Browse Results

Showing 13,876 through 13,900 of 23,748 results

Mathematics and Its Applications: A Transcendental-Idealist Perspective (Synthese Library #385)

by Jairo José da Silva

This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism.The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical ontology: what does it mean to exist, mathematical structures: what are they and how do we know them, how different layers of mathematical structuring relate to each other and to perceptual structures, and how to use mathematics to find out how the world is.The book simultaneously develops along two lines, both inspired and enlightened by Edmund Husserl’s phenomenological philosophy. One line leads to the establishment of a particular version of mathematical structuralism, free of “naturalist” and empiricist bias. The other leads to a logical-epistemological explanation and justification of the applicability of mathematics carried out within a unique structuralist perspective. This second line points to the “unreasonable” effectiveness of mathematics in physics as a means of representation, a tool, and a source of not always logically justified but useful and effective heuristic strategies.

Mathematics and Its Connections to the Arts and Sciences: 15 Years of Interdisciplinary Mathematics Education (Mathematics Education in the Digital Era #19)

by Claus Michelsen Astrid Beckmann Viktor Freiman Uffe Thomas Jankvist Annie Savard

This book celebrates the 15th anniversary of the bi-annual symposium series Mathematics and its Connections to the Arts and Sciences (MACAS), which was first held in 2005 following the continued collaboration of an international group of researchers from ICME Topic Study Group 21. The MACAS-conferences bring together scientists and educators who are interested in the connection between mathematics, arts and science in educational curriculum, while emphasizing on, as well as researching about, the role of mathematics. By pooling together these different approaches and viewpoints between mathematics, arts and sciences, this book reveals possible synergies and paths for collaborations. In view of the challenges of the 21st century, a modern approach to education with a focus on multi- and interdisciplinarity is more important than ever. The role of mathematics assumes a key role in this approach as it is connected to all other disciplines, such as STEM education, physics, chemistry, biology, aesthetics and language, and can serve as a bridge between them. This book discusses, amongst others, the curricular approaches to integrate mathematics and other disciplines, the importance of mathematical modelling and the interdisciplinarity ways for learning and studying of mathematics, as well as the intercultural dimensions of mathematics and mathematics in the digital era. All topics will be presented from very different perspectives and regarding very different contexts, including digitization, culture and sustainability. This unique collection will serve as a very valuable and compact source for all above mentioned scientists and educators, as well as for use in advanced teacher education courses.

Mathematics and Its History: A Concise Edition (Undergraduate Texts in Mathematics)

by John Stillwell

This textbook provides a unified and concise exploration of undergraduate mathematics by approaching the subject through its history. Readers will discover the rich tapestry of ideas behind familiar topics from the undergraduate curriculum, such as calculus, algebra, topology, and more. Featuring historical episodes ranging from the Ancient Greeks to Fermat and Descartes, this volume offers a glimpse into the broader context in which these ideas developed, revealing unexpected connections that make this ideal for a senior capstone course. The presentation of previous versions has been refined by omitting the less mainstream topics and inserting new connecting material, allowing instructors to cover the book in a one-semester course. This condensed edition prioritizes succinctness and cohesiveness, and there is a greater emphasis on visual clarity, featuring full color images and high quality 3D models. As in previous editions, a wide array of mathematical topics are covered, from geometry to computation; however, biographical sketches have been omitted. Mathematics and Its History: A Concise Edition is an essential resource for courses or reading programs on the history of mathematics. Knowledge of basic calculus, algebra, geometry, topology, and set theory is assumed. From reviews of previous editions: “Mathematics and Its History is a joy to read. The writing is clear, concise and inviting. The style is very different from a traditional text. I found myself picking it up to read at the expense of my usual late evening thriller or detective novel…. The author has done a wonderful job of tying together the dominant themes of undergraduate mathematics.” Richard J. Wilders, MAA, on the Third Edition"The book...is presented in a lively style without unnecessary detail. It is very stimulating and will be appreciated not only by students. Much attention is paid to problems and to the development of mathematics before the end of the nineteenth century.... This book brings to the non-specialist interested in mathematics many interesting results. It can be recommended for seminars and will be enjoyed by the broad mathematical community." European Mathematical Society, on the Second Edition

