic field theory, and much more. Each contribution in this volume expands on the ideas of Gerstenhaber and Stasheff. The volume is intended for post-graduate students, mathematical and theoretical physicists, and mathematicians interested in higher structures.

Highlights in Lie Algebraic Methods

by Anna Melnikov Ivan Penkov Anthony Joseph

This volume consists of expository and research articles that highlight the various Lie algebraic methods used in mathematical research today. Key topics discussed include spherical varieties, Littelmann Paths and Kac-Moody Lie algebras, modular representations, primitive ideals, representation theory of Artin algebras and quivers, Kac-Moody superalgebras, categories of Harish-Chandra modules, cohomological methods, and cluster algebras.

The Highway Capacity Manual: Signalized and Unsignalized Intersections (Springer Tracts on Transportation and Traffic #12)

by Elena S. Prassas Roger P. Roess

Since 1950, the Highway Capacity Manual has been a standard used in the planning, design, analysis, and operation of virtually any highway traffic facility in the United States. It has also been widely used around the globe and has inspired the development of similar manuals in other countries. This book is Volume II of a series on the conceptual and research origins of the methodologies found in the Highway Capacity Manual. It focuses on the most complex points in a traffic system: signalized and unsignalized intersections, and the concepts and methodologies developed over the years to model their operations. It also includes an overview of the fundamental concepts of capacity and level of service, particularly as applied to intersections. The historical roots of the manual and its contents are important to understanding current methodologies, and improving them in the future. As such, this book is a valuable resource for current and future users of the Highway Capacity Manual, as well as researchers and developers involved in advancing the state-of-the-art in the field.

Hilary Putnam on Logic and Mathematics (Outstanding Contributions to Logic #9)

by Geoffrey Hellman Roy T. Cook

This book explores the research of Professor Hilary Putnam, a Harvard professor as well as a leading philosopher, mathematician and computer scientist. It features the work of distinguished scholars in the field as well as a selection of young academics who have studied topics closely connected to Putnam’s work. It includes 12 papers that analyze, develop, and constructively criticize this notable professor's research in mathematical logic, the philosophy of logic and the philosophy of mathematics. In addition, it features a short essay presenting reminiscences and anecdotes about Putnam from his friends and colleagues, and also includes an extensive bibliography of his work in mathematics and logic. The book offers readers a comprehensive review of outstanding contributions in logic and mathematics as well as an engaging dialogue between prominent scholars and researchers. It provides those interested in mathematical logic, the philosophy of logic, and the philosophy of mathematics unique insights into the work of Hilary Putnam.

Hilbert C*- Modules and Quantum Markov Semigroups

by Lunchuan Zhang

This book explains the basic theory of Hilbert C*-module in detail, covering a wide range of applications from generalized index to module framework. At the center of the book, the Beurling-Deny criterion is characterized between operator valued Dirichlet forms and quantum Markov semigroups, hence opening a new field of quantum probability research. The general scope of the book includes: basic theory of Hilbert C*-modules; generalized indices and module frames; operator valued Dirichlet forms; and quantum Markov semigroups.This book will be of value to scholars and graduate students in the fields of operator algebra, quantum probability and quantum information.

Hilbert Space Methods in Partial Differential Equations (Dover Books on Mathematics)

by Ralph E. Showalter

This text surveys the principal methods of solving partial differential equations. Suitable for graduate students of mathematics, engineering, and physical sciences, it requires knowledge of advanced calculus.The initial chapter contains an elementary presentation of Hilbert space theory that provides sufficient background for understanding the rest of the book. Succeeding chapters introduce distributions and Sobolev spaces and examine boundary value problems, first- and second-order evolution equations, implicit evolution equations, and topics related to optimization and approximation. The text, which features 40 examples and 200 exercises, concludes with suggested readings and a bibliography.

Hilbert Space Methods in Signal Processing

by Rodney A. Kennedy Parastoo Sadeghi

This lively and accessible book describes the theory and applications of Hilbert spaces and also presents the history of the subject to reveal the ideas behind theorems and the human struggle that led to them. The authors begin by establishing the concept of 'countably infinite', which is central to the proper understanding of separable Hilbert spaces. Fundamental ideas such as convergence, completeness and dense sets are first demonstrated through simple familiar examples and then formalised. Having addressed fundamental topics in Hilbert spaces, the authors then go on to cover the theory of bounded, compact and integral operators at an advanced but accessible level. Finally, the theory is put into action, considering signal processing on the unit sphere, as well as reproducing kernel Hilbert spaces. The text is interspersed with historical comments about central figures in the development of the theory, which helps bring the subject to life.

Refine Search

Showing 10,501 through 10,525 of 24,658 results