Browse Results

Showing 11,626 through 11,650 of 24,750 results

Introduction to Abstract Harmonic Analysis: University Series In Higher Mathematics (Dover Books on Mathematics)

by Lynn H. Loomis

This classic monograph is the work of a prominent contributor to the field of harmonic analysis. Geared toward advanced undergraduates and graduate students, it focuses on methods related to Gelfand's theory of Banach algebra. Prerequisites include a knowledge of the concepts of elementary modern algebra and of metric space topology.The first three chapters feature concise, self-contained treatments of measure theory, general topology, and Banach space theory that will assist students in their grasp of subsequent material. An in-depth exposition of Banach algebra follows, along with examinations of the Haar integral and the deduction of the standard theory of harmonic analysis on locally compact Abelian groups and compact groups. Additional topics include positive definite functions and the generalized Plancherel theorem, the Wiener Tauberian theorem and the Pontriagin duality theorem, representation theory, and the theory of almost periodic functions.

An Introduction to Acceptance Sampling and SPC with R

by John Lawson

An Introduction to Acceptance Sampling and SPC with R is an introduction to statistical methods used in monitoring, controlling and improving quality. Topics covered include acceptance sampling; Shewhart control charts for Phase I studies; graphical and statistical tools for discovering and eliminating the cause of out-of-control-conditions; Cusum and EWMA control charts for Phase II process monitoring; and the design and analysis of experiments for process troubleshooting and discovering ways to improve process output. Origins of statistical quality control and the technical topics presented in the remainder of the book are those recommended in the ANSI/ASQ/ISO guidelines and standards for industry. The final chapter ties everything together by discussing modern management philosophies that encourage the use of the technical methods presented earlier. In the modern world sampling plans and the statistical calculations used in statistical quality control are done with the help of computers. As an open source high-level programming language with flexible graphical output options, R runs on Windows, Mac and Linux operating systems, and has add-on packages that equal or exceed the capability of commercial software for statistical methods used in quality control. In this book, we will focus on several R packages. In addition to demonstrating how to use R for acceptance sampling and control charts, this book will concentrate on how the use of these specific tools can lead to quality improvements both within a company and within their supplier companies. This would be a suitable book for a one-semester undergraduate course emphasizing statistical quality control for engineering majors (such as manufacturing engineering or industrial engineering), or a supplemental text for a graduate engineering course that included quality control topics.

Introduction to Algebraic Geometry

by Igor Kriz Sophie Kriz

The goal of this book is to provide an introduction to algebraic geometry accessible to students. Starting from solutions of polynomial equations, modern tools of the subject soon appear, motivated by how they improve our understanding of geometrical concepts. In many places, analogies and differences with related mathematical areas are explained. The text approaches foundations of algebraic geometry in a complete and self-contained way, also covering the underlying algebra. The last two chapters include a comprehensive treatment of cohomology and discuss some of its applications in algebraic geometry.

Introduction to Algebraic Geometry: Interscience Tracts In Pure And Applied Mathematics, No. 5 (Dover Books on Mathematics)

by Serge Lang

Author Serge Lang defines algebraic geometry as the study of systems of algebraic equations in several variables and of the structure that one can give to the solutions of such equations. The study can be carried out in four ways: analytical, topological, algebraico-geometric, and arithmetic. This volume offers a rapid, concise, and self-contained introductory approach to the algebraic aspects of the third method, the algebraico-geometric. The treatment assumes only familiarity with elementary algebra up to the level of Galois theory.Starting with an opening chapter on the general theory of places, the author advances to examinations of algebraic varieties, the absolute theory of varieties, and products, projections, and correspondences. Subsequent chapters explore normal varieties, divisors and linear systems, differential forms, the theory of simple points, and algebraic groups, concluding with a focus on the Riemann-Roch theorem. All the theorems of a general nature related to the foundations of the theory of algebraic groups are featured.

