- Table View
- List View
Geometry Student Workbook
by Ags SecondaryGo beyond the basics of Geometry and investigate the world of planes and solids. Chapter openers and colorful photos invite exploration of geometric solids, triangles, the Pythagorean Theorem, quadratic equations, length, area, and volume. Throughout, Geometry presents short, lively lessons, and illustrated examples. Features include Estimation Activities, Algebra Review, and Geometry in Your Life. Calculator Practice exercises make use of the special features of graphing calculators. Best of all, your child will learn to apply geometry to situations in their own life.
Geometry Super Review (Super Reviews Study Guides)
by The Editors of REAGet all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Geometry Super Review includes a review of the methods of proof, points, lines, planes, angles, triangles, quadrilaterals, geometric inequalities, and geometric proportions and similarity. Advanced topics include the study of circles, polygons, coordinate geometry, and solid geometry. Take the Super Review quizzes to see how much you've learned - and where you need more study. Makes an excellent study aid and textbook companion. Great for self-study! DETAILS - From cover to cover, each in-depth topic review is easy-to-follow and easy-to-grasp - perfect when preparing for homework, quizzes, and exams! - Review questions after each topic that highlight and reinforce key areas and concepts - Student-friendly language for easy reading and comprehension - Includes quizzes that test your understanding of the subject
Geometry, Symmetries, and Classical Physics: A Mosaic
by Manousos MarkoutsakisThis book provides advanced undergraduate physics and mathematics students with an accessible yet detailed understanding of the fundamentals of differential geometry and symmetries in classical physics. Readers, working through the book, will obtain a thorough understanding of symmetry principles and their application in mechanics, field theory, and general relativity, and in addition acquire the necessary calculational skills to tackle more sophisticated questions in theoretical physics. Most of the topics covered in this book have previously only been scattered across many different sources of literature, therefore this is the first book to coherently present this treatment of topics in one comprehensive volume. Key features: Contains a modern, streamlined presentation of classical topics, which are normally taught separately Includes several advanced topics, such as the Belinfante energy-momentum tensor, the Weyl-Schouten theorem, the derivation of Noether currents for diffeomorphisms, and the definition of conserved integrals in general relativity Focuses on the clear presentation of the mathematical notions and calculational technique
Geometry Texas: Interactive Student Edition (Volume #2)
by Timothy D. Kanold Edward B. Burger Juli K. DixonVolume 2 of the first edition of this geometry textbook for students.
Geometry Through History: Euclidean, Hyperbolic, And Projective Geometries
by Meighan I. DillonPresented as an engaging discourse, this textbook invites readers to delve into the historical origins and uses of geometry. The narrative traces the influence of Euclid’s system of geometry, as developed in his classic text The Elements, through the Arabic period, the modern era in the West, and up to twentieth century mathematics. Axioms and proof methods used by mathematicians from those periods are explored alongside the problems in Euclidean geometry that lead to their work. Students cultivate skills applicable to much of modern mathematics through sections that integrate concepts like projective and hyperbolic geometry with representative proof-based exercises.For its sophisticated account of ancient to modern geometries, this text assumes only a year of college mathematics as it builds towards its conclusion with algebraic curves and quaternions. Euclid’s work has affected geometry for thousands of years, so this text has something to offer to anyone who wants to broaden their appreciation for the field.
Geometry to Go: A Mathematics Handbook
by Great Source Education GroupGeometry to Go is a reference book. The book covers logic and proof, basic elements of geometry, polygons, measurements, similarity, congruence, transformations, circles, solids, problem solving and non-Euclidean geometry. Also includes an almanac with math prefixes and suffixes, study tips, guidelines for using geometry software, a graphing calculator, test-taking strategies, and tables.
The Geometry Toolbox for Graphics and Modeling
by Gerald Farin Dianne HansfordThe Geometry Toolbox takes a novel and particularly visual approach to teaching the basic concepts of two- and three-dimensional geometry. It explains the geometry essential for today's computer modeling, computer graphics, and animation systems. While the basic theory is completely covered, the emphasis of the book is not on abstract proofs but rather on examples and algorithms. The Geometry Toolbox is the ideal text for professionals who want to get acquainted with the latest geometric tools. The chapters on basic curves and surfaces form an ideal stepping stone into the world of graphics and modeling. It is also a unique textbook for a modern introduction to linear algebra and matrix theory.
