Browse Results

Showing 12,226 through 12,250 of 27,715 results

Hyers-Ulam Stability of Ordinary Differential Equations

by Arun Kumar Tripathy

Hyers-Ulam Stability of Ordinary Differential Equations undertakes an interdisciplinary, integrative overview of a kind of stability problem unlike the existing so called stability problem for Differential equations and Difference Equations. In 1940, S. M. Ulam posed the problem: When can we assert that approximate solution of a functional equation can be approximated by a solution of the corresponding equation before the audience at the University of Wisconsin which was first answered by D. H. Hyers on Banach space in 1941. Thereafter, T. Aoki, D. H. Bourgin and Th. M. Rassias improved the result of Hyers. After that many researchers have extended the Ulam's stability problems to other functional equations and generalized Hyer's result in various directions. Last three decades, this topic is very well known as Hyers-Ulam Stability or sometimes it is referred Hyers-Ulam-Rassias Stability. This book synthesizes interdisciplinary theory, definitions and examples of Ordinary Differential and Difference Equations dealing with stability problems. The purpose of this book is to display the new kind of stability problem to global audience and accessible to a broader interdisciplinary readership for e.g those are working in Mathematical Biology Modeling, bending beam problems of mechanical engineering also, some kind of models in population dynamics. This book may be a starting point for those associated in such research and covers the methods needed to explore the analysis. Features: The state-of-art is pure analysis with background functional analysis. A rich, unique synthesis of interdisciplinary findings and insights on resources. As we understand that the real world problem is heavily involved with Differential and Difference equations, the cited problems of this book may be useful in a greater sense as long as application point of view of this Hyers-Ulam Stability theory is concerned. Information presented in an accessible way for students, researchers, scientists and engineers.

Hyper-lattice Algebraic Model for Data Warehousing

by Soumya Sen Agostino Cortesi Nabendu Chaki

This book presents Hyper-lattice, a new algebraic model for partially ordered sets, and an alternative to lattice. The authors analyze some of the shortcomings of conventional lattice structure and propose a novel algebraic structure in the form of Hyper-lattice to overcome problems with lattice. They establish how Hyper-lattice supports dynamic insertion of elements in a partial order set with a partial hierarchy between the set members. The authors present the characteristics and the different properties, showing how propositions and lemmas formalize Hyper-lattice as a new algebraic structure.

Hyperbolic and Kinetic Models for Self-organised Biological Aggregations: A Modelling and Pattern Formation Approach (Lecture Notes in Mathematics #2232)

by Raluca Eftimie

This book focuses on the spatio-temporal patterns generated by two classes of mathematical models (of hyperbolic and kinetic types) that have been increasingly used in the past several years to describe various biological and ecological communities. Here we combine an overview of various modelling approaches for collective behaviours displayed by individuals/cells/bacteria that interact locally and non-locally, with analytical and numerical mathematical techniques that can be used to investigate the spatio-temporal patterns produced by said individuals/cells/bacteria. Richly illustrated, the book offers a valuable guide for researchers new to the field, and is also suitable as a textbook for senior undergraduate or graduate students in mathematics or related disciplines.

Hyperbolic Conservation Laws and Related Analysis with Applications

by Gui-Qiang G. Chen Helge Holden Kenneth H. Karlsen

This book presents thirteen papers, representing the most significant advances and current trends in nonlinear hyperbolic conservation laws and related analysis with applications. Topics covered include a survey on multidimensional systems of conservation laws as well as novel results on liquid crystals, conservation laws with discontinuous flux functions, and applications to sedimentation. Also included are articles on recent advances in the Euler equations and the Navier-Stokes-Fourier-Poisson system, in addition to new results on collective phenomena described by the Cucker-Smale model. The Workshop on Hyperbolic Conservation Laws and Related Analysis with Applications at the International Centre for Mathematical Sciences (Edinburgh, UK) held in Edinburgh, September 2011, produced this fine collection of original research and survey articles. Many leading mathematicians attended the event and submitted their contributions for this volume. It is addressed to researchers and graduate students interested in partial differential equations and related analysis with applications.