Mathematics and Modern Art

by Claude Bruter

The link between mathematics and art remains as strong today as it was in the earliest instances of decorative and ritual art. Arts, architecture, music and painting have for a long time been sources of new developments in mathematics, and vice versa. Many great painters have seen no contradiction between artistic and mathematical endeavors, contributing to the progress of both, using mathematical principles to guide their visual creativity, enriching their visual environment with the new objects created by the mathematical science. Owing to the recent development of the so nice techniques for visualization, while mathematicians can better explore these new mathematical objects, artists can use them to emphasize their intrinsic beauty, and create quite new sceneries. This volume, the content of the first conference of the European Society for Mathematics and the Arts (ESMA), held in Paris in 2010, gives an overview on some significant and beautiful recent works where maths and art, including architecture and music, are interwoven. The book includes a wealth of mathematical illustrations from several basic mathematical fields including classical geometry, topology, differential geometry, dynamical systems. Here, artists and mathematicians alike elucidate the thought processes and the tools used to create their work

Mathematics and Music: Composition, Perception, and Performance

by James S. Walker Gary W. Don

Mathematics and Music: Composition, Perception, and Performance, Second Edition includes many new sections and more consistent expectations of a student’s experience. The new edition of this popular text is more accessible for students with limited musical backgrounds and only high school mathematics is required. The new edition includes more illustrations than the previous one and the added sections deal with the XronoMorph rhythm generator, musical composition, and analyzing personal performance. The text teaches the basics of reading music, explaining how various patterns in music can be described with mathematics, providing mathematical explanations for musical scales, harmony, and rhythm. The book gives students a deeper appreciation showing how music is informed by both its mathematical and aesthetic structures. Highlights of the Second Edition: Now updated for more consistent expectations of students’ backgrounds More accessible for students with limited musical backgrounds Full-color presentation Includes more thorough coverage of spectrograms for analyzing recorded music Provides a basic introduction to reading music Features new coverage of building and evaluating rhythms

Mathematics and Philosophy 2: Graphs, Orders, Infinites and Philosophy

by Daniel Parrochia

From Pythagoreans to Hegel, and beyond, this book gives a brief overview of the history of the notion of graphs and introduces the main concepts of graph theory in order to apply them to philosophy. In addition, this book presents how philosophers can use various mathematical notions of order. Throughout the book, philosophical operations and concepts are defined through examining questions relating the two kinds of known infinities – discrete and continuous – and how Woodin's approach can influence elements of philosophy. We also examine how mathematics can help a philosopher to discover the elements of stability which will help to build an image of the world, even if various approaches (for example, negative theology) generally cannot be valid. Finally, we briefly consider the possibilities of weakening formal thought represented by fuzziness and neutrosophic graphs. In a nutshell, this book expresses the importance of graphs when representing ideas and communicating them clearly with others.

Mathematics and Physics of Emerging Biomedical Imaging

by Committee on the Mathematics Physics of Emerging Dynamic Biomedical Imaging

This cross-disciplinary book documents the key research challenges in the mathematical sciences and physics that could enable the economical development of novel biomedical imaging devices. It is hoped that the infusion of new insights from mathematical scientists and physicists will accelerate progress in imaging. Incorporating input from dozens of biomedical researchers who described what they perceived as key open problems of imaging that are amenable to attack by mathematical scientists and physicists, this book introduces the frontiers of biomedical imaging, especially the imaging of dynamic physiological functions, to the educated nonspecialist.Ten imaging modalities are covered, from the well-established (e.g., CAT scanning, MRI) to the more speculative (e.g., electrical and magnetic source imaging). For each modality, mathematics and physics research challenges are identified and a short list of suggested reading offered. Two additional chapters offer visions of the next generation of surgical and interventional techniques and of image processing. A final chapter provides an overview of mathematical issues that cut across the various modalities.