Geometry, Topology, and Dynamics in Negative Curvature
by C. S. Aravinda F. T. Farrell J. F. LafontThe ICM 2010 satellite conference 'Geometry, Topology and Dynamics in Negative Curvature' afforded an excellent opportunity to discuss various aspects of this fascinating interdisciplinary subject in which methods and techniques from geometry, topology, and dynamics often interact in novel and interesting ways. Containing ten survey articles written by some of the leading experts in the field, this proceedings volume provides an overview of important recent developments relating to negative curvature. Topics covered include homogeneous dynamics, harmonic manifolds, the Atiyah Conjecture, counting circles and arcs, and hyperbolic buildings. Each author pays particular attention to the expository aspects, making the book particularly useful for graduate students and mathematicians interested in transitioning from other areas via the common theme of negative curvature.
Geometry, Topology and Physics
by Mikio NakaharaDifferential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields.The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view.Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.
Geometry Workbook For Dummies
by Mark RyanDon't be a square! Strengthen your geometrical skills Lots of students need extra practice to master geometry. Thankfully, there's Geometry Workbook For Dummies. Packed with hundreds of practice problems and easy-to-understand concept explanations, this book takes a hands-on approach to showing you the geometric ropes. Inside, you'll find a helpful review of basic terms and concepts, so you can hit the ground running when you get to the more advanced stuff. In classic Dummies style, this workbook offers easy ways to understand theorems, proofs, and other geometry fundamentals. Figure out congruent triangles, wrap your mind around angle-arc theorems, connect radii and chords, and get smart about all the core concepts of geometry. Work through hundreds of practice problems to solidify your geometry know-how Clear up any confusion with easy-to-understand explanations of all key concepts Get tips for avoiding common mistakes and improving your test scores For students or parents looking for a hands-on approach to learning geometry, this is the perfect Dummies guide. It's great resource all on its own, or pair it with Geometry For Dummies for even more effective book learning.
Geomorphic Risk Reduction Using Geospatial Methods and Tools (Disaster Risk Reduction)
by Raju Sarkar Sunil Saha Basanta Raj Adhikari Rajib ShawThis book explores the use of advanced geospatial techniques in geomorphic hazards modelling and risk reduction. It also compares the accuracy of traditional statistical methods and advanced machine learning methods and addresses the different ways to reduce the impact of geomorphic hazards.In recent years with the development of human infrastructures, geomorphic hazards are gradually increasing, which include landslides, flood and soil erosion, among others. They cause huge loss of human property and lives. Especially in mountainous, coastal, arid and semi-arid regions, these natural hazards are the main barriers for economic development. Furthermore, human pressure and specific human actions such as deforestation, inappropriate land use and farming have increased the danger of natural disasters and degraded the natural environment, making it more difficult for environmental planners and policymakers to develop appropriate long-term sustainability plans. The most challenging task is to develop a sophisticated approach for continuous inspection and resolution of environmental problems for researchers and scientists. However, in the past several decades, geospatial technology has undergone dramatic advances, opening up new opportunities for handling environmental challenges in a more comprehensive manner.With the help of geographic information system (GIS) tools, high and moderate resolution remote sensing information, such as visible imaging, synthetic aperture radar, global navigation satellite systems, light detection and ranging, Quickbird, Worldview 3, LiDAR, SPOT 5, Google Earth Engine and others deliver state-of-the-art investigations in the identification of multiple natural hazards. For a thorough examination, advanced computer approaches focusing on cutting-edge data processing, machine learning and deep learning may be employed. To detect and manage various geomorphic hazards and their impact, several models with a specific emphasis on natural resources and the environment may be created.
