Browse Results

Showing 12,251 through 12,275 of 24,510 results

Invisible in the Storm

by Ian Roulstone John Norbury

Invisible in the Storm is the first book to recount the history, personalities, and ideas behind one of the greatest scientific successes of modern times--the use of mathematics in weather prediction. Although humans have tried to forecast weather for millennia, mathematical principles were used in meteorology only after the turn of the twentieth century. From the first proposal for using mathematics to predict weather, to the supercomputers that now process meteorological information gathered from satellites and weather stations, Ian Roulstone and John Norbury narrate the groundbreaking evolution of modern forecasting. The authors begin with Vilhelm Bjerknes, a Norwegian physicist and meteorologist who in 1904 came up with a method now known as numerical weather prediction. Although his proposed calculations could not be implemented without computers, his early attempts, along with those of Lewis Fry Richardson, marked a turning point in atmospheric science. Roulstone and Norbury describe the discovery of chaos theory's butterfly effect, in which tiny variations in initial conditions produce large variations in the long-term behavior of a system--dashing the hopes of perfect predictability for weather patterns. They explore how weather forecasters today formulate their ideas through state-of-the-art mathematics, taking into account limitations to predictability. Millions of variables--known, unknown, and approximate--as well as billions of calculations, are involved in every forecast, producing informative and fascinating modern computer simulations of the Earth system. Accessible and timely, Invisible in the Storm explains the crucial role of mathematics in understanding the ever-changing weather.Some images inside the book are unavailable due to digital copyright restrictions.

Invisible Labour: Support Service Workers in India’s Information Technology Industry

by Indranil Chakraborty

This book investigates the life, working conditions, and urban experiences of support service workers, such as janitors, security guards, culinary workers and carpool drivers, in the information technology (IT) sector of India. Largely omitted from academic discourse, support service workers are crucial to the Indian IT industry. Drawing on interviews with such workers in seven Indian cities with a large concentration of software service companies, this volume: Uses quantitative and qualitative analyses to map and assess workers' responses to migration from rural occupations to a modern urban employment setting; Explores the everyday grind of migrant workers in the context of the homogenizing effects of globalization in an alienating urban environment and discusses how their dislodgment from the structures of rural life – gender and caste roles – has placed them in a space of contestation between traditions and the opportunities and challenges offered by digital society in the form of freedom, individualism, flexibility and innovation; Traces the evolution of new areas of class, and identity formations, as well as the hegemonic relations within that ethos imposed by contractors and corporations. The volume will be of great interest to scholars and researchers of sociology and social anthropology, urban studies, development studies, labour studies, social exclusion and South Asian studies.

The Invisible Power of Mathematics: The Pervasive Impact of Mathematical Engineering in Everyday Life (Copernicus Books)

by Giovanni Samaey Joos P. Vandewalle

How does homebanking work? How are board games developed? How reliable can wind energy get? How do we discover forged paintings? Do smart girls stay single? How dangerous can a bioterrorist get? In all these questions (and many others), mathematics plays a crucial role in the search for an answer.​This book tells the story behind twenty of these questions. This is explicitly not a mathematics book, but a book about the crucial role that mathematics plays in devising the creative solutions the world needs. The questions are divided into three categories: home, garden and kitchen mathematics; mathematics for the workplace; and mathematics for tomorrow's society. The themes illustrate not only the incredibly broad applicability of mathematics in the world around us, but also the great diversity of useful mathematical techniques.

An Invitation to Abstract Algebra (Textbooks in Mathematics)

by Steven J. Rosenberg

Studying abstract algebra can be an adventure of awe-inspiring discovery. The subject need not be watered down nor should it be presented as if all students will become mathematics instructors. This is a beautiful, profound, and useful field which is part of the shared language of many areas both within and outside of mathematics. To begin this journey of discovery, some experience with mathematical reasoning is beneficial. This text takes a fairly rigorous approach to its subject, and expects the reader to understand and create proofs as well as examples throughout. The book follows a single arc, starting from humble beginnings with arithmetic and high-school algebra, gradually introducing abstract structures and concepts, and culminating with Niels Henrik Abel and Evariste Galois’ achievement in understanding how we can—and cannot—represent the roots of polynomials. The mathematically experienced reader may recognize a bias toward commutative algebra and fondness for number theory. The presentation includes the following features: Exercises are designed to support and extend the material in the chapter, as well as prepare for the succeeding chapters. The text can be used for a one, two, or three-term course. Each new topic is motivated with a question. A collection of projects appears in Chapter 23. Abstract algebra is indeed a deep subject; it can transform not only the way one thinks about mathematics, but the way that one thinks—period. This book is offered as a manual to a new way of thinking. The author’s aim is to instill the desire to understand the material, to encourage more discovery, and to develop an appreciation of the subject for its own sake.

