Browse Results

Showing 11,126 through 11,150 of 28,251 results

Geometry of Minkowski Space-Time

by Dino Boccaletti Paolo Zampetti Vincenzo Catoni Roberto Cannata Francesco Catoni

This book provides an original introduction to the geometry of Minkowski space-time. A hundred years after the space-time formulation of special relativity by Hermann Minkowski, it is shown that the kinematical consequences of special relativity are merely a manifestation of space-time geometry. The book is written with the intention of providing students (and teachers) of the first years of University courses with a tool which is easy to be applied and allows the solution of any problem of relativistic kinematics at the same time. The book treats in a rigorous way, but using a non-sophisticated mathematics, the Kinematics of Special Relativity. As an example, the famous "Twin Paradox" is completely solved for all kinds of motions. The novelty of the presentation in this book consists in the extensive use of hyperbolic numbers, the simplest extension of complex numbers, for a complete formalization of the kinematics in the Minkowski space-time. Moreover, from this formalization the understanding of gravity comes as a manifestation of curvature of space-time, suggesting new research fields.

Geometry of Moduli (Abel Symposia #14)

by Jan Arthur Christophersen Kristian Ranestad

The proceedings from the Abel Symposium on Geometry of Moduli, held at Svinøya Rorbuer, Svolvær in Lofoten, in August 2017, present both survey and research articles on the recent surge of developments in understanding moduli problems in algebraic geometry. Written by many of the main contributors to this evolving subject, the book provides a comprehensive collection of new methods and the various directions in which moduli theory is advancing. These include the geometry of moduli spaces, non-reductive geometric invariant theory, birational geometry, enumerative geometry, hyper-kähler geometry, syzygies of curves and Brill-Noether theory and stability conditions. Moduli theory is ubiquitous in algebraic geometry, and this is reflected in the list of moduli spaces addressed in this volume: sheaves on varieties, symmetric tensors, abelian differentials, (log) Calabi-Yau varieties, points on schemes, rational varieties, curves, abelian varieties and hyper-Kähler manifolds.

Geometry of PDEs and Related Problems: Cetraro, Italy 2017 (Lecture Notes in Mathematics #2220)

by Rolando Magnanini Xavier Cabré Antoine Henrot Daniel Peralta-Salas Wolfgang Reichel Henrik Shahgholian Chiara Bianchini

The aim of this book is to present different aspects of the deep interplay between Partial Differential Equations and Geometry. It gives an overview of some of the themes of recent research in the field and their mutual links, describing the main underlying ideas, and providing up-to-date references.Collecting together the lecture notes of the five mini-courses given at the CIME Summer School held in Cetraro (Cosenza, Italy) in the week of June 19–23, 2017, the volume presents a friendly introduction to a broad spectrum of up-to-date and hot topics in the study of PDEs, describing the state-of-the-art in the subject. It also gives further details on the main ideas of the proofs, their technical difficulties, and their possible extension to other contexts. Aiming to be a primary source for researchers in the field, the book will attract potential readers from several areas of mathematics.

Geometry of Quantum States: An Introduction to Quantum Entanglement

by Ingemar Bengtsson Karol Życzkowski

Quantum information theory is a branch of science at the frontier of physics, mathematics, and information science, and offers a variety of solutions that are impossible using classical theory. This book provides a detailed introduction to the key concepts used in processing quantum information and reveals that quantum mechanics is a generalisation of classical probability theory. The second edition contains new sections and entirely new chapters: the hot topic of multipartite entanglement; in-depth discussion of the discrete structures in finite dimensional Hilbert space, including unitary operator bases, mutually unbiased bases, symmetric informationally complete generalized measurements, discrete Wigner function, and unitary designs; the Gleason and Kochen-Specker theorems; the proof of the Lieb conjecture; the measure concentration phenomenon; and the Hastings' non-additivity theorem. This richly-illustrated book will be useful to a broad audience of graduates and researchers interested in quantum information theory. Exercises follow each chapter, with hints and answers supplied.

Geometry of Submanifolds (Dover Books on Mathematics)

by Bang-Yen Chen

The first two chapters of this frequently cited reference provide background material in Riemannian geometry and the theory of submanifolds. Subsequent chapters explore minimal submanifolds, submanifolds with parallel mean curvature vector, conformally flat manifolds, and umbilical manifolds. The final chapter discusses geometric inequalities of submanifolds, results in Morse theory and their applications, and total mean curvature of a submanifold.Suitable for graduate students and mathematicians in the area of classical and modern differential geometries, the treatment is largely self-contained. Problems sets conclude each chapter, and an extensive bibliography provides background for students wishing to conduct further research in this area. This new edition includes the author's corrections.