An Introduction to Algebraic Statistics with Tensors (UNITEXT #118)

by Cristiano Bocci Luca Chiantini

This book provides an introduction to various aspects of Algebraic Statistics with the principal aim of supporting Master’s and PhD students who wish to explore the algebraic point of view regarding recent developments in Statistics. The focus is on the background needed to explore the connections among discrete random variables. The main objects that encode these relations are multilinear matrices, i.e., tensors. The book aims to settle the basis of the correspondence between properties of tensors and their translation in Algebraic Geometry. It is divided into three parts, on Algebraic Statistics, Multilinear Algebra, and Algebraic Geometry. The primary purpose is to describe a bridge between the three theories, so that results and problems in one theory find a natural translation to the others. This task requires, from the statistical point of view, a rather unusual, but algebraically natural, presentation of random variables and their main classical features. The third part of the book can be considered as a short, almost self-contained, introduction to the basic concepts of algebraic varieties, which are part of the fundamental background for all who work in Algebraic Statistics.

An Introduction to Algebraic Structures (Dover Books on Mathematics)

by Joseph Landin

As the author notes in the preface, "The purpose of this book is to acquaint a broad spectrum of students with what is today known as 'abstract algebra.'" Written for a one-semester course, this self-contained text includes numerous examples designed to base the definitions and theorems on experience, to illustrate the theory with concrete examples in familiar contexts, and to give the student extensive computational practice.The first three chapters progress in a relatively leisurely fashion and include abundant detail to make them as comprehensible as possible. Chapter One provides a short course in sets and numbers for students lacking those prerequisites, rendering the book largely self-contained. While Chapters Four and Five are more challenging, they are well within the reach of the serious student.The exercises have been carefully chosen for maximum usefulness. Some are formal and manipulative, illustrating the theory and helping to develop computational skills. Others constitute an integral part of the theory, by asking the student to supply proofs or parts of proofs omitted from the text. Still others stretch mathematical imaginations by calling for both conjectures and proofs.Taken together, text and exercises comprise an excellent introduction to the power and elegance of abstract algebra. Now available in this inexpensive edition, the book is accessible to a wide range of students, who will find it an exceptionally valuable resource.

Introduction to Algebraic Topology (Compact Textbooks in Mathematics)

by Holger Kammeyer

This textbook provides a succinct introduction to algebraic topology. It follows a modern categorical approach from the beginning and gives ample motivation throughout so that students will find this an ideal first encounter to the field. Topics are treated in a self-contained manner, making this a convenient resource for instructors searching for a comprehensive overview of the area.It begins with an outline of category theory, establishing the concepts of functors, natural transformations, adjunction, limits, and colimits. As a first application, van Kampen's theorem is proven in the groupoid version. Following this, an excursion to cofibrations and homotopy pushouts yields an alternative formulation of the theorem that puts the computation of fundamental groups of attaching spaces on firm ground. Simplicial homology is then defined, motivating the Eilenberg-Steenrod axioms, and the simplicial approximation theorem is proven. After verifying the axioms for singular homology, various versions of the Mayer-Vietoris sequence are derived and it is shown that homotopy classes of self-maps of spheres are classified by degree.The final chapter discusses cellular homology of CW complexes, culminating in the uniqueness theorem for ordinary homology.Introduction to Algebraic Topology is suitable for a single-semester graduate course on algebraic topology. It can also be used for self-study, with numerous examples, exercises, and motivating remarks included.

An Introduction to Algebraic Topology (Dover Books on Mathematics)

by Andrew H. Wallace

This self-contained treatment of algebraic topology assumes only some knowledge of real numbers and real analysis. The first three chapters focus on the basics of point-set topology, offering background to students approaching the subject with no previous knowledge. Readers already familiar with point-set topology can proceed directly to Chapter 4, which examines the fundamental group as well as homology groups and continuous mapping, barycentric subdivision and excision, the homology sequence, and simplicial complexes.Exercises form an integral part of the text; they include theorems that are as valuable as some of those whose proofs are given in full. Author Andrew H. Wallace, Professor Emeritus at the University of Pennsylvania, concludes the text with a guide to further reading.