Mathematics and Statistics (Transition To College)

by Christian R. Hirsch Eric W. Hart Ann E. Watkins Beth E. Ritsema James T. Fey Brin A. Keller Rebecca K. Walker James K. Laser

NIMAC-sourced textbook

Mathematics and Statistics for the Quantitative Sciences

by Matthew Betti

Mathematics and Statistics for the Quantitative Sciences was born from a radical reimagining of first-year mathematics. While calculus is often seen as the foundational mathematics required for any scientist, this often leads to mathematics being seen as some, ultimately useless, hoop that needs to be jumped through in order to do what someone really wants to do. This sentiment is everywhere at every level of education. It even shows up in how people stereotype mathematics courses. What this book aims to do, therefore, is serve as a foundational text in everyday mathematics in a way that is both engaging and practically useful. The book seeks to teach the mathematics needed to start to answer fundamental questions like ‘why’ or ‘how’. Why do we only need to take census data once every few years? How do we determine the optimal dosing of a new pharmaceutical without killing people in the process? Or, more generally, what does it even mean to be average? Or what does it mean for two things to actually be different? These questions require a different way of thinking — a quantitative intuition that goes beyond rote memorization and equips readers to meet the quantitative challenges inherent in any applied discipline. Features Draws from a diverse range of fields to make the applications as inclusive as possible Would be ideal as a foundational mathematical and statistical textbook for any applied quantitative science course.

Mathematics and Teaching

by Michele D. Crockett

Mathematics and Teaching uses case studies to explore complex and pervasive issues that arise in teaching. In this volume, school mathematics is the context in which to consider race, equity, political contexts and the broader social and cultural circumstances in which schooling occurs. This book does not provide immediate or definitive resolutions. Rather, its goal is to provoke and facilitate thoughtful discussion about critical issues for professional decision-making in mathematics teaching. This is the 7th volume in Reflective Teaching and the Social Conditions of Schooling: A Series for Prospective and Practicing Teachers, edited by Daniel P. Liston and Kenneth M. Zeichner. It follows the same format as previous volumes in the series. Part I includes four case studies of classroom experiences: "Race and Teacher Expectations"; "Mathematics for All?"; "Culture and School Mathematics"; and "Politics and School Mathematics." Each case is followed by a space for readers’ own reactions and reflections, school stakeholders’ reactions, and a summary with additional questions for further discussion. Part II presents three public arguments representing different views about the issues that arise in mathematics teaching: conservative, liberal and radical multiculturalist. Part III offers the authors’ reflections on the centrality of culture in teaching mathematics, resources and exercises for further reflection, and a bibliography for further reading. Mathematics and Teaching is pertinent for all prospective and practicing teachers at any stage in their teaching careers. It is appropriate for any undergraduate and graduate course addressing mathematics teaching issues.

Mathematics and Technology

by Gilles Aldon Fernando Hitt Luciana Bazzini Uwe Gellert

This volume collects most recent work on the role of technology in mathematics education. It offers fresh insight and understanding of the many ways in which technological resources can improve the teaching and learning of mathematics. The first section of the volume focuses on the question how a proposed mathematical task in a technological environment can influence the acquisition of knowledge and what elements are important to retain in the design of mathematical tasks in computing environments. The use of white smart boards, platforms as Moodle, tablets and smartphones have transformed the way we communicate both inside and outside the mathematics classroom. Therefore the second section discussed how to make efficient use of these resources in the classroom and beyond. The third section addresses how technology modifies the way information is transmitted and how mathematical education has to take into account the new ways of learning through connected networks as well as new ways of teaching. The last section is on the training of teachers in the digital era. The editors of this volume have selected papers from the proceedings of the 65th, 66th and 67th CIEAEM conference, and invited the correspondent authors to contribute to this volume by discussing one of the four important topics. The book continues a series of sourcebooks edited by CIEAEM, the Commission Internationale pour l'#65533;tude et l'Am#65533;lioration de l'Enseignement des Math#65533;matiques / International Commission for the Study and Improvement of Mathematics Education.

