Browse Results

Showing 11,101 through 11,125 of 27,271 results

Group Inverses of M-Matrices and Their Applications

by null Stephen J. Kirkland null Michael Neumann

Group inverses for singular M-matrices are useful tools not only in matrix analysis, but also in the analysis of stochastic processes, graph theory, electrical networks, and demographic models. Group Inverses of M-Matrices and Their Applications highlights the importance and utility of the group inverses of M-matrices in several application areas.

Group Matrices, Group Determinants and Representation Theory: The Mathematical Legacy of Frobenius (Lecture Notes in Mathematics #2233)

by Kenneth W. Johnson

This book sets out an account of the tools which Frobenius used to discover representation theory for nonabelian groups and describes its modern applications. It provides a new viewpoint from which one can examine various aspects of representation theory and areas of application, such as probability theory and harmonic analysis. For example, the focal objects of this book, group matrices, can be thought of as a generalization of the circulant matrices which are behind many important algorithms in information science. The book is designed to appeal to several audiences, primarily mathematicians working either in group representation theory or in areas of mathematics where representation theory is involved. Parts of it may be used to introduce undergraduates to representation theory by studying the appealing pattern structure of group matrices. It is also intended to attract readers who are curious about ideas close to the heart of group representation theory, which do not usually appear in modern accounts, but which offer new perspectives.

Group Representation for Quantum Theory

by Masahito Hayashi

This book explains the group representation theory for quantum theory in the language of quantum theory. As is well known, group representation theory is very strong tool for quantum theory, in particular, angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, quark model, quantum optics, and quantum information processing including quantum error correction. To describe a big picture of application of representation theory to quantum theory, the book needs to contain the following six topics, permutation group, SU(2) and SU(d), Heisenberg representation, squeezing operation, Discrete Heisenberg representation, and the relation with Fourier transform from a unified viewpoint by including projective representation. Unfortunately, although there are so many good mathematical books for a part of six topics, no book contains all of these topics because they are too segmentalized. Further, some of them are written in an abstract way in mathematical style and, often, the materials are too segmented. At least, the notation is not familiar to people working with quantum theory. Others are good elementary books, but do not deal with topics related to quantum theory. In particular, such elementary books do not cover projective representation, which is more important in quantum theory. On the other hand, there are several books for physicists. However, these books are too simple and lack the detailed discussion. Hence, they are not useful for advanced study even in physics. To resolve this issue, this book starts with the basic mathematics for quantum theory. Then, it introduces the basics of group representation and discusses the case of the finite groups, the symmetric group, e. g. Next, this book discusses Lie group and Lie algebra. This part starts with the basics knowledge, and proceeds to the special groups, e. g. , SU(2), SU(1,1), and SU(d). After the special groups, it explains concrete applications to physical systems, e. g. , angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, and quark model. Then, it proceeds to the general theory for Lie group and Lie algebra. Using this knowledge, this book explains the Bosonic system, which has the symmetries of Heisenberg group and the squeezing symmetry by SL(2,R) and Sp(2n,R). Finally, as the discrete version, this book treats the discrete Heisenberg representation which is related to quantum error correction. To enhance readers' undersnding, this book contains 54 figures, 23 tables, and 111 exercises with solutions.

Group Testing Theory in Network Security

by My T. Thai

Group Testing Theory in Network Security explores a new branch of group testing theory with an application which enhances research results in network security. This brief presents new solutions on several advanced network security problems and mathematical frameworks based on the group testing theory, specifically denial-of-service and jamming attacks. A new application of group testing, illustrated in this text, requires additional theories, such as size constraint group testing and connected group testing. Included in this text is a chapter devoted to discussing open problems and suggesting new solutions for various network security problems. This text also exemplifies the connection between mathematical approaches and practical applications to group testing theory in network security. This work will appeal to a multidisciplinary audience with interests in computer communication networks, optimization, and engineering.

