Browse Results

Showing 12,851 through 12,875 of 28,203 results

Integer Programming and Combinatorial Optimization

by Martin Skutella Quentin Louveaux

This book constitutes therefereed proceedings of the 18th International Conference on IntegerProgramming and Combinatorial Optimization, IPCO 2016, held in Liège, Belgium,in June 2016. The 33 full papers presented were carefully reviewed and selectedfrom 125 submissions. The conference is a forum for researchers andpractitioners working on various aspects of integer programming andcombinatorial optimization. The aim is to present recent developments intheory, computation, and applications in these areas. The scope of IPCO isviewed in a broad sense, to include algorithmic and structural results ininteger programming and combinatorial optimization as well as revealingcomputational studies and novel applications of discrete optimization topractical problems.

Integer Programming and Combinatorial Optimization: 25th International Conference, IPCO 2024, Wroclaw, Poland, July 3–5, 2024, Proceedings (Lecture Notes in Computer Science #14679)

by Jens Vygen Jarosław Byrka

This book constitutes the refereed proceedings of the 25th International Conference on Integer Programming and Combinatorial Optimization, IPCO 2024, held in Wrocław, Poland, during July 3–5, 2024. The 33 full papers presented were carefully reviewed and selected from 101 submissions. IPCO is under the auspices of the Mathematical Optimization Society, and it is an important forum for presenting present recent developments in theory, computation, and applications. The scope of IPCO is viewed in a broad sense, to include algorithmic and structural results in integer programming and combinatorial optimization as well as revealing computational studies and novel applications of discrete optimization to practical problems.

Integer Programming and Combinatorial Optimization: 26th International Conference, IPCO 2025, Baltimore, MD, USA, June 11–13, 2025, Proceedings (Lecture Notes in Computer Science #15620)

by Nicole Megow Amitabh Basu

This book constitutes the refereed proceedings of the 26th International Conference on Integer Programming and Combinatorial Optimization, IPCO 2025, held in Baltimore, MD, USA, during June 11–13, 2025. The 33 papers presented here were carefully reviewed and selected from 109 submissions. These papers focus on the recent developments in theory, computation, and applications of integer programming and combinatorial optimization.

Integer Programming: From The Early Years To The State-of-the-art (Wiley Series In Discrete Mathematics And Optimization Ser. #Vol. 52)

by Laurence A. Wolsey

A PRACTICAL GUIDE TO OPTIMIZATION PROBLEMS WITH DISCRETE OR INTEGER VARIABLES, REVISED AND UPDATED The revised second edition of Integer Programming explains in clear and simple terms how to construct custom-made algorithms or use existing commercial software to obtain optimal or near-optimal solutions for a variety of real-world problems. The second edition also includes information on the remarkable progress in the development of mixed integer programming solvers in the 22 years since the first edition of the book appeared. The updated text includes information on the most recent developments in the field such as the much improved preprocessing/presolving and the many new ideas for primal heuristics included in the solvers. The result has been a speed-up of several orders of magnitude. The other major change reflected in the text is the widespread use of decomposition algorithms, in particular column generation (branch-(cut)-and-price) and Benders&’ decomposition. The revised second edition: Contains new developments on column generation Offers a new chapter on Benders&’ algorithm Includes expanded information on preprocessing, heuristics, and branch-and-cut Presents several basic and extended formulations, for example for fixed cost network flows Also touches on and briefly introduces topics such as non-bipartite matching, the complexity of extended formulations or a good linear program for the implementation of lift-and-project Written for students of integer/mathematical programming in operations research, mathematics, engineering, or computer science, Integer Programming offers an updated edition of the basic text that reflects the most recent developments in the field.

Integer Sequences: Divisibility, Lucas and Lehmer Sequences

by Masum Billal Samin Riasat

This book discusses special properties of integer sequences from a unique point of view. It generalizes common, well-known properties and connects them with sequences such as divisible sequences, Lucas sequences, Lehmer sequences, periods of sequences, lifting properties, and so on. The book presents theories derived by using elementary means and includes results not usually found in common number theory books. Considering the impact and usefulness of these theorems, the book also aims at being valuable for Olympiad level problem solving as well as regular research. This book will be of interest to students, researchers and faculty members alike.