Mathematics and the Body

by Elizabeth De Freitas Nathalie Sinclair

This book explores alternative ways to consider the relationship between mathematics and the material world. Drawing on the philosophy of Gilles Châtelet and the post-humanist materialism of Karen Barad, the authors present an 'inclusive materialist' approach to studying mathematics education. This approach offers a fresh perspective on human and nonhuman bodies, challenging current assumptions about the role of the senses, language, and ability in teaching and learning mathematics. Each chapter provides empirical examples from the classroom that demonstrate how inclusive materialism can be applied to a wide range of concerns in the field. The authors analyze recent studies on students' gestures, expressions, and drawings in order to establish a link between mathematical activity and mathematical concepts. Mathematics and the Body expands the landscape of research in mathematics education and will be an essential resource for teachers, students, and researchers alike.

Mathematics and the Imagination (Dover Books on Mathematics)

by James Newman Edward Kasner

Anyone who gambles, plays cards, loves puzzles, or simply seeks an intellectual challenge will love this amusing and thought-provoking book. With wit and clarity, the authors deftly progress from simple arithmetic to calculus and non-Euclidean geometry. "Charming and exciting." -- Saturday Review of Literature. Includes 169 figures.

Mathematics and the Mind

by Hassan Tahiri

This book examines how epistemology was reinvented by Ibn Sīnā, an influential philosopher-scientist of the classical Islamic world who was known to the West by the Latinised name Avicenna. It explains his theory of knowledge in which intentionality acts as an interaction between the mind and the world. This, in turn, led Ibn Sīnā to distinguish an operation of intentionality specific to the generation of numbers. The author argues that Ibn Sīnā's transformation of philosophy is one of the major stages in the de-hellinisation movement of the Greek heritage that was set off by the advent of the Arabic-Islamic civilisation. Readers first learn about Ibn Sīnā's unprecedented investigation into the concept of the number and his criticism of such Greek thought as Plato's realism, Pythagoreans' empiricism, and Ari stotle's conception of existence. Next, coverage sets out the basics of Ibn Sīnā's theory of knowledge needed for the construction of numbers. It describes how intentionality turns out to be key in showing the ontological dependence of numbers as well as even more critical to their construction. In describing the various mental operations that make mathematical objects intentional entities, Ibn Sīnā developed powerful arguments and subtle analyses to show us the extent our mental life depends on intentionality. This monograph thoroughly explores the epistemic dimension of this concept, which, the author believes, can also explain the actual genesis and evolution of mathematics by the human mind.

Mathematics and the Physical World

by Morris Kline

"Kline is a first-class teacher and an able writer. . . . This is an enlarging and a brilliant book." - Scientific American"Dr. Morris Kline has succeeded brilliantly in explaining the nature of much that is basic in math, and how it is used in science." - San Francisco ChronicleSince the major branches of mathematics grew and expanded in conjunction with science, the most effective way to appreciate and understand mathematics is in terms of the study of nature. Unfortunately, the relationship of mathematics to the study of nature is neglected in dry, technique-oriented textbooks, and it has remained for Professor Morris Kline to describe the simultaneous growth of mathematics and the physical sciences in this remarkable book. In a manner that reflects both erudition and enthusiasm, the author provides a stimulating account of the development of basic mathematics from arithmetic, algebra, geometry, and trigonometry, to calculus, differential equations, and the non-Euclidean geometries. At the same time, Dr. Kline shows how mathematics is used in optics, astronomy, motion under the law of gravitation, acoustics, electromagnetism, and other phenomena. Historical and biographical materials are also included, while mathematical notation has been kept to a minimum. This is an excellent presentation of mathematical ideas from the time of the Greeks to the modern era. It will be of great interest to the mathematically inclined high school and college student, as well as to any reader who wants to understand - perhaps for the first time - the true greatness of mathematical achievements.

Mathematics and the Real World

by Zvi Artstein

In this accessible and illuminating study of how the science of mathematics developed, a veteran math researcher and educator looks at the ways in which our evolutionary makeup is both a help and a hindrance to the study of math.Artstein chronicles the discovery of important mathematical connections between mathematics and the real world from ancient times to the present. The author then describes some of the contemporary applications of mathematics--in probability theory, in the study of human behavior, and in combination with computers, which give mathematics unprecedented power.The author concludes with an insightful discussion of why mathematics, for most people, is so frustrating. He argues that the rigorous logical structure of math goes against the grain of our predisposed ways of thinking as shaped by evolution, presumably because the talent needed to cope with logical mathematics gave the human race as a whole no evolutionary advantage. With this in mind, he offers ways to overcome these innate impediments in the teaching of math.