A Group Theoretic Approach to Quantum Information

by Masahito Hayashi

This book is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for group representation. After the mathematical preparation of quantum information, this book discusses quantum entanglement and its quantification by using group symmetry. Group symmetry drastically simplifies the calculation of several entanglement measures although their calculations are usually very difficult to handle. This book treats optimal information processes including quantum state estimation, quantum state cloning, estimation of group action and quantum channel etc. Usually it is very difficult to derive the optimal quantum information processes without asymptotic setting of these topics. However, group symmetry allows to derive these optimal solutions without assuming the asymptotic setting. Next, this book addresses the quantum error correcting code with the symmetric structure of Weyl-Heisenberg groups. This structure leads to understand the quantum error correcting code systematically. Finally, this book focuses on the quantum universal information protocols by using the group SU(d). This topic can be regarded as a quantum version of the Csiszar-Korner's universal coding theory with the type method. The required mathematical knowledge about group representation is summarized in the companion book, Group Representation for Quantum Theory.

Group Theoretic Cryptography (Chapman & Hall/CRC Cryptography and Network Security Series)

by null Maria Isabel Gonzalez Vasco null Rainer Steinwandt

Group theory appears to be a promising source of hard computational problems for deploying new cryptographic constructions. This reference focuses on the specifics of using groups, including in particular non-Abelian groups, in the field of cryptography. It provides an introduction to cryptography with emphasis on the group theoretic perspective, making it one of the first books to use this approach. The authors provide the needed cryptographic and group theoretic concepts, full proofs of essential theorems, and formal security evaluations of the cryptographic schemes presented. They also provide references for further reading and exercises at the end of each chapter.

Group-Theoretic Methods in Mechanics and Applied Mathematics

by null D.M. Klimov

Group analysis of differential equations has applications to various problems in nonlinear mechanics and physics. Group-Theoretic Methods in Mechanics and Applied Mathematics systematizes the group analysis of the main postulates of classical and relativistic mechanics. Exact solutions are given for the following equations: dynamics of rigid body, heat transfer, wave, hydrodynamics, Thomas-Fermi, and more. The author pays particular attention to the application of group analysis to developing asymptotic methods for problems with small parameters. This book is designed for a broad audience of scientists, engineers, and students in the fields of applied mathematics, mechanics and physics.

Group Theoretical Methods in Physics: Proceedings of the XXV International Colloqium on Group Theoretical Methods in Physics, Cocoyoc, Mexico, 2-6 August, 2004 (Institute of Physics Conference Series)

by George S. Pogosyan, Luis Edgar Vicent and Kurt Bernardo Wolf

This book discusses group theoretical methods and their applications in physics, chemistry, and biology. It covers traditional subjects including Lie group and representation theory, special functions, foundations of quantum mechanics, and elementary particle, nuclear, atomic, and molecular physics. More recent areas discussed are supersymmetry, superstrings and quantum gravity, integrability, nonlinear systems and quantum chaos, semigroups, time asymmetry and resonances, condensed matter, and statistical physics. Topics such as linear and nonlinear optics, quantum computing, discrete systems, and signal analysis have only in the last few years become part of the group theorists' turf.

Group Theoretical Methods in Physics. Volume II: Proceedings of the Third Yurmala Seminar, Yurmala, USSR, 22-24 May 1985

by M. A. Markov V. I. Man'Ko V. V. Dodonov

These Proceedings cover various topics in modern physics in which group theoretical methods can be applied effectively. The two volumes, containing over 100 papers, cover such areas as representation theory, the theory and applications of dynamical symmetries and coherent states, symmetries in atomic, molecular, nuclear and elementary particle physics, field theory including gauge theories, supersymmetry and supergravity, general relativity and cosmology, the theory of space groups and its applications to solid state physics and phase transitions, the problems of quantum and classical mechanics and paraxial optics, and the theory of nonlinear equations and solitons.