Georgia High School Mathematics 2
by William S. HadleyGeorgia Mathematics, a cognitive approach to learning math covers relations and functions, algebraic functions, logic, quadrilaterals, functions, and geometry. By Carnegie Learning
Georgia Mathematics 1: Student Text
by William S. HadleyGeorgia Mathematics, a cognitive approach to learning math covers relations and functions, algebraic functions, logic, quadrilaterals, functions, and geometry. By Carnegie Learning
Georgia Middle School Mathematics Course 2
by Ron Larson Laurie Boswell Lee Stiff Timothy KanoldNIMAC-sourced textbook
Geospatial Algebraic Computations
by Joseph L. Awange Béla PalánczImproved geospatial instrumentation and technology such as in laser scanning has now resulted in millions of data being collected, e. g. , point clouds. It is in realization that such huge amount of data requires efficient and robust mathematical solutions that this third edition of the book extends the second edition by introducing three new chapters: Robust parameter estimation, Multiobjective optimization and Symbolic regression. Furthermore, the linear homotopy chapter is expanded to include nonlinear homotopy. These disciplines are discussed first in the theoretical part of the book before illustrating their geospatial applications in the applications chapters where numerous numerical examples are presented. The renewed electronic supplement contains these new theoretical and practical topics, with the corresponding Mathematica statements and functions supporting their computations introduced and applied. This third edition is renamed in light of these technological advancements.
Geospatial Data Analytics and Urban Applications (Advances in 21st Century Human Settlements)
by Sandeep Narayan KunduThis book highlights advanced applications of geospatial data analytics to address real-world issues in urban society. With a connected world, we are generating spatial at unprecedented rates which can be harnessed for insightful analytics which define the way we analyze past events and define the future directions. This book is an anthology of applications of spatial data and analytics performed on them for gaining insights which can be used for problem solving in an urban setting. Each chapter is contributed by spatially aware data scientists in the making who present spatial perspectives drawn on spatial big data. The book shall benefit mature researchers and student alike to discourse a variety of urban applications which display the use of machine learning algorithms on spatial big data for real-world problem solving.
Geospatial Data Science in Healthcare for Society 5.0 (Disruptive Technologies and Digital Transformations for Society 5.0)
by Pradeep Kumar Garg Nitin K. Tripathi Martin Kappas Loveleen GaurThe book introduces a variety of latest techniques designed to represent, enhance, and empower multi-disciplinary approaches of geographic information system (GIS), artificial intelligence (AI), deep learning (DL), machine learning, and cloud computing research in healthcare. It provides a unique compendium of the current and emerging use of geospatial data for healthcare and reflects the diversity, complexity, and depth and breadth of this multi-disciplinary area. This book addresses various aspects of how smart healthcare devices can be used to detect and analyze diseases. Further, it describes various tools and techniques to evaluate the efficacy, suitability, and efficiency of geospatial data for health-related applications. It features illustrative case studies, including future applications and healthcare challenges. This book is beneficial for computer science and engineering students and researchers, medical professionals, and anyone interested in using geospatial data in healthcare. It is also intended for experts, offering them a valuable retrospective and a global vision for the future, as well as for non-experts who are curious to learn about this important subject. The book presents an effort to draw how we can build health-related applications using geospatial big data and their subsequent analysis.
Geospatial Optimization of Solar Energy: Cases from Around the World (SpringerBriefs in Energy)
by Jay Doorga Soonil Rughooputh Ravindra BoojhawonThis book provides a comprehensive guide on how geographic information systems (GIS) can be used to optimize solar energy resources. A collection of the latest cutting-edge research is presented which seeks to address the most pressing issues faced by policymakers regarding the planning and exploitation of solar energy. Scientifically robust models are developed to guide researchers on identifying optimum sites for the implementation of solar energy projects. Each methodology presented is accompanied by global case studies, ranging from the small islands of Hawaii and Mauritius to larger countries such as India and Spain. This book is primarily targeted to researchers aspiring to unveil and optimize the solar resource potential of their countries for the benefit of a wider audience, ranging from architects, agro-industrialists, climatologists, and energy experts.