Hyperbolic Conservation Laws and the Compensated Compactness Method

by Yunguang Lu

The method of compensated compactness as a technique for studying hyperbolic conservation laws is of fundamental importance in many branches of applied mathematics. Until now, however, most accounts of this method have been confined to research papers. Offering the first comprehensive treatment, Hyperbolic Conservation Laws and the Compensated Comp

Hyperbolic Functions with Configuration Theorems and Equivalent and Equidecomposable Figures

by V. G. Shervatov B. I. Argunov L. A. Skornyakov V. G. Boltyanskii

This single-volume compilation of three books centers on Hyperbolic Functions, an introduction to the relationship between the hyperbolic sine, cosine, and tangent, and the geometric properties of the hyperbola. The development of the hyperbolic functions, in addition to those of the trigonometric (circular) functions, appears in parallel columns for comparison. A concluding chapter introduces natural logarithms and presents analytic expressions for the hyperbolic functions.The second book, Configuration Theorems, requires only the most elementary background in plane and solid geometry. It discusses several interesting theorems on collinear points and concurrent lines, showing their applications to several practical geometric problems, and thus introducing certain fundamental concepts of projective geometry. Equivalent and Equidecomposable Figures, the final book, discusses the mathematical conditions of dissecting a given polyhedron into a finite number of pieces and reassembling them into another given polyhedron.

Hyperbolic Manifolds

by Albert Marden

Over the past three decades there has been a total revolution in the classic branch of mathematics called 3-dimensional topology, namely the discovery that most solid 3-dimensional shapes are hyperbolic 3-manifolds. This book introduces and explains hyperbolic geometry and hyperbolic 3- and 2-dimensional manifolds in the first two chapters and then goes on to develop the subject. The author discusses the profound discoveries of the astonishing features of these 3-manifolds, helping the reader to understand them without going into long, detailed formal proofs. The book is heavily illustrated with pictures, mostly in color, that help explain the manifold properties described in the text. Each chapter ends with a set of exercises and explorations that both challenge the reader to prove assertions made in the text, and suggest further topics to explore that bring additional insight. There is an extensive index and bibliography.

Hyperbolic Problems: HYP2022, Málaga, Spain, June 20–24, 2022 (SEMA SIMAI Springer Series #34)

by Carlos Parés María Luz Muñoz-Ruiz Manuel J. Castro Tomás Morales de Luna

The present volume contains a selection of papers from the XVIII International Conference on Hyperbolic Problems: Theory, Numerics, and Applications (HYP2022), which was held on June 20-24, 2022 in Málaga (Spain). The goal of this series of conferences is to bring together scientists with interests in the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models. The chapters in this volume correspond to some of the plenary lectures and to selected contributions related to theoretical aspects.

Hyperbolic Problems: HYP2022, Málaga, Spain, June 20-24, 2022 (SEMA SIMAI Springer Series #35)

by Carlos Parés María Luz Muñoz-Ruiz Manuel J. Castro Tomás Morales de Luna

The present volume contains a selection of papers from the XVIII International Conference on Hyperbolic Problems: Theory, Numerics, and Applications (HYP2022), which was held on June 20-24, 2022 in Málaga (Spain). The goal of this series of conferences is to bring together scientists with interests in the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models. The chapters in this volume correspond to selected contributions related to numerical aspects and applications.

Hyperbolic Sets, Shadowing and Persistence for Noninvertible Mappings in Banach Spaces

by Bernard Lani-Wayda

This text gives a self-contained and detailed treatment of presently known results, and new theorems on hyperbolicity, shadowing, complicated motion, and robustness. The book is intended to provide a dependable reference for researchers wishing to apply such results. This book will be of particular interest to researchers and students interested in dynamical systems, particularly in noninvertible maps and infinite dimensional semi-flows or maps and global analysis.