Integer and Combinatorial Optimization

by George L. Nemhauser Laurence A. Wolsey

Rave reviews for INTEGER AND COMBINATORIAL OPTIMIZATION"This book provides an excellent introduction and survey of traditional fields of combinatorial optimization . . . It is indeed one of the best and most complete texts on combinatorial optimization . . . available. [And] with more than 700 entries, [it] has quite an exhaustive reference list."-Optima"A unifying approach to optimization problems is to formulate them like linear programming problems, while restricting some or all of the variables to the integers. This book is an encyclopedic resource for such formulations, as well as for understanding the structure of and solving the resulting integer programming problems."-Computing Reviews"[This book] can serve as a basis for various graduate courses on discrete optimization as well as a reference book for researchers and practitioners."-Mathematical Reviews"This comprehensive and wide-ranging book will undoubtedly become a standard reference book for all those in the field of combinatorial optimization."-Bulletin of the London Mathematical Society"This text should be required reading for anybody who intends to do research in this area or even just to keep abreast of developments."-Times Higher Education Supplement, LondonAlso of interest . . .INTEGER PROGRAMMING Laurence A. Wolsey Comprehensive and self-contained, this intermediate-level guide to integer programming provides readers with clear, up-to-date explanations on why some problems are difficult to solve, how techniques can be reformulated to give better results, and how mixed integer programming systems can be used more effectively. 1998 (0-471-28366-5) 260 pp.

Integrability, Supersymmetry and Coherent States: A Volume in Honour of Professor Véronique Hussin (CRM Series in Mathematical Physics)

by Şengül Kuru Javier Negro Luis M. Nieto

This volume shares and makes accessible new research lines and recent results in several branches of theoretical and mathematical physics, among them Quantum Optics, Coherent States, Integrable Systems, SUSY Quantum Mechanics, and Mathematical Methods in Physics. In addition to a selection of the contributions presented at the "6th International Workshop on New Challenges in Quantum Mechanics: Integrability and Supersymmetry", held in Valladolid, Spain, 27-30 June 2017, several high quality contributions from other authors are also included. The conference gathered 60 participants from many countries working in different fields of Theoretical Physics, and was dedicated to Prof. Véronique Hussin—an internationally recognized expert in many branches of Mathematical Physics who has been making remarkable contributions to this field since the 1980s. The reader will find interesting reviews on the main topics from internationally recognized experts in each field, as well as other original contributions, all of which deal with recent applications or discoveries in the aforementioned areas.

Integrable Hamiltonian Systems: Geometry, Topology, Classification

by A.V. Bolsinov A.T. Fomenko

Integrable Hamiltonian systems have been of growing interest over the past 30 years and represent one of the most intriguing and mysterious classes of dynamical systems. This book explores the topology of integrable systems and the general theory underlying their qualitative properties, singularites, and topological invariants.The authors,

Integrable Systems

by Ahmed Lesfari

This book illustrates the powerful interplay between topological, algebraic and complex analytical methods, within the field of integrable systems, by addressing several theoretical and practical aspects. Contemporary integrability results, discovered in the last few decades, are used within different areas of mathematics and physics. Integrable Systems incorporates numerous concrete examples and exercises, and covers a wealth of essential material, using a concise yet instructive approach. This book is intended for a broad audience, ranging from mathematicians and physicists to students pursuing graduate, Masters or further degrees in mathematics and mathematical physics. It also serves as an excellent guide to more advanced and detailed reading in this fundamental area of both classical and contemporary mathematics.

Integrable Systems and Algebraic Geometry: Volume 1 (London Mathematical Society Lecture Note Series #458)

by Ron Donagi Tony Shaska

Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between algebraic geometry and integrable systems, differential equations, mathematical physics, and many other areas. The authors, many of whom have been at the forefront of research into these topics for the last decades, have all been influenced by Previato's research, as her collaborators, students, or colleagues. The diverse articles in the book demonstrate the wide scope of Previato's work and the inclusion of several survey and introductory articles makes the text accessible to graduate students and non-experts, as well as researchers. This first volume covers a wide range of areas related to integrable systems, often emphasizing the deep connections with algebraic geometry. Common themes include theta functions and Abelian varieties, Lax equations, integrable hierarchies, Hamiltonian flows and difference operators. These powerful tools are applied to spinning top, Hitchin, Painleve and many other notable special equations.

Integrable Systems and Algebraic Geometry: Volume 2 (London Mathematical Society Lecture Note Series #459)

by Ron Donagi Tony Shaska

Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between algebraic geometry and integrable systems, differential equations, mathematical physics, and many other areas. The authors, many of whom have been at the forefront of research into these topics for the last decades, have all been influenced by Previato's research, as her collaborators, students, or colleagues. The diverse articles in the book demonstrate the wide scope of Previato's work and the inclusion of several survey and introductory articles makes the text accessible to graduate students and non-experts, as well as researchers. The articles in this second volume discuss areas related to algebraic geometry, emphasizing the connections of this central subject to integrable systems, arithmetic geometry, Riemann surfaces, coding theory and lattice theory.

Integral Equations

by B. L. Moiseiwitsch

Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, accompanied by simple examples of a variety of integral equations and the methods of their solution. The treatment becomes gradually more abstract, with discussions of Hilbert space and linear operators, the resolvent, Fredholm theory, and the Hilbert-Schmidt theory of linear operators in Hilbert space. This new edition of Integral Equations offers the additional benefit of solutions to selected problems.