Geometry of Submanifolds and Applications (Infosys Science Foundation Series)

by Bang-Yen Chen Majid Ali Choudhary Mohammad Nazrul Islam Khan

This book features chapters written by renowned scientists from various parts of the world, providing an up-to-date survey of submanifold theory, spanning diverse topics and applications. The book covers a wide range of topics such as Chen–Ricci inequalities in differential geometry, optimal inequalities for Casorati curvatures in quaternion geometry, conformal η-Ricci–Yamabe solitons, submersion on statistical metallic structure, solitons in f(R, T)-gravity, metric-affine geometry, generalized Wintgen inequalities, tangent bundles, and Lagrangian submanifolds.Moreover, the book showcases the latest findings on Pythagorean submanifolds and submanifolds of four-dimensional f-manifolds. The chapters in this book delve into numerous problems and conjectures on submanifolds, providing valuable insights for scientists, educators, and graduate students looking to stay updated with the latest developments in the field. With its comprehensive coverage and detailed explanations, this book is an essential resource for anyone interested in submanifold theory.

Geometry of Surfaces: A Practical Guide for Mechanical Engineers

by Stephen P. Radzevich

This updated and expanded edition presents a highly accurate specification for part surface machining. Precise specification reduces the cost of this widely used industrial operation as accurately specified and machined part surfaces do not need to undergo costly final finishing. Dr. Radzevich describes techniques in this volume based primarily on classical differential geometry of surfaces. He then transitions from differential geometry of surfaces to engineering geometry of surfaces, and examines how part surfaces are either machined themselves, or are produced by tools with surfaces that are precisely machined. The book goes on to explain specific methods, such as derivation of planar characteristic curves based on Plücker conoid constructed at a point of the part surface, and that analytical description of part surface is vital for surfaces machined using CNC technology, and especially so for multi-axes NC machines. Providing readers with a powerful tool for analytical description of part surfaces machined on conventional machine tools and numerically controlled machines, this book maximizes understanding on optimal treatment of part surfaces to meet the requirements of today’s high tech industry.

Geometry of the Generalized Geodesic Flow and Inverse Spectral Problems

by Luchezar N. Stoyanov Vesselin M. Petkov

This book is a new edition of a title originally published in1992. No other book has been published that treats inverse spectral and inverse scattering results by using the so called Poisson summation formula and the related study of singularities. This book presents these in a closed and comprehensive form, and the exposition is based on a combination of different tools and results from dynamical systems, microlocal analysis, spectral and scattering theory.The content of the first edition is still relevant, however the new edition will include several new results established after 1992; new text will comprise about a third of the content of the new edition. The main chapters in the first edition in combination with the new chapters will provide a better and more comprehensive presentation of importance for the applications inverse results. These results are obtained by modern mathematical techniques which will be presented together in order to give the readers the opportunity to completely understand them. Moreover, some basic generic properties established by the authors after the publication of the first edition establishing the wide range of applicability of the Poison relation will be presented for first time in the new edition of the book.

Geometry of the Phase Retrieval Problem: Graveyard of Algorithms (Cambridge Monographs on Applied and Computational Mathematics)

by Charles L. Epstein Alexander H. Barnett Leslie Greengard Jeremy Magland

Recovering the phase of the Fourier transform is a ubiquitous problem in imaging applications from astronomy to nanoscale X-ray diffraction imaging. Despite the efforts of a multitude of scientists, from astronomers to mathematicians, there is, as yet, no satisfactory theoretical or algorithmic solution to this class of problems. Written for mathematicians, physicists and engineers working in image analysis and reconstruction, this book introduces a conceptual, geometric framework for the analysis of these problems, leading to a deeper understanding of the essential, algorithmically independent, difficulty of their solutions. Using this framework, the book studies standard algorithms and a range of theoretical issues in phase retrieval and provides several new algorithms and approaches to this problem with the potential to improve the reconstructed images. The book is lavishly illustrated with the results of numerous numerical experiments that motivate the theoretical development and place it in the context of practical applications.

