Browse Results

Showing 12,326 through 12,350 of 24,743 results

Invariant Measures for Stochastic Nonlinear Schrödinger Equations: Numerical Approximations and Symplectic Structures (Lecture Notes in Mathematics #2251)

by Jialin Hong Xu Wang

This book provides some recent advance in the study of stochastic nonlinear Schrödinger equations and their numerical approximations, including the well-posedness, ergodicity, symplecticity and multi-symplecticity. It gives an accessible overview of the existence and uniqueness of invariant measures for stochastic differential equations, introduces geometric structures including symplecticity and (conformal) multi-symplecticity for nonlinear Schrödinger equations and their numerical approximations, and studies the properties and convergence errors of numerical methods for stochastic nonlinear Schrödinger equations.This book will appeal to researchers who are interested in numerical analysis, stochastic analysis, ergodic theory, partial differential equation theory, etc.

Invariant Probabilities of Transition Functions

by Radu Zaharopol

The structure of the set of all the invariant probabilities and the structure of various types of individual invariant probabilities of a transition function are two topics of significant interest in the theory of transition functions, and are studied in this book. The results obtained are useful in ergodic theory and the theory of dynamical systems, which, in turn, can be applied in various other areas (like number theory). They are illustrated using transition functions defined by flows, semiflows, and one-parameter convolution semigroups of probability measures. In this book, all results on transition probabilities that have been published by the author between 2004 and 2008 are extended to transition functions. The proofs of the results obtained are new. For transition functions that satisfy very general conditions the book describes an ergodic decomposition that provides relevant information on the structure of the corresponding set of invariant probabilities. Ergodic decomposition means a splitting of the state space, where the invariant ergodic probability measures play a significant role. Other topics covered include: characterizations of the supports of various types of invariant probability measures and the use of these to obtain criteria for unique ergodicity, and the proofs of two mean ergodic theorems for a certain type of transition functions. The book will be of interest to mathematicians working in ergodic theory, dynamical systems, or the theory of Markov processes. Biologists, physicists and economists interested in interacting particle systems and rigorous mathematics will also find this book a valuable resource. Parts of it are suitable for advanced graduate courses. Prerequisites are basic notions and results on functional analysis, general topology, measure theory, the Bochner integral and some of its applications.

Invariant Random Fields on Spaces with a Group Action

by Nicolai Leonenko Anatoliy Malyarenko

The author describes the current state of the art in the theory of invariant random fields. This theory is based on several different areas of mathematics, including probability theory, differential geometry, harmonic analysis, and special functions. The present volume unifies many results scattered throughout the mathematical, physical, and engineering literature, as well as it introduces new results from this area first proved by the author. The book also presents many practical applications, in particular in such highly interesting areas as approximation theory, cosmology and earthquake engineering. It is intended for researchers and specialists working in the fields of stochastic processes, statistics, functional analysis, astronomy, and engineering.

Invariant Subspaces

by John A. Nohel Heydar Radjavi

Broad survey focuses on operators on separable Hilbert spaces. Topics include normal operators, analytic functions of operators, shift operators, invariant subspace lattices, compact operators, invariant and hyperinvariant subspaces, von Neumann algebras, transitive operator algebras, and algebras associated with invariant subspaces. 1973 edition. New Appendix on Recent Developments.

Invariants of Quadratic Differential Forms (Dover Books on Mathematics)

by Joseph Edmund Wright

This classic monograph by a mathematician affiliated with Trinity College, Cambridge, offers a brief account of the invariant theory connected with a single quadratic differential form. Suitable for advanced undergraduates and graduate students of mathematics, it avoids unnecessary analysis and offers an accessible view of the field for readers unfamiliar with the subject.A historical overview is followed by considerations of the methods of Christoffel and Lie as well as Maschke's symbolic method and explorations of geometrical and dynamical methods. The final chapter on applications, which draws upon developments by Ricci and Levi-Civita, presents the most successful method and can be read independently of the rest of the book.

Inventing the Mathematician: Gender, Race, and Our Cultural Understanding of Mathematics

by Sara N. Hottinger

Where and how do we, as a culture, get our ideas about mathematics and about who can engage with mathematical knowledge? Sara N. Hottinger uses a cultural studies approach to address how our ideas about mathematics shape our individual and cultural relationship to the field. She considers four locations in which representations of mathematics contribute to our cultural understanding of mathematics: mathematics textbooks, the history of mathematics, portraits of mathematicians, and the field of ethnomathematics. Hottinger examines how these discourses shape mathematical subjectivity by limiting the way some groups—including women and people of color—are able to see themselves as practitioners of math. Inventing the Mathematician provides a blueprint for how to engage in a deconstructive project, revealing the limited and problematic nature of the normative construction of mathematical subjectivity.