Introduction to Algorithmic Marketing: Artificial Intelligence for Marketing Operations

by Ilya Katsov

Introduction to Algorithmic Marketing is a comprehensive guide to advanced marketing automation for marketing strategists, data scientists, product managers, and software engineers. It summarizes various techniques tested by major technology, advertising, and retail companies, and it glues these methods together with economic theory and machine learning. The book covers the main areas of marketing that require programmatic micro-decisioning - targeted promotions and advertisements, eCommerce search, recommendations, pricing, and assortment optimization.

Introduction to Algorithms

by Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest Clifford Stein

Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.

Introduction to Analysis (Textbooks in Mathematics)

by Corey M. Dunn

Introduction to Analysis is an ideal text for a one semester course on analysis. The book covers standard material on the real numbers, sequences, continuity, differentiation, and series, and includes an introduction to proof. The author has endeavored to write this book entirely from the student’s perspective: there is enough rigor to challenge even the best students in the class, but also enough explanation and detail to meet the needs of a struggling student. From the Author to the student: "I vividly recall sitting in an Analysis class and asking myself, ‘What is all of this for?’ or ‘I don’t have any idea what’s going on.’ This book is designed to help the student who finds themselves asking the same sorts of questions, but will also challenge the brightest students." Chapter 1 is a basic introduction to logic and proofs. Informal summaries of the idea of proof provided before each result, and before a solution to a practice problem. Every chapter begins with a short summary, followed by a brief abstract of each section. Each section ends with a concise and referenced summary of the material which is designed to give the student a "big picture" idea of each section. There is a brief and non-technical summary of the goals of a proof or solution for each of the results and practice problems in this book, which are clearly marked as "Idea of proof," or as "Methodology", followed by a clearly marked formal proof or solution. Many references to previous definitions and results. A "Troubleshooting Guide" appears at the end of each chapter that answers common questions.

Introduction to Analysis: Theorems and Examples (Synthesis Lectures on Mathematics & Statistics)

by Hidefumi Katsuura

This book focuses on the theoretical aspects of calculus. The book begins with a chapter on set theory before thoroughly discussing real numbers, then moves onto sequences, series, and their convergence. The author explains why an understanding of real numbers is essential in order to create a foundation for studying analysis. Since the Cantor set is elusive to many, a section is devoted to binary/ternary numbers and the Cantor set. The book then moves on to continuous functions, differentiations, integrations, and uniform convergence of sequences of functions. An example of a nontrivial uniformly Cauchy sequence of functions is given. The author defines each topic, identifies important theorems, and includes many examples throughout each chapter. The book also provides introductory instruction on proof writing, with an emphasis on how to execute a precise writing style.

An Introduction to Analysis (Textbooks in Mathematics)

by James R. Kirkwood

The third edition of this widely popular textbook is authored by a master teacher. This book provides a mathematically rigorous introduction to analysis of real­valued functions of one variable. This intuitive, student-friendly text is written in a manner that will help to ease the transition from primarily computational to primarily theoretical mathematics. The material is presented clearly and as intuitive as possible while maintaining mathematical integrity. The author supplies the ideas of the proof and leaves the write-up as an exercise. The text also states why a step in a proof is the reasonable thing to do and which techniques are recurrent. Examples, while no substitute for a proof, are a valuable tool in helping to develop intuition and are an important feature of this text. Examples can also provide a vivid reminder that what one hopes might be true is not always true. Features of the Third Edition: Begins with a discussion of the axioms of the real number system. The limit is introduced via sequences. Examples motivate what is to come, highlight the need for hypothesis in a theorem, and make abstract ideas more concrete. A new section on the Cantor set and the Cantor function. Additional material on connectedness. Exercises range in difficulty from the routine "getting your feet wet" types of problems to the moderately challenging problems. Topology of the real number system is developed to obtain the familiar properties of continuous functions. Some exercises are devoted to the construction of counterexamples. The author presents the material to make the subject understandable and perhaps exciting to those who are beginning their study of abstract mathematics. Table of Contents Preface Introduction The Real Number System Sequences of Real Numbers Topology of the Real Numbers Continuous Functions Differentiation Integration Series of Real Numbers Sequences and Series of Functions Fourier Series Bibliography Hints and Answers to Selected Exercises Index Biography James R. Kirkwood holds a Ph.D. from University of Virginia. He has authored fifteen, published mathematics textbooks on various topics including calculus, real analysis, mathematical biology and mathematical physics. His original research was in mathematical physics, and he co-authored the seminal paper in a topic now called Kirkwood-Thomas Theory in mathematical physics. During the summer, he teaches real analysis to entering graduate students at the University of Virginia. He has been awarded several National Science Foundation grants. His texts, Elementary Linear Algebra, Linear Algebra, and Markov Processes, are also published by CRC Press.