Integral Equations and Integral Transforms

by Birendra Nath Mandal Sudeshna Banerjea

This comprehensive textbook on linear integral equations and integral transforms is aimed at senior undergraduate and graduate students of mathematics and physics. The book covers a range of topics including Volterra and Fredholm integral equations, the second kind of integral equations with symmetric kernels, eigenvalues and eigen functions, the Hilbert–Schmidt theorem, and the solution of Abel integral equations by using an elementary method. In addition, the book covers various integral transforms including Fourier, Laplace, Mellin, Hankel, and Z-transforms. One of the unique features of the book is a general method for the construction of various integral transforms and their inverses, which is based on the properties of delta function representation in terms of Green’s function of a Sturm–Liouville type ordinary differential equation and its applications to physical problems. The book is divided into two parts: integral equations and integral transforms. Each chapter is supplemented with numerous illustrative examples to aid in understanding. The clear and concise presentation of the topics covered makes this book an ideal resource for students, researchers, and professionals interested in the theory and application of linear integral equations and integral transforms.

Integral Expansions Related to Mehler-Fock Type Transforms

by B N Mandal Nanigopal Mandal

An important class of integral expansions generated by Sturm-Liouville theory involving spherical harmonics is commonly known as Mehler-Fock integral transforms. In this book, a number of integral expansions of such type have been established rigorously. As applications, integral expansions of some simple function are also obtained.

Integral Inequalities and Generalized Convexity

by Shashi Kant Mishra Nidhi Sharma Jaya Bisht

The book covers several new research findings in the area of generalized convexity and integral inequalities. Integral inequalities using various type of generalized convex functions are applicable in many branches of mathematics such as mathematical analysis, fractional calculus, and discrete fractional calculus. The book contains integral inequalities of Hermite-Hadamard type, Hermite- Hadamard-Fejer type and majorization type for the generalized strongly convex functions. It presents Hermite-Hadamard type inequalities for functions defined on Time scales. Further, it provides the generalization and extensions of the concept of preinvexity for interval-valued functions and stochastic processes, and give Hermite-Hadamard type and Ostrowski type inequalities for these functions. These integral inequalities are utilized in numerous areas for the boundedness of generalized convex functions. Features: Covers Interval-valued calculus, Time scale calculus, Stochastic processes – all in one single book. Numerous examples to validate results Provides an overview of the current state of integral inequalities and convexity for a much wider audience, including practitioners. Applications of some special means of real numbers are also discussed. The book is ideal for anyone teaching or attending courses in integral inequalities along with researchers in this area.

Integral Methods in Science and Engineering

by Andreas Kirsch Christian Constanda

This contributed volume contains a collection of articles on state-of-the-art developments on the construction of theoretical integral techniques and their application to specific problems in science and engineering. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Thirteenth International Conference on Integral Methods in Science and Engineering, held July 21-25, 2014, in Karlsruhe, Germany. A broad range of topics is addressed, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches. This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential tool.

Integral Methods in Science and Engineering (Chapman And Hall/crc Research Notes In Mathematics Ser.)

by Christian Constanda Jukka Saranen S Seikkala

Based on proceedings of the International Conference on Integral Methods in Science and Engineering, this collection of papers addresses the solution of mathematical problems by integral methods in conjunction with approximation schemes from various physical domains. Topics and applications include: wavelet expansions, reaction-diffusion systems, variational methods , fracture theory, boundary value problems at resonance, micromechanics, fluid mechanics, combustion problems, nonlinear problems, elasticity theory, and plates and shells. Volume 1 covers Analytic Methods.

Integral Methods in Science and Engineering: Analytic Treatment and Numerical Approximations

by Christian Constanda Paul Harris

This contributed volume contains a collection of articles on state-of-the-art developments on the construction of theoretical integral techniques and their application to specific problems in science and engineering. The chapters in this book are based on talks given at the Fifteenth International Conference on Integral Methods in Science and Engineering, held July 16-20, 2018 at the University of Brighton, UK, and are written by internationally recognized researchers. The topics addressed are wide ranging, and include:Asymptotic analysisBoundary-domain integral equationsViscoplastic fluid flowStationary wavesInterior Neumann shape optimizationSelf-configuring neural networksThis collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential tool.

Integral Methods in Science and Engineering: Analytic and Computational Procedures

by Christian Constanda Paul J. Harris Bardo E. J. Bodmann

This volume contains a collection of articles on state-of-the-art developments in the construction of theoretical integral techniques and their application to specific problems in science and engineering. Chapters in this book are based on talks given at the Seventeenth International Conference on Integral Methods in Science and Engineering, held virtually in July 2022, and are written by internationally recognized researchers. This collection will be of interest to researchers in applied mathematics, physics, and mechanical, electrical, and petroleum engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential working tool.