Inventories in National Economies: A Cross-country Analysis Of Macroeconomic Data

by Attila Chikán Erzsébet Kovács Zsolt Matyusz Magdolna Sass Péter Vakhal

This book introduces a new approach in the field of macroeconomic inventory studies: the use of multivariate statistics to evaluate long-term characteristics of inventory investments in developed countries. By analyzing a 44-year period series of annual inventory change in percentage of GDP in a set of OECD countries, disclosing their relationship to growth, industry structure and alternative uses of GDP (fixed capital investments, foreign trade and consumption), it fills a gap in the economic literature. It is generally accepted that inventories play an important role in all levels of the economy. However, while there is extensive literature on micro- (and even item-) level inventory problems, macroeconomic inventory studies are scarce. Both the long-term processes of inventory formation and their correlation with other macroeconomic factors provide interesting conclusions about economic changes and policies in our immediate past, and present important insights for the future.

Inverse Acoustic and Electromagnetic Scattering Theory (Applied Mathematical Sciences #93)

by David Colton Rainer Kress

The inverse scattering problem is central to many areas of science and technology such as radar, sonar, medical imaging, geophysical exploration and nondestructive testing. This book is devoted to the mathematical and numerical analysis of the inverse scattering problem for acoustic and electromagnetic waves. In this fourth edition, a number of significant additions have been made including a new chapter on transmission eigenvalues and a new section on the impedance boundary condition where particular attention has been made to the generalized impedance boundary condition and to nonlocal impedance boundary conditions. Brief discussions on the generalized linear sampling method, the method of recursive linearization, anisotropic media and the use of target signatures in inverse scattering theory have also been added.

Inverse Acoustic and Electromagnetic Scattering Theory

by Rainer Kress David Colton

The inverse scattering problem is central to many areas of science and technology such as radar and sonar, medical imaging, geophysical exploration and nondestructive testing. This book is devoted to the mathematical and numerical analysis of the inverse scattering problem for acoustic and electromagnetic waves. In this third edition, new sections have been added on the linear sampling and factorization methods for solving the inverse scattering problem as well as expanded treatments of iteration methods and uniqueness theorems for the inverse obstacle problem. These additions have in turn required an expanded presentation of both transmission eigenvalues and boundary integral equations in Sobolev spaces. As in the previous editions, emphasis has been given to simplicity over generality thus providing the reader with an accessible introduction to the field of inverse scattering theory. Review of earlier editions: "Colton and Kress have written a scholarly, state of the art account of their view of direct and inverse scattering. The book is a pleasure to read as a graduate text or to dip into at leisure. It suggests a number of open problems and will be a source of inspiration for many years to come." SIAM Review, September 1994 "This book should be on the desk of any researcher, any student, any teacher interested in scattering theory." Mathematical Intelligencer, June 1994

Inverse Analyses with Model Reduction

by Vladimir Buljak

In this self-consistent monograph, the author gathers and describes different mathematical techniques and combines all together to form practical procedures for the inverse analyses. It puts together topics coming from mathematical programming, with soft computing and Proper Orthogonal Decomposition, in order to show, in the context of structural analyses, how the things work and what are the main problems one needs to tackle. Throughout the book a number of examples and exercises are worked out in order to make reader practically familiar with discussed topics.

Inverse M-Matrices and Ultrametric Matrices

by Claude Dellacherie Servet Martinez Jaime San Martin

The study of M-matrices, their inverses and discrete potential theory is now a well-established part of linear algebra and the theory of Markov chains. The main focus of this monograph is the so-called inverse M-matrix problem, which asks for a characterization of nonnegative matrices whose inverses are M-matrices. We present an answer in terms of discrete potential theory based on the Choquet-Deny Theorem. A distinguished subclass of inverse M-matrices is ultrametric matrices, which are important in applications such as taxonomy. Ultrametricity is revealed to be a relevant concept in linear algebra and discrete potential theory because of its relation with trees in graph theory and mean expected value matrices in probability theory. Remarkable properties of Hadamard functions and products for the class of inverse M-matrices are developed and probabilistic insights are provided throughout the monograph.