Hyperbolic Systems with Analytic Coefficients

by Tatsuo Nishitani

This monograph focuses on the well-posedness of the Cauchy problem for linear hyperbolic systems with matrix coefficients. Mainly two questions are discussed: (A) Under which conditions on lower order terms is the Cauchy problem well posed? (B) When is the Cauchy problem well posed for any lower order term? For first order two by two systems with two independent variables with real analytic coefficients, we present complete answers for both (A) and (B). For first order systems with real analytic coefficients we prove general necessary conditions for question (B) in terms of minors of the principal symbols. With regard to sufficient conditions for (B), we introduce hyperbolic systems with nondegenerate characteristics, which contain strictly hyperbolic systems, and prove that the Cauchy problem for hyperbolic systems with nondegenerate characteristics is well posed for any lower order term. We also prove that any hyperbolic system which is close to a hyperbolic system with a nondegenerate characteristic of multiple order has a nondegenerate characteristic of the same order nearby.

Hyperbolic Triangle Centers: The Special Relativistic Approach

by A. A. Ungar

After A. Ungar had introduced vector algebra and Cartesian coordinates into hyperbolic geometry in his earlier books, along with novel applications in Einstein's special theory of relativity, the purpose of his new book is to introduce hyperbolic barycentric coordinates, another important concept to embed Euclidean geometry into hyperbolic geometry. It will be demonstrated that, in full analogy to classical mechanics where barycentric coordinates are related to the Newtonian mass, barycentric coordinates are related to the Einsteinian relativistic mass in hyperbolic geometry. Contrary to general belief, Einstein's relativistic mass hence meshes up extraordinarily well with Minkowski's four-vector formalism of special relativity. In Euclidean geometry, barycentric coordinates can be used to determine various triangle centers. While there are many known Euclidean triangle centers, only few hyperbolic triangle centers are known, and none of the known hyperbolic triangle centers has been determined analytically with respect to its hyperbolic triangle vertices. In his recent research, the author set the ground for investigating hyperbolic triangle centers via hyperbolic barycentric coordinates, and one of the purposes of this book is to initiate a study of hyperbolic triangle centers in full analogy with the rich study of Euclidean triangle centers. Owing to its novelty, the book is aimed at a large audience: it can be enjoyed equally by upper-level undergraduates, graduate students, researchers and academics in geometry, abstract algebra, theoretical physics and astronomy. For a fruitful reading of this book, familiarity with Euclidean geometry is assumed. Mathematical-physicists and theoretical physicists are likely to enjoy the study of Einstein's special relativity in terms of its underlying hyperbolic geometry. Geometers may enjoy the hunt for new hyperbolic triangle centers and, finally, astronomers may use hyperbolic barycentric coordinates in the velocity space of cosmology.

Hyperbolicity of Projective Hypersurfaces

by Simone Diverio Erwan Rousseau

Thisbook presents recent advances on Kobayashi hyperbolicity in complex geometry,especially in connection with projective hypersurfaces. This is a very activefield, not least because of the fascinating relations with complex algebraicand arithmetic geometry. Foundational works of Serge Lang and Paul A. Vojta,among others, resulted in precise conjectures regarding the interplay of theseresearch fields (e. g. existence of Zariski dense entire curves shouldcorrespond to the (potential) density of rational points). Perhapsone of the conjectures which generated most activity in Kobayashi hyperbolicitytheory is the one formed by Kobayashi himself in 1970 which predicts that avery general projective hypersurface of degree large enough does not containany (non-constant) entire curves. Since the seminal work of Green and Griffithsin 1979, later refined by J. -P. Demailly, J. Noguchi, Y. -T. Siu and others, itbecame clear that a possible general strategy to attack this problem was tolook at particular algebraic differential equations (jet differentials) thatevery entire curve must satisfy. This has led to some several spectacularresults. Describing the state of the art around this conjecture is the maingoal of this work.