Introduction to Analysis

by Maxwell Rosenlicht

Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. Rigorous and carefully presented, the text assumes a year of calculus and features problems at the end of each chapter. 1968 edition.

An Introduction to Analysis of Financial Data With R

by Ruey S. Tsay

A complete set of statistical tools for beginning financial analysts from a leading authority Written by one of the leading experts on the topic, An Introduction to Analysis of Financial Data with R explores basic concepts of visualization of financial data. Through a fundamental balance between theory and applications, the book supplies readers with an accessible approach to financial econometric models and their applications to real-world empirical research. The author supplies a hands-on introduction to the analysis of financial data using the freely available R software package and case studies to illustrate actual implementations of the discussed methods. The book begins with the basics of financial data, discussing their summary statistics and related visualization methods. Subsequent chapters explore basic time series analysis and simple econometric models for business, finance, and economics as well as related topics including: Linear time series analysis, with coverage of exponential smoothing for forecasting and methods for model comparison Different approaches to calculating asset volatility and various volatility models High-frequency financial data and simple models for price changes, trading intensity, and realized volatility Quantitative methods for risk management, including value at risk and conditional value at risk Econometric and statistical methods for risk assessment based on extreme value theory and quantile regression Throughout the book, the visual nature of the topic is showcased through graphical representations in R, and two detailed case studies demonstrate the relevance of statistics in finance. A related website features additional data sets and R scripts so readers can create their own simulations and test their comprehension of the presented techniques. An Introduction to Analysis of Financial Data with R is an excellent book for introductory courses on time series and business statistics at the upper-undergraduate and graduate level. The book is also an excellent resource for researchers and practitioners in the fields of business, finance, and economics who would like to enhance their understanding of financial data and today's financial markets.

An Introduction to Analytic Functions: With Theoretical Implications

by John Sheridan Mac Nerney

When first published in 1959, this book was the basis of a two-semester course in complex analysis for upper undergraduate and graduate students. J. S. Mac Nerney was a proponent of the Socratic, or “do-it-yourself” method of learning mathematics, in which students are encouraged to engage in mathematical problem solving, including theorems at every level which are often regarded as “too difficult” for students to prove for themselves. Accordingly, Mac Nerney provides no proofs. What he does instead is to compose and arrange the investigation in his own unique style, so that a contextual proof is always available to the persistent student who enjoys a challenge. The central idea is to empower students by allowing them to discover and rely on their own mathematical abilities. This text may be used in a variety of settings, including: the usual classroom or seminar, but with the teacher acting mainly as a moderator while the students present their discoveries, a small-group setting in which the students present their discoveries to each other, and independent study. The Editors, William E. Kaufman (who was Mac Nerney’s last PhD student) and Ryan C. Schwiebert, have composed the original typed Work into LaTeX ; they have updated the notation, terminology, and some of the prose for modern usage, but the organization of content has been strictly preserved. About this Book, some new exercises, and an index have also been added.

Introduction to Analytic Number Theory (Undergraduate Texts in Mathematics)

by Tom Apostol

This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory.