Group Theory

by Pierre Ramond

Group theory has long been an important computational tool for physicists, but, with the advent of the Standard Model, it has become a powerful conceptual tool as well. This book introduces physicists to many of the fascinating mathematical aspects of group theory, and mathematicians to its physics applications. Designed for advanced undergraduate and graduate students, this book gives a comprehensive overview of the main aspects of both finite and continuous group theory, with an emphasis on applications to fundamental physics. Finite groups are extensively discussed, highlighting their irreducible representations and invariants. Lie algebras, and to a lesser extent Kac-Moody algebras, are treated in detail, including Dynkin diagrams. Special emphasis is given to their representations and embeddings. The group theory underlying the Standard Model is discussed, along with its importance in model building. Applications of group theory to the classification of elementary particles are treated in detail.

Group Theory (Dover Books on Mathematics)

by W. R. Scott

Well-organized and clearly written, this undergraduate-level text covers most of the standard basic theorems in group theory, providing proofs of the basic theorems of both finite and infinite groups and developing as much of their superstructure as space permits. Contents include: Isomorphism Theorems, Direct Sums, p-Groups and p-Subgroups, Free Groups and Free Products, Permutation Groups, Transformations and Subgroups, Abelian Groups, Supersolvable Groups, Extensions, Representations, and more. The concluding chapters also cover a wide variety of further theorems, some not previously published in book form, including infinite symmetric and alternating groups, products of subgroups, the multiplicative group of a division ring, and FC groups.Over 500 exercises in varying degrees of difficulty enable students to test their grasp of the material, which is largely self-contained (except for later chapters which presuppose some knowledge of linear algebra, polynomials, algebraic integers, and elementary number theory). Also included are a bibliography, index, and an index of notation. Ideal as a text or for reference, this inexpensive paperbound edition of Group Theory offers mathematics students a lucid, highly useful introduction to an increasingly vital mathematical discipline. It will be welcomed by anyone in search of a cogent, thorough presentation that lends itself equally well to self-study or regular course work.

Group Theory for High Energy Physicists

by null Mohammad Saleem null Muhammad Rafique

Although group theory has played a significant role in the development of various disciplines of physics, there are few recent books that start from the beginning and then build on to consider applications of group theory from the point of view of high energy physicists. Group Theory for High Energy Physicists fills that role. It presents groups, e

Group Theory I Essentials

by Emil Milewski

REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Group Theory I includes sets and mapping, groupoids and semi-groups, groups, isomorphisms and homomorphisms, cyclic groups, the Sylow theorems, and finite p-groups.

Group Theory in Particle, Nuclear, and Hadron Physics

by Syed Afsar Abbas

This user-friendly book on group theory introduces topics in as simple a manner as possible and then gradually develops those topics into more advanced ones, eventually building up to the current state-of-the-art. By using simple examples from physics and mathematics, the advanced topics become logical extensions of ideas already introduced. In addition to being used as a textbook, this book would also be useful as a reference guide for graduates and researchers in particle, nuclear and hadron physics.

Group Theory in Physics: An Introduction with a Focus on Solid State Physics (Undergraduate Lecture Notes in Physics)

by Jörg Bünemann

This textbook provides a didactic introduction to the topic of group theory in physics, with a special focus on solid state physics issues. The book is useful for students who encounter such problems in their first scientific work (in theory or experiment). In addition to the basic introduction to group theory and representation theory, the book deals with point groups, double point groups, and space groups, which are essential in solid state physics. As an example for systems with space group symmetry, electrons in periodic potentials are discussed. Furthermore, there are chapters on material tensors and the Wigner Eckart theorem for the evaluation of matrix elements. The latter is especially interesting for students dealing with spectroscopic problems. The content is accompanied by a series of exercises and examples. A set of solutions can be found in the appendix.

Group Theory in the Bedroom, and Other Mathematical Diversions

by Brian Hayes

An Award-Winning Essayist Plies His CraftBrian Hayes is one of the most accomplished essayists active today—a claim supported not only by his prolific and continuing high-quality output but also by such honors as the National Magazine Award for his commemorative Y2K essay titled "Clock of Ages," published in the November/December 1999 issue of The Sciences magazine. (The also-rans that year included Tom Wolfe, Verlyn Klinkenborg, and Oliver Sacks.) Hayes's work in this genre has also appeared in such anthologies as The BestAmerican Magazine Writing, The Best American Science and NatureWriting, and The Norton Reader. Here he offers us a selection of his most memorable and accessible pieces—including "Clock of Ages"—embellishing them with an overall, scene-setting preface, reconfigured illustrations, and a refreshingly self-critical "Afterthoughts" section appended to each essay.