Mathematics and Transition to School

by Bob Perry Amy Macdonald Ann Gervasoni

This edited book brings together for the first time an international collection of work focused on two important aspects of any young child's life - learning mathematics and starting primary or elementary school. The chapters take a variety of perspectives, and integrate these two components in sometimes explicit and sometimes more subtle ways. The key issues and themes explored in this book are: the mathematical and other strengths that all participants in the transition to school bring to this period of a child's life; the opportunities provided by transition to school for young children's mathematics learning; the importance of partnerships among adults, and among adults and children, for effective school transitions and mathematics learning and teaching; the critical impact of expectations on their mathematics learning as children start school; the importance of providing children with meaningful, challenging and relevant mathematical experiences throughout transition to school; the entitlement of children and educators to experience assessment and instructional pedagogies that match the strengths of the learners and the teachers; the importance for the aspirations of children, families, communities, educators and educational organisations to be recognised as legitimate and key determinants of actions, experiences and successes in both transition to school and mathematics learning; and the belief that young children are powerful mathematics learners who can demonstrate this power as they start school. In each chapter, authors reflect on their work in the area of mathematics and transition to school, place that work within the overall context of research in these fields, predict the trajectory of this work in the future, and consider the implications of the work both theoretically and practically.

Mathematics Application and Concepts: Course 3 (New York Edition)

by McGraw-Hill

Your textbook also gives you many opportunities to master the Mathematics Performance Indicators. Take time each day to do at least one sample problem either from the Countdown or from the lesson you are studying.

Mathematics Applied to Engineering and Management (Mathematical Engineering, Manufacturing, and Management Sciences)

by Mangey Ram and S. B. Singh

This book offers the latest research advances in the field of mathematics applications in engineering sciences and provides a reference with a theoretical and sound background, along with case studies. In recent years, mathematics has had an amazing growth in engineering sciences. It forms the common foundation of all engineering disciplines. This new book provides a comprehensive range of mathematics applied to various fields of engineering for different tasks in fields such as civil engineering, structural engineering, computer science, electrical engineering, among others. It offers articles that develop the applications of mathematics in engineering sciences, conveys the innovative research ideas, offers real-world utility of mathematics, and plays a significant role in the life of academics, practitioners, researchers, and industry leaders. Focuses on the latest research in the field of engineering applications Includes recent findings from various institutions Identifies the gaps in the knowledge of the field and provides the latest approaches Presents international studies and findings in modelling and simulation Offers various mathematical tools, techniques, strategies, and methods across different engineering fields

Mathematics Applied to Engineering, Modelling, and Social Issues (Studies in Systems, Decision and Control #200)

by John N. Mordeson Hemen Dutta Frank T. Smith

This book presents several aspects of research on mathematics that have significant applications in engineering, modelling and social matters, discussing a number of current and future social issues and problems in which mathematical tools can be beneficial. Each chapter enhances our understanding of the research problems in a particular an area of study and highlights the latest advances made in that area. The self-contained contributions make the results and problems discussed accessible to readers, and provides references to enable those interested to follow subsequent studies in still developing fields. Presenting real-world applications, the book is a valuable resource for graduate students, researchers and educators. It appeals to general readers curious about the practical applications of mathematics in diverse scientific areas and social problems.

Mathematics as a Constructive Activity: Learners Generating Examples (Studies in Mathematical Thinking and Learning Series)