Hypergeometric Summation

by Wolfram Koepf

Modern algorithmic techniques for summation, most of which were introduced in the 1990s, are developed here and carefully implemented in the computer algebra system Maple(tm). The algorithms of Fasenmyer, Gosper, Zeilberger, Petkovsek and van Hoeij for hypergeometric summation and recurrence equations, efficient multivariate summation as well as q-analogues of the above algorithms are covered. Similar algorithms concerning differential equations are considered. An equivalent theory of hyperexponential integration due to Almkvist and Zeilberger completes the book. The combination of these results gives orthogonal polynomials and (hypergeometric and q-hypergeometric) special functions a solid algorithmic foundation. Hence, many examples from this very active field are given. The materials covered are suitable for an introductory course on algorithmic summation and will appeal to students and researchers alike.

Hypergraph Theory

by Alain Bretto

This book provides an introduction to hypergraphs, its aim being to overcome the lack of recent manuscripts on this theory. In the literature hypergraphs have many other names such as set systems and families of sets. This work presents the theory of hypergraphs in its most original aspects, while also introducing and assessing the latest concepts on hypergraphs. The variety of topics, their originality and novelty are intended to help readers better understand the hypergraphs in all their diversity in order to perceive their value and power as mathematical tools. This book will be a great asset to upper-level undergraduate and graduate students in computer science and mathematics. It has been the subject of an annual Master's course for many years, making it also ideally suited to Master's students in computer science, mathematics, bioinformatics, engineering, chemistry, and many other fields. It will also benefit scientists, engineers and anyone else who wants to understand hypergraphs theory.

Hyperidentities and Clones (Algebra, Logic and Applications)

by Klaus Denecke S L Wismath

Theories and results on hyperidentities have been published in various areas of the literature over the last 18 years. Hyperidentities and Clones integrates these into a coherent framework for the first time. The author also includes some applications of hyperidentities to the functional completeness problem in multiple-valued logic and extends the

Hypernumbers and Extrafunctions

by Mark Burgin

"Hypernumbers and Extrafunctions" presents a rigorous mathematical approach to operate with infinite values. First, concepts of real and complex numbers are expanded to include a new universe of numbers called hypernumbers which includes infinite quantities. This brief extends classical calculus based on real functions by introducing extrafunctions, which generalize not only the concept of a conventional function but also the concept of a distribution. Extrafucntions have been also efficiently used for a rigorous mathematical definition of the Feynman path integral, as well as for solving some problems in probability theory, which is also important for contemporary physics. This book introduces a new theory that includes the theory of distributions as a subtheory, providing more powerful tools for mathematics and its applications. Specifically, it makes it possible to solve PDE for which it is proved that they do not have solutions in distributions. Also illustrated in this text is how this new theory allows the differentiation and integration of any real function. This text can be used for enhancing traditional courses of calculus for undergraduates, as well as for teaching a separate course for graduate students.

Hyperparameter Tuning for Machine and Deep Learning with R: A Practical Guide

by Eva Bartz Thomas Bartz-Beielstein Martin Zaefferer Olaf Mersmann

This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II). Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike.

Hypersingular Integral Equations and Their Applications

by I.K. Lifanov L.N. Poltavskii MG.M. Vainikko

A number of new methods for solving singular and hypersingular integral equations have emerged in recent years. This volume presents some of these new methods along with classical exact, approximate, and numerical methods. The authors explore the analysis of hypersingular integral equations based on the theory of pseudodifferential operators and co

Hypersingular Integrals and Their Applications (Analytical Methods and Special Functions)

by Stefan Samko

Hypersingular integrals arise as constructions inverse to potential-type operators and are realized by the methods of regularization and finite differences. This volume develops these approaches in a comprehensive treatment of hypersingular integrals and their applications. The author is a renowned expert on the topic. He explains the basics before