Geometry of the Unit Sphere in Polynomial Spaces (SpringerBriefs in Mathematics)

by Manuel Maestre Jesús Ferrer Domingo García Gustavo A. Muñoz Daniel L. Rodríguez Juan B. Seoane

This brief presents a global perspective on the geometry of spaces of polynomials. Its particular focus is on polynomial spaces of dimension 3, providing, in that case, a graphical representation of the unit ball. Also, the extreme points in the unit ball of several polynomial spaces are characterized. Finally, a number of applications to obtain sharp classical polynomial inequalities are presented.The study performed is the first ever complete account on the geometry of the unit ball of polynomial spaces. Nowadays there are hundreds of research papers on this topic and our work gathers the state of the art of the main and/or relevant results up to now. This book is intended for a broad audience, including undergraduate and graduate students, junior and senior researchers and it also serves as a source book for consultation. In addition to that, we made this work visually attractive by including in it over 50 original figures in order to help in the understanding of all the results and techniques included in the book.

Geometry to Go: A Mathematics Handbook

by Great Source Education Group

Geometry to Go is a reference book. The book covers logic and proof, basic elements of geometry, polygons, measurements, similarity, congruence, transformations, circles, solids, problem solving and non-Euclidean geometry. Also includes an almanac with math prefixes and suffixes, study tips, guidelines for using geometry software, a graphing calculator, test-taking strategies, and tables.

Geometry with Data Analysis (Big Ideas Math)

by Ron Larson Laurie Boswell

NIMAC-sourced textbook

Geometry, A Reference Guide

by Paul Thomas Ann Lewis Robert Lewis

NIMAC-sourced textbook

Geometry, Florida

by Randall I. Charles Basia Hall Dan Kennedy Grant Wiggins Art Johnson Laurie E. Bass Stuart J. Murphy

NIMAC-sourced textbook

Geometry, Its Elements and Structure: Second Edition

by Alfred S. Posamentier Robert L. Bannister

With its coverage of plane, solid, coordinate, vector, and non-Euclidean geometry, this text is suitable for high school, college, and continuing education courses as well as independent study. Each new topic is carefully developed and clarified with many examples. More than 2,000 illustrations help students visualize the problems. Every set of exercises is preceded by numerous examples with detailed solutions. Chapters include a vocabulary list, set of review exercises, chapter test, and topics for suggested research. Periodic cumulative reviews offer the opportunity for self-evaluation.Co-written by Alfred S. Posamentier, a bestselling author of high school and university textbooks and pioneer of educational standards, this volume is geared toward high school geometry classes and contains standard material for numerous state competencies. An electronic solutions manual is available upon request.

Geometry, Lie Theory and Applications: The Abel Symposium 2019 (Abel Symposia #16)

by Sigbjørn Hervik Boris Kruglikov Irina Markina Dennis The

This book consists of contributions from the participants of the Abel Symposium 2019 held in Ålesund, Norway. It was centered about applications of the ideas of symmetry and invariance, including equivalence and deformation theory of geometric structures, classification of differential invariants and invariant differential operators, integrability analysis of equations of mathematical physics, progress in parabolic geometry and mathematical aspects of general relativity.The chapters are written by leading international researchers, and consist of both survey and research articles. The book gives the reader an insight into the current research in differential geometry and Lie theory, as well as applications of these topics, in particular to general relativity and string theory.

Geometry, Mechanics, and Control in Action for the Falling Cat (Lecture Notes in Mathematics #2289)

by Toshihiro Iwai

The falling cat is an interesting theme to pursue, in which geometry, mechanics, and control are in action together. As is well known, cats can almost always land on their feet when tossed into the air in an upside-down attitude. If cats are not given a non-vanishing angular momentum at an initial instant, they cannot rotate during their motion, and the motion they can make in the air is vibration only. However, cats accomplish a half turn without rotation when landing on their feet. In order to solve this apparent mystery, one needs to thoroughly understand rotations and vibrations. The connection theory in differential geometry can provide rigorous definitions of rotation and vibration for many-body systems. Deformable bodies of cats are not easy to treat mechanically. A feasible way to approach the question of the falling cat is to start with many-body systems and then proceed to rigid bodies and, further, to jointed rigid bodies, which can approximate the body of a cat. In this book, the connection theory is applied first to a many-body system to show that vibrational motions of the many-body system can result in rotations without performing rotational motions and then to the cat model consisting of jointed rigid bodies. On the basis of this geometric setting, mechanics of many-body systems and of jointed rigid bodies must be set up. In order to take into account the fact that cats can deform their bodies, three torque inputs which may give a twist to the cat model are applied as control inputs under the condition of the vanishing angular momentum. Then, a control is designed according to the port-controlled Hamiltonian method for the model cat to perform a half turn and to halt the motion upon landing. The book also gives a brief review of control systems through simple examples to explain the role of control inputs.