An Invitation to Abstract Mathematics (Undergraduate Texts in Mathematics)

by Béla Bajnok

This undergraduate textbook is intended primarily for a transition course into higher mathematics, although it is written with a broader audience in mind. The heart and soul of this book is problem solving, where each problem is carefully chosen to clarify a concept, demonstrate a technique, or to enthuse. The exercises require relatively extensive arguments, creative approaches, or both, thus providing motivation for the reader. With a unified approach to a diverse collection of topics, this text points out connections, similarities, and differences among subjects whenever possible. This book shows students that mathematics is a vibrant and dynamic human enterprise by including historical perspectives and notes on the giants of mathematics, by mentioning current activity in the mathematical community, and by discussing many famous and less well-known questions that remain open for future mathematicians. Ideally, this text should be used for a two semester course, where the first course has no prerequisites and the second is a more challenging course for math majors; yet, the flexible structure of the book allows it to be used in a variety of settings, including as a source of various independent-study and research projects.

An Invitation to Abstract Mathematics (Undergraduate Texts in Mathematics)

by Béla Bajnok

This undergraduate textbook promotes an active transition to higher mathematics. Problem solving is the heart and soul of this book: each problem is carefully chosen to demonstrate, elucidate, or extend a concept. More than 300 exercises engage the reader in extensive arguments and creative approaches, while exploring connections between fundamental mathematical topics.Divided into four parts, this book begins with a playful exploration of the building blocks of mathematics, such as definitions, axioms, and proofs. A study of the fundamental concepts of logic, sets, and functions follows, before focus turns to methods of proof. Having covered the core of a transition course, the author goes on to present a selection of advanced topics that offer opportunities for extension or further study. Throughout, appendices touch on historical perspectives, current trends, and open questions, showing mathematics as a vibrant and dynamic human enterprise.This second edition has been reorganized to better reflect the layout and curriculum of standard transition courses. It also features recent developments and improved appendices. An Invitation to Abstract Mathematics is ideal for those seeking a challenging and engaging transition to advanced mathematics, and will appeal to both undergraduates majoring in mathematics, as well as non-math majors interested in exploring higher-level concepts.From reviews of the first edition:Bajnok’s new book truly invites students to enjoy the beauty, power, and challenge of abstract mathematics. … The book can be used as a text for traditional transition or structure courses … but since Bajnok invites all students, not just mathematics majors, to enjoy the subject, he assumes very little background knowledge. Jill Dietz, MAA ReviewsThe style of writing is careful, but joyously enthusiastic…. The author’s clear attitude is that mathematics consists of problem solving, and that writing a proof falls into this category. Students of mathematics are, therefore, engaged in problem solving, and should be given problems to solve, rather than problems to imitate. The author attributes this approach to his Hungarian background … and encourages students to embrace the challenge in the same way an athlete engages in vigorous practice. John Perry, zbMATH

An Invitation to Alexandrov Geometry: CAT(0) Spaces (SpringerBriefs in Mathematics)

by Stephanie Alexander Vitali Kapovitch Anton Petrunin

Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.

An Invitation To Algebraic Numbers And Algebraic Functions

by Franz Halter-Koch

The author offers a thorough presentation of the classical theory of algebraic numbers and algebraic functions which both in its conception and in many details differs from the current literature on the subject. The basic features are: Field-theoretic preliminaries and a detailed presentation of Dedekind’s ideal theory including non-principal orders and various types of class groups; the classical theory of algebraic number fields with a focus on quadratic, cubic and cyclotomic fields; basics of the analytic theory including the prime ideal theorem, density results and the determination of the arithmetic by the class group; a thorough presentation of valuation theory including the theory of difference, discriminants, and higher ramification. The theory of function fields is based on the ideal and valuation theory developed before; it presents the Riemann-Roch theorem on the basis of Weil differentials and highlights in detail the connection with classical differentials. The theory of congruence zeta functions and a proof of the Hasse-Weil theorem represent the culminating point of the volume. The volume is accessible with a basic knowledge in algebra and elementary number theory. It empowers the reader to follow the advanced number-theoretic literature, and is a solid basis for the study of the forthcoming volume on the foundations and main results of class field theory. Key features: • A thorough presentation of the theory of Algebraic Numbers and Algebraic Functions on an ideal and valuation-theoretic basis.• Several of the topics both in the number field and in the function field case were not presented before in this context.• Despite presenting many advanced topics, the text is easily readable. Franz Halter-Koch is professor emeritus at the university of Graz. He is the author of “Ideal Systems” (Marcel Dekker,1998), “Quadratic Irrationals” (CRC, 2013), and a co-author of “Non-Unique Factorizations” (CRC 2006).