Hyperspace: A Scientific Odyssey Through Parallel Universes, Time Warps, and the Tenth Dimension

by Michio Kaku

Are there other dimensions beyond our own? Is time travel possible? Can we change the past? Are there gateways to parallel universes? All of us have pondered such questions, but there was a time when scientists dismissed these notions as outlandish speculations. Not any more. Today, they are the focus of the most intense scientific activity in recent memory. In Hyperspace, Michio Kaku offers the first book-length tour of the most exciting (and perhaps most bizarre) work in modern physics. <p><p>The theory of hyperspace (or higher dimensional space)—and its newest wrinkle, superstring theory—stand at the center of this revolution, with adherents in every major research laboratory in the world. Beginning where Hawking's Brief History of Time left off, Kaku paints a vivid portrayal of the breakthroughs now rocking the physics establishment. Why all the excitement? As the author points out, for over half a century, scientists have puzzled over why the basic forces of the cosmos—gravity, electromagnetism, and the strong and weak nuclear forces—require markedly different mathematical descriptions. But if we see these forces as vibrations in a higher dimensional space, their field equations suddenly fit together like pieces in a jigsaw puzzle, perfectly snug, in an elegant, astonishingly simple form. This may thus be our leading candidate for the Theory of Everything.

Hyperspaces: Fundamentals and Recent Advances (Chapman & Hall/CRC Pure and Applied Mathematics)

by Alejandro Illanes

Presents hyperspace fundamentals, offering a basic overview and a foundation for further study. Topics include the topology for hyperspaces, examples of geometric models for hyperspaces, 2x and C(X) for Peano continua X, arcs in hyperspaces, the shape and contractability of hyperspaces, hyperspaces and the fixed point property, and Whitney maps. The text contains examples and exercises throughout, and provides proofs for most results.

Hyperspectral Imaging Remote Sensing: Physics, Sensors, and Algorithms

by Dimitris G. Manolakis Ronald B. Lockwood Thomas W. Cooley

A practical and self-contained guide to the principles, techniques, models and tools of imaging spectroscopy. Bringing together material from essential physics and digital signal processing, it covers key topics such as sensor design and calibration, atmospheric inversion and model techniques, and processing and exploitation algorithms. Readers will learn how to apply the main algorithms to practical problems, how to choose the best algorithm for a particular application, and how to process and interpret hyperspectral imaging data. A wealth of additional materials accompany the book online, including example projects and data for students, and problem solutions and viewgraphs for instructors. This is an essential text for senior undergraduate and graduate students looking to learn the fundamentals of imaging spectroscopy, and an invaluable reference for scientists and engineers working in the field. A self-contained introductory text covering the principles, techniques, and tools of imaging spectroscopy. Can be used in both undergraduate and graduate settings, and also as a reference text for practitioners. Accompanied online by example projects and data for students, and problem solutions and viewgraphs for instructors.

The Hyperuniverse Project and Maximality

by Carolin Antos Sy-David Friedman Radek Honzik Claudio Ternullo

This collection documents the work of the Hyperuniverse Project which is a new approach to set-theoretic truth based on justifiable principles and which leads to the resolution of many questions independent from ZFC. The contributions give an overview of the program, illustrate its mathematical content and implications, and also discuss its philosophical assumptions. It will thus be of wide appeal among mathematicians and philosophers with an interest in the foundations of set theory. The Hyperuniverse Project was supported by the John Templeton Foundation from January 2013 until September 2015

Hypoelliptic Laplacian and Orbital Integrals (Annals of Mathematics Studies #177)

by Jean-Michel Bismut

This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by localization on geodesics in the symmetric space, in a formula closely related to the Atiyah-Bott fixed point formulas. Orbital integrals associated with the wave kernel are also computed. Estimates on the hypoelliptic heat kernel play a key role in the proofs, and are obtained by combining analytic, geometric, and probabilistic techniques. Analytic techniques emphasize the wavelike aspects of the hypoelliptic heat kernel, while geometrical considerations are needed to obtain proper control of the hypoelliptic heat kernel, especially in the localization process near the geodesics. Probabilistic techniques are especially relevant, because underlying the hypoelliptic deformation is a deformation of dynamical systems on the symmetric space, which interpolates between Brownian motion and the geodesic flow. The Malliavin calculus is used at critical stages of the proof.

Refine Search

Showing 12,226 through 12,250 of 27,715 results