Geometry, Mechanics, and Dynamics

by Dong Eui Chang Darryl D. Holm George Patrick Tudor Ratiu

This book illustrates the broad range of Jerry Marsden's mathematical legacy in areas of geometry, mechanics, and dynamics, from very pure mathematics to very applied, but always with a geometric perspective. Each contribution develops its material from the viewpoint of geometric mechanics beginning at the very foundations, introducing readers to modern issues via illustrations in a wide range of topics. The twenty refereed papers contained in this volume are based on lectures and research performed during the month of July 2012 at the Fields Institute for Research in Mathematical Sciences, in a program in honor of Marsden's legacy. The unified treatment of the wide breadth of topics treated in this book will be of interest to both experts and novices in geometric mechanics. Experts will recognize applications of their own familiar concepts and methods in a wide variety of fields, some of which they may never have approached from a geometric viewpoint. Novices may choose topics that interest them among the various fields and learn about geometric approaches and perspectives toward those topics that will be new for them as well.

Geometry, Modules 1 & 2 (Eureka Math)

by Great Minds

NIMAC-sourced textbook

Geometry, Modules 3, 4, & 5 (Eureka Math)

by Great Minds

NIMAC-sourced textbook

Geometry, Symmetries, and Classical Physics: A Mosaic

by Manousos Markoutsakis

This book provides advanced undergraduate physics and mathematics students with an accessible yet detailed understanding of the fundamentals of differential geometry and symmetries in classical physics. Readers, working through the book, will obtain a thorough understanding of symmetry principles and their application in mechanics, field theory, and general relativity, and in addition acquire the necessary calculational skills to tackle more sophisticated questions in theoretical physics. Most of the topics covered in this book have previously only been scattered across many different sources of literature, therefore this is the first book to coherently present this treatment of topics in one comprehensive volume. Key features: Contains a modern, streamlined presentation of classical topics, which are normally taught separately Includes several advanced topics, such as the Belinfante energy-momentum tensor, the Weyl-Schouten theorem, the derivation of Noether currents for diffeomorphisms, and the definition of conserved integrals in general relativity Focuses on the clear presentation of the mathematical notions and calculational technique

Geometry, Topology and Operator Algebras: Global Analysis, Invariants and Their Significance in Theoretical Physics (Mathematical Physics Studies)

by Alexander Cardona Andrés F. Reyes Lega

This book offers a comprehensive exploration of contemporary intersections between geometry, topology, and theoretical physics, emphasizing their mathematical foundations and applications. Originating from lectures presented by experts during two summer schools held in Villa de Leyva, Colombia, the book reflects the synergy between global analysis, operator algebras, and their role in modern physics. The chapters present state-of-the-art developments on a wide range of topics: the geometry and topology of foliations, affine manifolds, C*-algebras, and the pseudo-differential calculus of boundary value problems. These are enriched by applications to the theory of topological quantum matter. The book is suitable for graduate students and researchers, offering detailed introductions to advanced topics such as the longitudinal index theorem for foliations, the geometry of the Poincaré half-space in a C*-algebra, and mathematical frameworks for topological matter. With a balance of foundational material and novel insights, it serves as both a learning resource and a reference for advanced studies at the intersection of mathematics and physics.

Geometry, Topology and Physics

by Mikio Nakahara

Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields.The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view.Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.

Geometry, Topology, and Dynamics in Negative Curvature

by C. S. Aravinda F. T. Farrell J. F. Lafont

The ICM 2010 satellite conference 'Geometry, Topology and Dynamics in Negative Curvature' afforded an excellent opportunity to discuss various aspects of this fascinating interdisciplinary subject in which methods and techniques from geometry, topology, and dynamics often interact in novel and interesting ways. Containing ten survey articles written by some of the leading experts in the field, this proceedings volume provides an overview of important recent developments relating to negative curvature. Topics covered include homogeneous dynamics, harmonic manifolds, the Atiyah Conjecture, counting circles and arcs, and hyperbolic buildings. Each author pays particular attention to the expository aspects, making the book particularly useful for graduate students and mathematicians interested in transitioning from other areas via the common theme of negative curvature.

Geometry: 1,001 Practice Problems For Dummies (+ Free Online Practice)

by Amber Kuang Allen Ma

easy, medium, and hardFree one-year access to the online questions bankWith 1,001 Geometry Practice Problems For Dummies, you'll get the practice you need to master geometry and gain confidence in the classroom.

Refine Search

Showing 11,126 through 11,150 of 28,251 results