An Invitation to Applied Category Theory: Seven Sketches in Compositionality

by Brendan Fong David I. Spivak

Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.

An Invitation to Coarse Groups (Lecture Notes in Mathematics #2339)

by Arielle Leitner Federico Vigolo

This book lays the foundation for a theory of coarse groups: namely, sets with operations that satisfy the group axioms “up to uniformly bounded error”. These structures are the group objects in the category of coarse spaces, and arise naturally as approximate subgroups, or as coarse kernels.The first aim is to provide a standard entry-level introduction to coarse groups. Extra care has been taken to give a detailed, self-contained and accessible account of the theory. The second aim is to quickly bring the reader to the forefront of research. This is easily accomplished, as the subject is still young, and even basic questions remain unanswered. Reflecting its dual purpose, the book is divided into two parts. The first part covers the fundamentals of coarse groups and their actions. Here the theory of coarse homomorphisms, quotients and subgroups is developed, with proofs of coarse versions of the isomorphism theorems, and it is shown how coarse actions are related to fundamental aspects of geometric group theory. The second part, which is less self-contained, is an invitation to further research, where each thread leads to open questions of varying depth and difficulty. Among other topics, it explores coarse group structures on set-groups, groups of coarse automorphisms and spaces of controlled maps. The main focus is on connections between the theory of coarse groups and classical subjects, including: number theory; the study of bi-invariant metrics on groups; quasimorphisms and stable commutator length; groups of outer automorphisms; and topological groups and their actions. The book will primarily be of interest to researchers and graduate students in geometric group theory, topology, category theory and functional analysis, but some parts will also be accessible to advanced undergraduates.

Invitation to Combinatorial Topology (Dover Books on Mathematics)

by Ky Fan Maurice Fréchet Howard W. Eves

An elementary text that can be understood by anyone with a background in high school geometry, Invitation to Combinatorial Topology offers a stimulating initiation to important topological ideas. This translation from the original French does full justice to the text's coherent presentation as well as to its rich historical content. Subjects include the problems inherent to coloring maps, homeomorphism, applications of Descartes' theorem, and topological polygons. Considerations of the topological classification of closed surfaces cover elementary operations, use of normal forms of polyhedra, reduction to normal form, and application to the geometric theory of functions. 1967 edition. 108 figures. Bibliography. Index.

Invitation to Didactique

by Virginia Warfield

This is an introduction to a Didactique, research program that has been going on in France since the '70s and whose importance is now widely recognized, but whose content is still not easy access to anglophones. The work of Dr. Guy Brousseau has remained largely, in his native France, untranslated and largely unknown. This book will unlock the secrets of Didactique and provide an opportunity for researchers, teacher educators, and students to learn of this important methodology.

Invitation to Dynamical Systems

by Edward R. Scheinerman

This text is designed for those who wish to study mathematics beyond linear algebra but are not ready for abstract material. Rather than a theorem-proof-corollary-remark style of exposition, it stresses geometry, intuition, and dynamical systems. An appendix explains how to write MATLAB, Mathematica, and C programs to compute dynamical systems. 1996 edition.

An Invitation to General Algebra and Universal Constructions (Universitext #351)

by George M. Bergman

Rich in examples and intuitive discussions, this book presents General Algebra using the unifying viewpoint of categories and functors. Starting with a survey, in non-category-theoretic terms, of many familiar and not-so-familiar constructions in algebra (plus two from topology for perspective), the reader is guided to an understanding and appreciation of the general concepts and tools unifying these constructions. Topics include: set theory, lattices, category theory, the formulation of universal constructions in category-theoretic terms, varieties of algebras, and adjunctions. A large number of exercises, from the routine to the challenging, interspersed through the text, develop the reader's grasp of the material, exhibit applications of the general theory to diverse areas of algebra, and in some cases point to outstanding open questions. Graduate students and researchers wishing to gain fluency in important mathematical constructions will welcome this carefully motivated book.