An Introduction to Analytical Fuzzy Plane Geometry (Studies in Fuzziness and Soft Computing #381)

by Debdas Ghosh Debjani Chakraborty

This book offers a rigorous mathematical analysis of fuzzy geometrical ideas. It demonstrates the use of fuzzy points for interpreting an imprecise location and for representing an imprecise line by a fuzzy line. Further, it shows that a fuzzy circle can be used to represent a circle when its description is not known precisely, and that fuzzy conic sections can be used to describe imprecise conic sections. Moreover, it discusses fundamental notions on fuzzy geometry, including the concepts of fuzzy line segment and fuzzy distance, as well as key fuzzy operations, and includes several diagrams and numerical illustrations to make the topic more understandable. The book fills an important gap in the literature, providing the first comprehensive reference guide on the fuzzy mathematics of imprecise image subsets and imprecise geometrical objects. Mainly intended for researchers active in fuzzy optimization, it also includes chapters relevant for those working on fuzzy image processing and pattern recognition. Furthermore, it is a valuable resource for beginners interested in basic operations on fuzzy numbers, and can be used in university courses on fuzzy geometry, dealing with imprecise locations, imprecise lines, imprecise circles, and imprecise conic sections.

Introduction to Analytical Mechanics

by Amitabha Ghosh

This comprehensive, introductory textbook on Analytical Mechanics is designed for both seasoned researchers and budding students of Mechanics. This book meticulously outlines the whole route to analytical treatment of the 'science of motion'. Authored with years of teaching expertise, this book unravels new concepts beyond the traditional Newtonian framework, ensuring clarity for beginners. The book is tailored to focus primarily upon areas essential in a first-level course. Unveil innovative treatments helpful in taking the first-time reader through the labyrinthian path along which often analytical mechanics progresses. Ideal for a semester-long study at senior undergraduate and junior postgraduate levels, our text features ample solved examples to reinforce theoretical applications.

An Introduction to Applied Multivariate Analysis

by Tenko Raykov George A. Marcoulides

This comprehensive text introduces readers to the most commonly used multivariate techniques at an introductory, non-technical level. By focusing on the fundamentals, readers are better prepared for more advanced applied pursuits, particularly on topics that are most critical to the behavioral, social, and educational sciences. Analogies betwe

Introduction to Applied Optimization (Springer Optimization and Its Applications #22)

by Urmila M. Diwekar

Provides well-written self-contained chapters, including problem sets and exercises, making it ideal for the classroom setting; Introduces applied optimization to the hazardous waste blending problem; Explores linear programming, nonlinear programming, discrete optimization, global optimization, optimization under uncertainty, multi-objective optimization, optimal control and stochastic optimal control; Includes an extensive bibliography at the end of each chapter and an index; GAMS files of case studies for Chapters 2, 3, 4, 5, and 7 are linked to http://www.springer.com/math/book/978-0-387-76634-8; Solutions manual available upon adoptions.

Introduction to Arnold’s Proof of the Kolmogorov–Arnold–Moser Theorem

by Achim Feldmeier

This book provides an accessible step-by-step account of Arnold’s classical proof of the Kolmogorov–Arnold–Moser (KAM) Theorem. It begins with a general background of the theorem and proves the famous Liouville-Arnold theorem for integrable systems and introduces Kneser’s tori in four-dimensional phase space. It then introduces and discusses the ideas and techniques used in Arnold’s proof, before the second half of the book walks the reader through a detailed account of Arnold’s proof with all the required steps. It will be a useful guide for advanced students of mathematical physics, in addition to researchers and professionals. Key features: Applies concepts and theorems from real and complex analysis (e.g. Fourier series; implicit function theorem) and topology in the framework of this key theorem from mathematical physics. Covers all aspects of Arnold’s proof, including those often left out in more general or simplified presentations. Discusses, in detail, the ideas used in the proof of the KAM theorem and puts them in historical context (e.g. mapping degree from algebraic topology).