Integral Methods in Science and Engineering: Computational Methods (Chapman And Hall/crc Research Notes In Mathematics Ser.)

by B Bertram C Constanda A Struthers

Based on proceedings of the International Conference on Integral Methods in Science and Engineering, this collection of papers addresses the solution of mathematical problems by integral methods in conjunction with approximation schemes from various physical domains. Topics and applications include: wavelet expansions, reaction-diffusion systems, variational methods , fracture theory, boundary value problems at resonance, micromechanics, fluid mechanics, combustion problems, nonlinear problems, elasticity theory, and plates and shells.

Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques

by Christian Constanda Bardo E.J. Bodmann Haroldo F. Velho

Advances in science and technology are driven by the development of rigorous mathematical foundations for the study of both theoretical and experimental models. With certain methodological variations, this type of study always comes down to the application of analytic or computational integration procedures, making such tools indispensible. With a wealth of cutting-edge research in the field, Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques provides a detailed portrait of both the construction of theoretical integral techniques and their application to specific problems in science and engineering. The chapters in this volume are based on talks given by well-known researchers at the Twelfth International Conference on Integral Methods in Science and Engineering, July 23-27, 2012, in Porto Alegre, Brazil. They address a broad range of topics, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches. The contributing authors bring their expertise to bear on a number of topical problems that have to date resisted solution, thereby offering help and guidance to fellow professionals worldwide. Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques will be a valuable resource for researchers in applied mathematics, physics, and mechanical and electrical engineering, for graduate students in these disciplines, and for various other professionals who use integration as an essential tool in their work.

Integral Operators in Non-Standard Function Spaces: Volume 3: Advances in Grand Function Spaces (Operator Theory: Advances and Applications #298)

by Humberto Rafeiro Stefan Samko Vakhtang Kokilashvili Alexander Meskhi

The present monograph serves as a natural extension of the prior 2-volume monograph with the same title and by the same authors, which encompassed findings up until 2014. This four-volume project encapsulates the authors’ decade-long research in the trending topic of nonstandard function spaces and operator theory. One of the main novelties of the present book is to develop the extrapolation theory, generally speaking, in grand Banach function spaces, and to apply it for obtaining the boundedness of fundamental operators of harmonic analysis, in particular, function spaces such as grand weighted Lebesgue and Lorentz spaces, grand variable exponent Lebesgue/Morrey spaces, mixed normed function spaces, etc. Embeddings in grand variable exponent Hajłasz-Sobolev spaces are also studied. Some applications to the approximation theory and boundary value problems of analytic functions are presented as well. The book is aimed at an audience ranging from researchers in operator theory and harmonic analysis to experts in applied mathematics and post graduate students. In particular, we hope that this book will serve as a source of inspiration for researchers in abstract harmonic analysis, function spaces, PDEs and boundary value problems.

Integral Representations For Spatial Models of Mathematical Physics (Chapman And Hall/crc Research Notes In Mathematics Ser. #351)

by Michael Shapiro Vladislav V Kravchenko

This book provides a new mathematical theory for the treatment of an ample series of spatial problems of electrodynamics, particle physics, quantum mechanics and elasticity theory. This technique proves to be as powerful for solving the spatial problems of mathematical physics as complex analysis is for solving planar problems.The main analytic tool of the book, a non-harmonic version of hypercomplex analysis recently developed by the authors, is presented in detail. There are given applications of this theory to the boundary value problems of electrodynamics and elasticity theory as well as to the problem of quark confinement. A new approach to the linearization of special classes of the self-duality equation is also considered. Detailed proofs are given throughout. The book contains an extensive bibliography on closely related topics.This book will be of particular interest to academic and professional specialists and students in mathematics and physics who are interested in integral representations for partial differential equations. The book is self-contained and could be used as a main reference for special course seminars on the subject.

Integral Theorems for Functions and Differential Forms in C (Chapman & Hall/CRC Research Notes in Mathematics Series)

by Reynaldo Rocha-Chavez Michael Shapiro Frank Sommen

The theory of holomorphic functions of several complex variables emerged from the attempt to generalize the theory in one variable to the multidimensional situation. Research in this area has led to the discovery of many sophisticated facts, structures, ideas, relations, and applications. This deepening of knowledge, however, has also revealed more

Integral Transform Techniques for Green's Function

by Kazumi Watanabe

In this book mathematical techniques for integral transforms are described in detail but concisely. The techniques are applied to the standard partial differential equations, such as the Laplace equation, the wave equation and elasticity equations. The Green's functions for beams, plates and acoustic media are also shown along with their mathematical derivations. Lists of Green's functions are presented for the future use. The Cagniard's-de Hoop method for the double inversion is described in detail, and 2D and 3D elasto-dynamics problems are fully treated.

Refine Search

Showing 12,851 through 12,875 of 28,203 results