An Invitation to Geomathematics (Lecture Notes in Geosystems Mathematics and Computing)

by Willi Freeden M. Zuhair Nashed Clemens Heine

The authors introduce geomathematics as an active research area to a wider audience. Chapter 1 presents an introduction to the Earth as a system to apply scientific methods. Emphasis is laid on transfers from virtual models to reality and vice versa. In the second chapter geomathematics is introduced as a new scientific area which nevertheless has its roots in antiquity. The modern conception of geomathematics is outlined from different points of view and its challenging nature is described as well as its interdisciplinarity. Geomathematics is shown as the bridge between the real world and the virtual world. The complex mathematical tools are shown from a variety of fields necessary to tackle geoscientific problems in the mathematical language. Chapter 3 contains some exemplary applications as novel exploration methods. Particular importance is laid on the change of language when it comes to translate measurements to mathematical models. New solution methods like the multiscale mollifier technique are presented. Further applications discussed are aspects of reflection seismics. Chapter 4 is devoted to the short description of recent activities in geomathematics. The Appendix (Chapter 5) is devoted to the GEM – International Journal on Geomathematics founded ten years ago. Besides a detailed structural analysis of the editorial goals an index of all papers published in former issues is given.

Invitation to Geometry (Dover Books on Mathematics)

by Z. A. Melzak

Intended for students of many different backgrounds with only a modest knowledge of mathematics, this text features self-contained chapters that can be adapted to several types of geometry courses. Only a slight acquaintance with mathematics beyond the high-school level is necessary, including some familiarity with calculus and linear algebra. This text's introductions to several branches of geometry feature topics and treatments based on memorability and relevance. The author emphasizes connections with calculus and simple mechanics, focusing on developing students' grasp of spatial relationships. Subjects include classical Euclidean material, polygonal and circle isoperimetry, conics and Pascal's theorem, geometrical optimization, geometry and trigonometry on a sphere, graphs, convexity, and elements of differential geometry of curves. Additional material may be conveniently introduced in several places, and each chapter concludes with exercises of varying degrees of difficulty.

An Invitation to Hypoelliptic Operators and Hörmander's Vector Fields (SpringerBriefs in Mathematics)

by Marco Bramanti

Hörmander's operators are an important class of linear elliptic-parabolic degenerate partial differential operators with smooth coefficients, which have been intensively studied since the late 1960s and are still an active field of research. This text provides the reader with a general overview of the field, with its motivations and problems, some of its fundamental results, and some recent lines of development.

An Invitation to Knot Theory: Virtual and Classical

by Heather A. Dye

The Only Undergraduate Textbook to Teach Both Classical and Virtual Knot Theory An Invitation to Knot Theory: Virtual and Classical gives advanced undergraduate students a gentle introduction to the field of virtual knot theory and mathematical research. It provides the foundation for students to research knot theory and read journal articles on their own. Each chapter includes numerous examples, problems, projects, and suggested readings from research papers. The proofs are written as simply as possible using combinatorial approaches, equivalence classes, and linear algebra. The text begins with an introduction to virtual knots and counted invariants. It then covers the normalized f-polynomial (Jones polynomial) and other skein invariants before discussing algebraic invariants, such as the quandle and biquandle. The book concludes with two applications of virtual knots: textiles and quantum computation.

Invitation to Linear Algebra (Textbooks in Mathematics)

by David C. Mello

Unlike most books of this type, the book has been organized into “lessons” rather than chapters. This has been done to limit the size of the mathematical morsels that students must digest during each class, and to make it easier for instructors to budget class time. The book contains considerably more material than normally appears in a first course. For example, several advanced topics such as the Jordan canonical form and matrix power series have been included. This was done to make the book more flexible than most books presently available, and to allow instructors to choose enrichment material which may reflect their interests, and those of their students.

Invitation to Linear Programming and Game Theory

by David C. Vella

Written in a conversational tone, this classroom-tested text introduces the fundamentals of linear programming and game theory, showing readers how to apply serious mathematics to practical real-life questions by modelling linear optimization problems and strategic games. The treatment of linear programming includes two distinct graphical methods. The game theory chapters include a novel proof of the minimax theorem for 2x2 zero-sum games. In addition to zero-sum games, the text presents variable-sum games, ordinal games, and n-player games as the natural result of relaxing or modifying the assumptions of zero-sum games. All concepts and techniques are derived from motivating examples, building in complexity, which encourages students to think creatively and leads them to understand how the mathematics is applied. With no prerequisite besides high school algebra, the text will be useful to motivated high school students and undergraduates studying business, economics, mathematics, and the social sciences.