The Group Theory Puzzle Book (Springer Undergraduate Mathematics Series)

by David Nacin

This book introduces readers to key concepts in group theory through engaging puzzles. The early sections of the book show how the rules of group theory emerge naturally from solving puzzles. Different classes of groups, such as cyclic, dihedral and permutation groups are introduced, accompanied by numerous puzzles to facilitate the understanding of the underlying group structures. Later chapters explain how further group theory principles can be applied to puzzle-solving. This book is intended as a highly motivating supplementary text for an undergraduate abstract algebra course. It is also ideal for anyone seeking a fun, hands-on approach to learning group theory. Additionally, the book's many puzzles will be enjoyable for readers already familiar with group theory.

Groupes algébriques semi-simples en dimension cohomologique ≤2: Semisimple algebraic groups in cohomological dimension ≤2 (Lecture Notes in Mathematics #2238)

by Philippe Gille

La théorie des groupes algébriques sur un corps arbitraire est l’une des branches les plus merveilleuses des mathématiques modernes. Cette monographie porte sur les groupes algébriques semi-simples définis sur un corps k de dimension cohomologique séparable ≤2 et la cohomologie galoisienne d’iceux. La question ouverte la plus importante est la conjecture II de Serre (1962) qui prédit l’annulation de la cohomologie galoisienne d’un groupe semi-simple simplement connexe.Utilisant principalement des techniques de groupes algébriques, on couvre tous les cas connus de la conjecture: les cas classiques (dus à Bayer-Fluckiger and Parimala) ainsi que les avancées sur les cas exceptionnels restants (par exemple de type E8). Ceci s’applique à la classification des groupes semi-simples. The theory of algebraic groups over arbitrary fields is one of the most beautiful branches of modern mathematics. This monograph deals with semisimple algebraic groups over a general field k of separable cohomological dimension ^ to Bayer-Fluckiger and Parimala), and some perspectives are given on the remaining exceptional cases (e.g., G of type E8). Applications to the classification of semisimple k-groups are presented.

Groupoid Metrization Theory

by Marius Mitrea Sylvie Monniaux Dorina Mitrea Irina Mitrea

The topics in this research monograph are at the interface of several areas of mathematics such as harmonic analysis, functional analysis, analysis on spaces of homogeneous type, topology, and quasi-metric geometry. The presentation is self-contained with complete, detailed proofs, and a large number of examples and counterexamples are provided. Unique features of Metrization Theory for Groupoids: With Applications to Analysis on Quasi-Metric Spaces and Functional Analysis include: * treatment of metrization from a wide, interdisciplinary perspective, with accompanying applications ranging across diverse fields; * coverage of topics applicable to a variety of scientific areas within pure mathematics; * useful techniques and extensive reference material; * includes sharp results in the field of metrization. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties. * coverage of topics applicable to a variety of scientific areas within pure mathematics; * useful techniques and extensive reference material; * includes sharp results in the field of metrization. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties. * useful techniques and extensive reference material; * includes sharp results in the field of metrization. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties. * includes sharp results in the field of metrization. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties.

Groups

by Antonio Machì

Groups are a means of classification, via the group action on a set, but also the object of a classification. How many groups of a given type are there, and how can they be described? Hölder's program for attacking this problem in the case of finite groups is a sort of leitmotiv throughout the text. Infinite groups are also considered, with particular attention to logical and decision problems. Abelian, nilpotent and solvable groups are studied both in the finite and infinite case. Permutation groups and are treated in detail; their relationship with Galois theory is often taken into account. The last two chapters deal with the representation theory of finite group and the cohomology theory of groups; the latter with special emphasis on the extension problem. The sections are followed by exercises; hints to the solution are given, and for most of them a complete solution is provided.