Inverse Magnetometry: Mollifier Magnetization Distribution from Geomagnetic Field Data (Lecture Notes in Geosystems Mathematics and Computing)

by Christian Blick Willi Freeden M. Zuhair Nashed Helga Nutz Michael Schreiner

This monograph presents the geoscientific context arising in decorrelative geomagnetic exploration. First, an insight into the current state of research is given by reducing magnetometry to mathematically accessible, and thus calculable, decorrelated models. In this way, various questions and problems of magnetometry are made available to a broad scientific audience and the exploration industry. New stimuli are given, and innovative ways of modeling geologic strata by mollifier magnetometric techniques are shown.Potential data sets primarily of terrestrial origin constitute the main data basis in the book. For deep geology, the geomathematical decorrelation methods are designed in such a way that depth information (e.g., in boreholes) may be canonically entered. Overall, this book provides pioneering and ground-breaking innovative mathematical knowledge as a transfer methodology from the “reality space” of magnetometric measurements into the “virtual space” of mathematical-numerical modeling structures and mollifier solutions with novel geological application areas. It pursues a double goal: On the one hand, it represents a geoscientific set of rules for today's geoengineering, interested in the application of innovative modelling and simulation techniques to promising data sets and structures occurring in geomagnetics. On the other hand, the book serves as a collection of current material in Applied Mathematics to offer alternative methodologies in the theory of inverse problems.

Inverse Optimal Control and Inverse Noncooperative Dynamic Game Theory: A Minimum-Principle Approach (Communications and Control Engineering)

by Timothy L. Molloy Sören Hohmann Tristan Perez Jairo Inga Charaja

This book presents a novel unified treatment of inverse problems in optimal control and noncooperative dynamic game theory. It provides readers with fundamental tools for the development of practical algorithms to solve inverse problems in control, robotics, biology, and economics. The treatment involves the application of Pontryagin's minimum principle to a variety of inverse problems and proposes algorithms founded on the elegance of dynamic optimization theory. There is a balanced emphasis between fundamental theoretical questions and practical matters. The text begins by providing an introduction and background to its topics. It then discusses discrete-time and continuous-time inverse optimal control. The focus moves on to differential and dynamic games and the book is completed by consideration of relevant applications. The algorithms and theoretical results developed in Inverse Optimal Control and Inverse Noncooperative Dynamic Game Theory provide new insights into information requirements for solving inverse problems, including the structure, quantity, and types of state and control data. These insights have significant practical consequences in the design of technologies seeking to exploit inverse techniques such as collaborative robots, driver-assistance technologies, and autonomous systems. The book will therefore be of interest to researchers, engineers, and postgraduate students in several disciplines within the area of control and robotics.

The Inverse Problem of the Calculus of Variations

by Dmitry V. Zenkov

The aim of the present book is to give a systematic treatment of the inverse problem of the calculus of variations, i. e. how to recognize whether a system of differential equations can be treated as a system for extremals of a variational functional (the Euler-Lagrange equations), using contemporary geometric methods. Selected applications in geometry, physics, optimal control, and general relativity are also considered. The book includes the following chapters: - Helmholtz conditions and the method of controlled Lagrangians (Bloch, Krupka, Zenkov) - The Sonin-Douglas's problem (Krupka) - Inverse variational problem and symmetry in action: The Ostrogradskyj relativistic third order dynamics (Matsyuk. ) - Source forms and their variational completion (Voicu) - First-order variational sequences and the inverse problem of the calculus of variations (Urban, Volna) - The inverse problem of the calculus of variations on Grassmann fibrations (Urban).

Inverse Problems

by Mathias Richter

The overall goal of the book is to provide access to the regularized solution of inverse problems relevant in geophysics without requiring more mathematical knowledge than is taught in undergraduate math courses for scientists and engineers. From abstract analysis only the concept of functions as vectors is needed. Function spaces are introduced informally in the course of the text, when needed. Additionally, a more detailed, but still condensed introduction is given in Appendix B. A second goal is to elaborate the single steps to be taken when solving an inverse problem: discretization, regularization and practical solution of the regularized optimization problem. These steps are shown in detail for model problems from the fields of inverse gravimetry and seismic tomography. The intended audience is mathematicians, physicists and engineers having a good working knowledge of linear algebra and analysis at the upper undergraduate level.