An Invitation to Mathematical Biology

by David G Costa Paul J Schulte

The textbook is designed to provide a "non-intimidating" entry to the field of mathematical biology. It is also useful for those wishing to teach an introductory course. Although there are many good mathematical biology texts available, most books are too advanced mathematically for most biology majors. Unlike undergraduate math majors, most biology major students possess a limited math background. Given that computational biology is a rapidly expanding field, more students should be encouraged to familiarize themselves with this powerful approach to understand complex biological phenomena. Ultimately, our goal with this undergraduate textbook is to provide an introduction to the interdisciplinary field of mathematical biology in a way that does not overly terrify an undergraduate biology major, thereby fostering a greater appreciation for the role of mathematics in biology

An Invitation to Mathematical Logic (Graduate Texts in Mathematics #301)

by David Marker

In addition to covering the essentials, the author’s intention in writing this text is to entice the reader to further study mathematical logic. There is no current “standard text” for a first graduate course in mathematical logic and this book will fill that gap. While there is more material than could be covered in a traditional one semester course, an instructor can cover the basics and still have the flexibility to choose several weeks’ worth of interesting advanced topics that have been introduced. The text can and will be used by people in various courses with different sorts of perspectives. This versatility is one of the many appealing aspects of this book. A list of suggested portions to be covered in a single course is provided as well as a useful chart which maps chapter dependencies. Additionally, a motivated student will have ample material for further reading. New definitions, formalism, and syntax have been streamlined to engage thereader quickly into the heart of logic and to more sophisticated topics. Part I and Part IV center on foundational questions, while Part III establishes the fundamentals of computability. Part II develops model theory, highlighting the model theory of the fields of real and complex numbers. The interplay between logic and other areas of mathematics, notably algebra, number theory, and combinatorics, are illustrated in Chapters 5, 6, 8, 14, and 16. For most of the text, the only prerequisite is mathematical maturity. The material should be accessible to first year graduate students or advanced undergraduates in mathematics, graduate students in philosophy with a solid math background, or students in computer science who want a mathematical introduction to logic. Prior exposure to logic is helpful but not assumed.

An Invitation to Mathematical Physics and Its History

by Jont Allen

This state of the art book takes an applications based approach to teaching mathematics to engineering and applied sciences students. The book lays emphasis on associating mathematical concepts with their physical counterparts, training students of engineering in mathematics to help them learn how things work. The book covers the concepts of number systems, algebra equations and calculus through discussions on mathematics and physics, discussing their intertwined history in a chronological order. The book includes examples, homework problems, and exercises. This book can be used to teach a first course in engineering mathematics or as a refresher on basic mathematical physics. Besides serving as core textbook, this book will also appeal to undergraduate students with cross-disciplinary interests as a supplementary text or reader.

An Invitation to Model Theory

by Jonathan Kirby

Model theory begins with an audacious idea: to consider statements about mathematical structures as mathematical objects of study in their own right. While inherently important as a tool of mathematical logic, it also enjoys connections to and applications in diverse branches of mathematics, including algebra, number theory and analysis. Despite this, traditional introductions to model theory assume a graduate-level background of the reader. In this innovative textbook, Jonathan Kirby brings model theory to an undergraduate audience. The highlights of basic model theory are illustrated through examples from specific structures familiar from undergraduate mathematics, paying particular attention to definable sets throughout. With numerous exercises of varying difficulty, this is an accessible introduction to model theory and its place in mathematics.

An Invitation to Morse Theory (Universitext)

by Liviu Nicolaescu

This self-contained treatment of Morse theory focuses on applications and is intended for a graduate course on differential or algebraic topology, and will also be of interest to researchers. This is the first textbook to include topics such as Morse-Smale flows, Floer homology, min-max theory, moment maps and equivariant cohomology, and complex Morse theory. The reader is expected to have some familiarity with cohomology theory and differential and integral calculus on smooth manifolds. Some features of the second edition include added applications, such as Morse theory and the curvature of knots, the cohomology of the moduli space of planar polygons, and the Duistermaat-Heckman formula. The second edition also includes a new chapter on Morse-Smale flows and Whitney stratifications, many new exercises, and various corrections from the first edition.

Refine Search

Showing 12,251 through 12,275 of 24,510 results