Introduction to Artificial Intelligence (Undergraduate Topics in Computer Science)

by Wolfgang Ertel

This accessible and engaging textbook presents a concise introduction to the exciting field of artificial intelligence (AI). The broad-ranging discussion covers the key subdisciplines within the field, describing practical algorithms and concrete applications in the areas of agents, logic, search, reasoning under uncertainty, machine learning, neural networks, and reinforcement learning. Fully revised and updated, this much-anticipated third edition also includes new material on deep learning.Topics and features:· Presents an application-focused and hands-on approach to learning, with supplementary teaching resources provided at an associated website · Introduces convolutional neural networks as the currently most important type of deep learning networks with applications to image classification (NEW) · Contains numerous study exercises and solutions, highlighted examples, definitions, theorems, and illustrative cartoons · Reports on developments in deep learning, including applications of neural networks to large language models as used in state-of-the-art chatbots as well as to the generation of music and art (NEW) · Includes chapters on predicate logic, PROLOG, heuristic search, probabilistic reasoning, machine learning and data mining, neural networks, and reinforcement learning · Covers various classical machine learning algorithms and introduces important general concepts such as cross validation, data normalization, performance metrics and data augmentation (NEW)· Includes a section on AI and society, discussing the implications of AI on topics such as employment and transportation Ideal for foundation courses or modules on AI, this easy-to-read textbook offers an excellent overview of the field for students of computer science and other technical disciplines, requiring no more than a high-school level of knowledge of mathematics to understand the material.Dr. Wolfgang Ertel is a professor at the Institute for Artificial Intelligence at the Ravensburg-Weingarten University of Applied Sciences, Germany.

An Introduction to Artificial Intelligence Based on Reproducing Kernel Hilbert Spaces (Compact Textbooks in Mathematics)

by Sergei Pereverzyev

This textbook provides an in-depth exploration of statistical learning with reproducing kernels, an active area of research that can shed light on trends associated with deep neural networks. The author demonstrates how the concept of reproducing kernel Hilbert Spaces (RKHS), accompanied with tools from regularization theory, can be effectively used in the design and justification of kernel learning algorithms, which can address problems in several areas of artificial intelligence. Also provided is a detailed description of two biomedical applications of the considered algorithms, demonstrating how close the theory is to being practically implemented. Among the book’s several unique features is its analysis of a large class of algorithms of the Learning Theory that essentially comprise every linear regularization scheme, including Tikhonov regularization as a specific case. It also provides a methodology for analyzing not only different supervised learning problems, such as regression or ranking, but also different learning scenarios, such as unsupervised domain adaptation or reinforcement learning. By analyzing these topics using the same theoretical framework, rather than approaching them separately, their presentation is streamlined and made more approachable.An Introduction to Artificial Intelligence Based on Reproducing Kernel Hilbert Spaces is an ideal resource for graduate and postgraduate courses in computational mathematics and data science.

An Introduction to Automorphic Representations: With a view toward trace formulae (Graduate Texts in Mathematics #300)

by Jayce R. Getz Heekyoung Hahn

The goal of this textbook is to introduce and study automorphic representations, objects at the very core of the Langlands Program. It is designed for use as a primary text for either a semester or a year-long course, for the independent study of advanced topics, or as a reference for researchers. The reader is taken from the beginnings of the subject to the forefront of contemporary research. The journey provides an accessible gateway to one of the most fundamental areas of modern mathematics, with deep connections to arithmetic geometry, representation theory, harmonic analysis, and mathematical physics.The first part of the text is dedicated to developing the notion of automorphic representations. Next, it states a rough version of the Langlands functoriality conjecture, motivated by the description of unramified admissible representations of reductive groups over nonarchimedean local fields. The next chapters develop the theory necessary to make the Langlands functoriality conjecture precise. Thus supercuspidal representations are defined locally, cuspidal representations and Eisenstein series are defined globally, and Rankin-Selberg L-functions are defined to give a link between the global and local settings. This preparation complete, the global Langlands functoriality conjectures are stated and known cases are discussed.This is followed by a treatment of distinguished representations in global and local settings. The link between distinguished representations and geometry is explained in a chapter on the cohomology of locally symmetric spaces (in particular, Shimura varieties). The trace formula, an immensely powerful tool in the Langlands Program, is discussed in the final chapters of the book. Simple versions of the general relative trace formulae are treated for the first time in a textbook, and a wealth of related material on algebraic group actions is included. Outlines for several possible courses are provided in the Preface.

Refine Search

Showing 11,626 through 11,650 of 24,750 results