Geostatistical Functional Data Analysis (Wiley Series in Probability and Statistics)
by Jorge Mateu Ramón GiraldoGeostatistical Functional Data Analysis Explore the intersection between geostatistics and functional data analysis with this insightful new reference Geostatistical Functional Data Analysis presents a unified approach to modelling functional data when spatial and spatio-temporal correlations are present. The Editors link together the wide research areas of geostatistics and functional data analysis to provide the reader with a new area called geostatistical functional data analysis that will bring new insights and new open questions to researchers coming from both scientific fields. This book provides a complete and up-to-date account to deal with functional data that is spatially correlated, but also includes the most innovative developments in different open avenues in this field. Containing contributions from leading experts in the field, this practical guide provides readers with the necessary tools to employ and adapt classic statistical techniques to handle spatial regression. The book also includes: A thorough introduction to the spatial kriging methodology when working with functions A detailed exposition of more classical statistical techniques adapted to the functional case and extended to handle spatial correlations Practical discussions of ANOVA, regression, and clustering methods to explore spatial correlation in a collection of curves sampled in a region In-depth explorations of the similarities and differences between spatio-temporal data analysis and functional data analysis Aimed at mathematicians, statisticians, postgraduate students, and researchers involved in the analysis of functional and spatial data, Geostatistical Functional Data Analysis will also prove to be a powerful addition to the libraries of geoscientists, environmental scientists, and economists seeking insightful new knowledge and questions at the interface of geostatistics and functional data analysis.
Geostatistics
by Jean-Paul Chilès Pierre DelfinerPraise for the First Edition". . . a readable, comprehensive volume that . . . belongs on the desk, close at hand, of any serious researcher or practitioner." -Mathematical GeosciencesThe state of the art in geostatisticsGeostatistical models and techniques such as kriging and stochastic multi-realizations exploit spatial correlations to evaluate natural resources, help optimize their development, and address environmental issues related to air and water quality, soil pollution, and forestry. Geostatistics: Modeling Spatial Uncertainty, Second Edition presents a comprehensive, up-to-date reference on the topic, now featuring the latest developments in the field. The authors explain both the theory and applications of geostatistics through a unified treatment that emphasizes methodology. Key topics that are the foundation of geostatistics are explored in-depth, including stationary and nonstationary models; linear and nonlinear methods; change of support; multivariate approaches; and conditional simulations. The Second Edition highlights the growing number of applications of geostatistical methods and discusses three key areas of growth in the field: New results and methods, including kriging very large datasets; kriging with outliers; nonse??parable space-time covariances; multipoint simulations; pluri-gaussian simulations; gradual deformation; and extreme value geostatistics Newly formed connections between geostatistics and other approaches such as radial basis functions, Gaussian Markov random fields, and data assimilation New perspectives on topics such as collocated cokriging, kriging with an external drift, discrete Gaussian change-of-support models, and simulation algorithmsGeostatistics, Second Edition is an excellent book for courses on the topic at the graduate level. It also serves as an invaluable reference for earth scientists, mining and petroleum engineers, geophysicists, and environmental statisticians who collect and analyze data in their everyday work.
Geostatistics for Compositional Data with R (Use R!)
by Raimon Tolosana-Delgado Ute MuellerThis book provides a guided approach to the geostatistical modelling of compositional spatial data. These data are data in proportions, percentages or concentrations distributed in space which exhibit spatial correlation. The book can be divided into four blocks. The first block sets the framework and provides some background on compositional data analysis. Block two introduces compositional exploratory tools for both non-spatial and spatial aspects. Block three covers all necessary facets of multivariate spatial prediction for compositional data: variogram modelling, cokriging and validation. Finally, block four details strategies for simulation of compositional data, including transformations to multivariate normality, Gaussian cosimulation, multipoint simulation of compositional data, and common postprocessing techniques, valid for both Gaussian and multipoint methods. All methods are illustrated via applications to two types of data sets: one a large-scale geochemical survey, comprised of a full suite of geochemical variables, and the other from a mining context, where only the elements of greatest importance are considered. R codes are included for all aspects of the methodology, encapsulated in the R package "gmGeostats", available in CRAN.