Inverse Problems: Basics, Theory and Applications in Geophysics (Lecture Notes in Geosystems Mathematics and Computing)

by Mathias Richter

This textbook is an introduction to the subject of inverse problems with an emphasis on practical solution methods and applications from geophysics. The treatment is mathematically rigorous, relying on calculus and linear algebra only; familiarity with more advanced mathematical theories like functional analysis is not required. Containing up-to-date methods, this book will provide readers with the tools necessary to compute regularized solutions of inverse problems. A variety of practical examples from geophysics are used to motivate the presentation of abstract mathematical ideas, thus assuring an accessible approach.Beginning with four examples of inverse problems, the opening chapter establishes core concepts, such as formalizing these problems as equations in vector spaces and addressing the key issue of ill-posedness. Chapter Two then moves on to the discretization of inverse problems, which is a prerequisite for solving them on computers. Readers will be well-prepared for the final chapters that present regularized solutions of inverse problems in finite-dimensional spaces, with Chapter Three covering linear problems and Chapter Four studying nonlinear problems. Model problems reflecting scenarios of practical interest in the geosciences, such as inverse gravimetry and full waveform inversion, are fully worked out throughout the book. They are used as test cases to illustrate all single steps of solving inverse problems, up to numerical computations. Five appendices include the mathematical foundations needed to fully understand the material.This second edition expands upon the first, particularly regarding its up-to-date treatment of nonlinear problems. Following the author’s approach, readers will understand the relevant theory and methodology needed to pursue more complex applications. Inverse Problems is ideal for graduate students and researchers interested in geophysics and geosciences.

Inverse Problems: Basics, Theory and Applications in Geophysics (Lecture Notes in Geosystems Mathematics and Computing)

by Mathias Richter

The overall goal of the book is to provide access to the regularized solution of inverse problems relevant in geophysics without requiring more mathematical knowledge than is taught in undergraduate math courses for scientists and engineers. From abstract analysis only the concept of functions as vectors is needed. Function spaces are introduced informally in the course of the text, when needed. Additionally, a more detailed, but still condensed introduction is given in Appendix B.A second goal is to elaborate the single steps to be taken when solving an inverse problem: discretization, regularization and practical solution of the regularized optimization problem. These steps are shown in detail for model problems from the fields of inverse gravimetry and seismic tomography. The intended audience is mathematicians, physicists and engineers having a good working knowledge of linear algebra and analysis at the upper undergraduate level.

Inverse Problems and Applications

by Larisa Beilina

​​This volume arose from the Third Annual Workshop on Inverse Problems, held in Stockholm on May 2-6, 2012. The proceedings present new analytical developments and numerical methods for solutions of inverse and ill-posed problems, which consistently pose complex challenges to the development of effective numerical methods. The book highlights recent research focusing on reliable numerical techniques for the solution of inverse problems, with relevance to a range of fields including acoustics, electromagnetics, optics, medical imaging, and geophysics. ​

Inverse Problems and Large-Scale Computations

by Larisa Beilina Yury V. Shestopalov

This volume is a result of two international workshops, namely the Second Annual Workshop on Inverse Problems and the Workshop on Large-Scale Modeling, held jointly in Sunne, Sweden from May 1-6 2012. The subject of the inverse problems workshop was to present new analytical developments and new numerical methods for solutions of inverse problems. The objective of the large-scale modeling workshop was to identify large-scale problems arising in various fields of science and technology and covering all possible applications, with a particular focus on urgent problems in theoretical and applied electromagnetics. The workshops brought together scholars, professionals, mathematicians, and programmers and specialists working in large-scale modeling problems. The contributions in this volume are reflective of these themes and will be beneficial to researchers in this area.

Inverse Problems and Related Topics: Shanghai, China, October 12–14, 2018 (Springer Proceedings in Mathematics & Statistics #310)

by Jin Cheng Masahiro Yamamoto Shuai Lu

This volume contains 13 chapters, which are extended versions of the presentations at International Conference on Inverse Problems at Fudan University, Shanghai, China, October 12-14, 2018, in honor of Masahiro Yamamoto on the occasion of his 60th anniversary. The chapters are authored by world-renowned researchers and rising young talents, and are updated accounts of various aspects of the researches on inverse problems. The volume covers theories of inverse problems for partial differential equations, regularization methods, and related topics from control theory. This book addresses a wide audience of researchers and young post-docs and graduate students who are interested in mathematical sciences as well as mathematics.

Inverse Problems and Related Topics (Chapman & Hall/CRC Research Notes in Mathematics Series)

by G Nakamura S Saitoh J K Seo M Yamamoto

Inverse problems arise in many disciplines and hold great importance to practical applications. However, sound new methods are needed to solve these problems. Over the past few years, Japanese and Korean mathematicians have obtained a number of very interesting and unique results in inverse problems.Inverse Problems and Related Topics compi

Inverse Problems for Partial Differential Equations

by Victor Isakov

A comprehensive description of the current theoretical and numerical aspects of inverse problems in partial differential equations. Applications include recovery of inclusions from anomalies of their gravity fields, reconstruction of the interior of the human body from exterior electrical, ultrasonic, and magnetic measurement. By presenting the data in a readable and informative manner, the book introduces both scientific and engineering researchers as well as graduate students to the significant work done in this area in recent years, relating it to broader themes in mathematical analysis.