by Anne Watson John Mason

This book explains and demonstrates the teaching strategy of asking learners to construct their own examples of mathematical objects. The authors show that the creation of examples can involve transforming and reorganizing knowledge and that, although this is usually done by authors and teachers, if the responsibility for making examples is transferred to learners, their knowledge structures can be developed and extended. A multitude of examples to illustrate this is provided, spanning primary, secondary, and college levels. Readers are invited to learn from their own past experience augmented by tasks provided in the book, and are given direct experience of constructing examples through a collection of many tasks at many levels. Classroom stories show the practicalities of introducing such shifts in mathematics education. The authors examine how their approach relates to improving the learning of mathematics and raise future research questions.*Based on the authors' and others' theoretical and practical experience, the book includes a combination of exercises for the reader, practical applications for teaching, and solid scholarly grounding.*The ideas presented are generic in nature and thus applicable across every phase of mathematics teaching and learning.*Although the teaching methods offered are ones that engage learners imaginatively, these are also applied to traditional approaches to mathematics education; all tasks offered in the book are within conventional mathematics curriculum content.Mathematics as a Constructive Activity: Learners Generating Examples is intended for mathematics teacher educators, mathematics teachers, curriculum developers, task and test designers, and classroom researchers, and for use as a text in graduate-level mathematics education courses.

Mathematics as a Laboratory Tool: Dynamics, Delays and Noise

by John Milton Toru Ohira

The second edition of Mathematics as a Laboratory Tool reflects the growing impact that computational science is having on the career choices made by undergraduate science and engineering students. The focus is on dynamics and the effects of time delays and stochastic perturbations (“noise”) on the regulation provided by feedback control systems. The concepts are illustrated with applications to gene regulatory networks, motor control, neuroscience and population biology. The presentation in the first edition has been extended to include discussions of neuronal excitability and bursting, multistability, microchaos, Bayesian inference, second-order delay differential equations, and the semi-discretization method for the numerical integration of delay differential equations. Every effort has been made to ensure that the material is accessible to those with a background in calculus. The text provides advanced mathematical concepts such as the Laplace and Fourier integral transforms in the form of Tools. Bayesian inference is introduced using a number of detective-type scenarios including the Monty Hall problem.

Mathematics at the Margins

by Elizabeth Warren Jodie Miller

This book reports the impact a four-year longitudinal study (Representations, Oral Language and Engagement in Mathematics (RoleM)) had on teachers and students from 16 schools in disadvantaged contexts. It offers theories with regard to the interplay between teaching and learning mathematics as teachers and students in these contexts implement a mathematics program. The data are longitudinal, drawn from 154 teachers and their students (up to 1738 students) from the first four years of school (Foundation to Year 3). To ascertain the effectiveness of the RoleM Professional Learning model, teachers were interviewed three times a year and pre and post-tests were administered to students at the beginning and end of each year. Students' results indicated that all students' understanding of mathematics improved significantly, with the ESL students showing the greatest gains. Their results matched the norm-referenced expectations for all Australian students of this age. This book shares the journey of these teachers, Indigenous teacher aides and students. It outlines the dimensions of the research findings that supported teachers to become effective teachers of mathematics and assisted students in becoming successful learners of mathematics. The book also draws on the expertise of researchers from both Canada and New Zealand. They share the similarities and the differences between RoleM findings and their own contexts, in order to draw general conclusions for the effective teaching and learning of mathematics at the margins of society.

Mathematics at the Meridian: The History of Mathematics at Greenwich (Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series)

by Raymond Flood Tony Mann Mary Croarken

Greenwich has been a centre for scientific computing since the foundation of the Royal Observatory in 1675. Early Astronomers Royal gathered astronomical data with the purpose of enabling navigators to compute their longitude at sea. Nevil Maskelyne in the 18th century organised the work of computing tables for the Nautical Almanac, anticipating later methods used in safety-critical computing systems. The 19th century saw influential critiques of Charles Babbage’s mechanical calculating engines, and in the 20th century Leslie Comrie and others pioneered the automation of computation. The arrival of the Royal Naval College in 1873 and the University of Greenwich in 1999 has brought more mathematicians and different kinds of mathematics to Greenwich. In the 21st century computational mathematics has found many new applications. This book presents an account of the mathematicians who worked at Greenwich and their achievements. Features A scholarly but accessible history of mathematics at Greenwich, from the seventeenth century to the present day, with each chapter written by an expert in the field The book will appeal to astronomical and naval historians as well as historians of mathematics and scientific computing.

Mathematics B

by Edward P. Keenan Ann Xavier Gantert Isidore Dressler

Refine Search

Showing 13,876 through 13,900 of 23,748 results