Groups and Characters

by Victor E Hill

Group representation theory is both elegant and practical, with important applications to quantum mechanics, spectroscopy, crystallography, and other fields in the physical sciences. This book offers an easy-to-follow introduction to the theory of groups and of group characters. Designed as a rapid survey of the subject, it emphasizes examples and applications of the theorems, and avoids many of the longer and more difficult proofs. The text includes sections that provide the mathematical basis for some of the applications of group theory. It also offers numerous exercises, some stressing computation of concrete examples, others stressing development of the theory.

Groups, Graphs and Random Walks (London Mathematical Society Lecture Note Series #436)

by Tullio Ceccherini-Silberstein Maura Salvatori Ecaterina Sava-Huss

An accessible and panoramic account of the theory of random walks on groups and graphs, stressing the strong connections of the theory with other branches of mathematics, including geometric and combinatorial group theory, potential analysis, and theoretical computer science. This volume brings together original surveys and research-expository papers from renowned and leading experts, many of whom spoke at the workshop 'Groups, Graphs and Random Walks' celebrating the sixtieth birthday of Wolfgang Woess in Cortona, Italy. Topics include: growth and amenability of groups; Schrdinger operators and symbolic dynamics; ergodic theorems; Thompson's group F; Poisson boundaries; probability theory on buildings and groups of Lie type; structure trees for edge cuts in networks; and mathematical crystallography. In what is currently a fast-growing area of mathematics, this book provides an up-to-date and valuable reference for both researchers and graduate students, from which future research activities will undoubtedly stem.

Groups, Invariants, Integrals, and Mathematical Physics: The Wisła 20-21 Winter School and Workshop (Tutorials, Schools, and Workshops in the Mathematical Sciences)

by Maria Ulan Stanislav Hronek

This volume presents lectures given at the Wisła 20-21 Winter School and Workshop: Groups, Invariants, Integrals, and Mathematical Physics, organized by the Baltic Institute of Mathematics. The lectures were dedicated to differential invariants – with a focus on Lie groups, pseudogroups, and their orbit spaces – and Poisson structures in algebra and geometry and are included here as lecture notes comprising the first two chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and category theory. Specific topics covered include:The multisymplectic and variational nature of Monge-Ampère equations in dimension fourIntegrability of fifth-order equations admitting a Lie symmetry algebraApplications of the van Kampen theorem for groupoids to computation of homotopy types of striped surfacesA geometric framework to compare classical systems of PDEs in the category of smooth manifoldsGroups, Invariants, Integrals, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry and category theory is assumed.

Groups, Matrices, and Vector Spaces: A Group Theoretic Approach to Linear Algebra

by James B. Carrell

To emphasize the importance of a foundation of knowledge in both geometry and algebra, this text includes an introduction to Euclidean Spaces, and a brief treatment of algebraic topics such as matrix algebra, linear systems, vector spaces, linear coding theory, determinants, eigentheory, group theory, ring theory, and field extensions, even covering an introduction to cryptography.

Groups, Modules, and Model Theory - Surveys and Recent Developments

by Manfred Droste László Fuchs Brendan Goldsmith Lutz Strüngmann

This volume focuses on group theory and model theory with a particular emphasis on the interplay of the two areas. The survey papers provide an overview of the developments across group, module, and model theory while the research papers present the most recent study in those same areas. With introductory sections that make the topics easily accessible to students, the papers in this volume will appeal to beginning graduate students and experienced researchers alike. As a whole, this book offers a cross-section view of the areas in group, module, and model theory, covering topics such as DP-minimal groups, Abelian groups, countable 1-transitive trees, and module approximations. The papers in this book are the proceedings of the conference "New Pathways between Group Theory and Model Theory," which took place February 1-4, 2016, in M#65533;lheim an der Ruhr, Germany, in honor of the editors' colleague R#65533;diger G#65533;bel. This publication is dedicated to Professor G#65533;bel, who passed away in 2014. He was one of the leading experts in Abelian group theory.

Refine Search

Showing 11,101 through 11,125 of 27,271 results