Inverse Problems with Applications in Science and Engineering

by Daniel Lesnic

Driven by the advancement of industrial mathematics and the need for impact case studies, Inverse Problems with Applications in Science and Engineering thoroughly examines the state-of-the-art of some representative classes of inverse and ill-posed problems for partial differential equations (PDEs). The natural practical applications of this examination arise in heat transfer, electrostatics, porous media, acoustics, fluid and solid mechanics – all of which are addressed in this text. Features: Covers all types of PDEs — namely, elliptic (Laplace’s, Helmholtz, modified Helmholtz, biharmonic and Stokes), parabolic (heat, convection, reaction and diffusion) and hyperbolic (wave) Excellent reference for post-graduates and researchers in mathematics, engineering and any other scientific discipline that deals with inverse problems Contains both theory and numerical algorithms for solving all types of inverse and ill-posed problems

Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations (Chapman & Hall/CRC Monographs and Research Notes in Mathematics)

by Pham Loi Vu

Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations is devoted to inverse scattering problems (ISPs) for differential equations and their application to nonlinear evolution equations (NLEEs). The book is suitable for anyone who has a mathematical background and interest in functional analysis, partial differential equations, equations of mathematical physics, and functions of a complex variable. This book is intended for a wide community working with inverse scattering problems and their applications; in particular, there is a traditional community in mathematical physics. In this monograph, the problems are solved step-by-step, and detailed proofs are given for the problems to make the topics more accessible for students who are approaching them for the first time. Features • The unique solvability of ISPs are proved. The scattering data of the considered inverse scattering problems (ISPs) are described completely. • Solving the associated initial value problem or initial-boundary value problem for the nonlinear evolution equations (NLEEs) is carried out step-by-step. Namely, the NLEE can be written as the compatibility condition of two linear equations. The unknown boundary values are calculated with the help of the Lax (generalized) equation, and then the time-dependent scattering data (SD) are constructed from the initial and boundary conditions. • The potentials are recovered uniquely in terms of time-dependent SD, and the solution of the NLEEs is expressed uniquely in terms of the found solutions of the ISP. • Since the considered ISPs are solved well, then the SPs generated by two linear equations constitute the inverse scattering method (ISM). The application of the ISM to solving the NLEEs is consistent and is effectively embedded in the schema of the ISM.

Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations (Chapman & Hall/CRC Monographs and Research Notes in Mathematics)

by Pham Loi Vu

Inverse Scattering Problems and Their Applications to Nonlinear Integrable Equations, Second Edition is devoted to inverse scattering problems (ISPs) for differential equations and their applications to nonlinear evolution equations (NLEEs). The book is suitable for anyone who has a mathematical background and interest in functional analysis, differential equations, and equations of mathematical physics. This book is intended for a wide community working with ISPs and their applications. There is an especially strong traditional community in mathematical physics. In this monograph, the problems are presented step-by-step, and detailed proofs are given for considered problems to make the topics more accessible for students who are approaching them for the first time. New to the Second Edition All new chapter dealing with the Bäcklund transformations between a common solution of both linear equations in the Lax pair and the solution of the associated IBVP for NLEEs on the half-line Updated references and concluding remarks Features Solving the direct and ISP, then solving the associated initial value problem (IVP) or initial-boundary value problem (IBVP) for NLEEs are carried out step-by-step. The unknown boundary values are calculated with the help of the Lax (generalized) equations, then the time-dependent scattering data (SD) are expressed in terms of preassigned initial and boundary conditions. Thereby, the potential functions are recovered uniquely in terms of the given initial and calculated boundary conditions. The unique solvability of the ISP is proved and the SD of the scattering problem is described completely. The considered ISPs are well-solved. The ISPs are set up appropriately for constructing the Bӓckhund transformations (BTs) for solutions of associated IBVPs or IVPs for NLEEs. The procedure for finding a BT for the IBVP for NLEEs on the half-line differs from the one used for obtaining a BT for non-linear differential equations defined in the whole space. The interrelations between the ISPs and the constructed BTs are established to become new powerful unified transformations (UTs) for solving IBVPs or IVPs for NLEEs, that can be used in different areas of physics and mechanics. The application of the UTs is consistent and efficiently embedded in the scheme of the associated ISP.

Refine Search

Showing 12,326 through 12,350 of 24,743 results