Browse Results

Showing 1,476 through 1,500 of 27,137 results

Analysis of Mixed Data: Methods & Applications

by ALEXANDER R. de LEON Keumhee Carrière Chough

A comprehensive source on mixed data analysis, Analysis of Mixed Data: Methods & Applications summarizes the fundamental developments in the field. Case studies are used extensively throughout the book to illustrate interesting applications from economics, medicine and health, marketing, and genetics. Carefully edited for smooth readability and

Analysis of Multivariate and High-Dimensional Data

by Inge Koch

'Big data' poses challenges that require both classical multivariate methods and contemporary techniques from machine learning and engineering. This modern text equips you for the new world - integrating the old and the new, fusing theory and practice and bridging the gap to statistical learning. The theoretical framework includes formal statements that set out clearly the guaranteed 'safe operating zone' for the methods and allow you to assess whether data is in the zone, or near enough. Extensive examples showcase the strengths and limitations of different methods with small classical data, data from medicine, biology, marketing and finance, high-dimensional data from bioinformatics, functional data from proteomics, and simulated data. High-dimension low-sample-size data gets special attention. Several data sets are revisited repeatedly to allow comparison of methods. Generous use of colour, algorithms, Matlab code, and problem sets complete the package. Suitable for master's/graduate students in statistics and researchers in data-rich disciplines.

Analysis of Multivariate Social Science Data (Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences)

by David J. Bartholomew Fiona Steele Irini Moustaki

Drawing on the authors' varied experiences working and teaching in the field, Analysis of Multivariate Social Science Data, Second Editionenables a basic understanding of how to use key multivariate methods in the social sciences. With updates in every chapter, this edition expands its topics to include regression analysis, con

Analysis of Neural Data (Springer Series in Statistics)

by Robert E. Kass Uri T. Eden Emery N. Brown

Continual improvements in data collection and processing have had a huge impact on brain research, producing data sets that are often large and complicated. By emphasizing a few fundamental principles, and a handful of ubiquitous techniques, Analysis of Neural Data provides a unified treatment of analytical methods that have become essential for contemporary researchers. Throughout the book ideas are illustrated with more than 100 examples drawn from the literature, ranging from electrophysiology, to neuroimaging, to behavior. By demonstrating the commonality among various statistical approaches the authors provide the crucial tools for gaining knowledge from diverse types of data. Aimed at experimentalists with only high-school level mathematics, as well as computationally-oriented neuroscientists who have limited familiarity with statistics, Analysis of Neural Data serves as both a self-contained introduction and a reference work.

Analysis of Numerical Methods (Dover Books on Mathematics)

by Herbert Bishop Keller Eugene Isaacson

In this age of omnipresent digital computers and their capacity for implementing numerical methods, no applied mathematician, physical scientist, or engineer can be considered properly trained without some understanding of those methods. This text, suitable for advanced undergraduate and graduate-level courses, supplies the required knowledge — not just by listing and describing methods, but by analyzing them carefully and stressing techniques for developing new methods.Based on each author's more than 40 years of experience in teaching university courses, this book offers lucid, carefully presented coverage of norms, numerical solution of linear systems and matrix factoring, iterative solutions of nonlinear equations, eigenvalues and eigenvectors, polynomial approximation, numerical solution of differential equations, and more. No mathematical preparation beyond advanced calculus and elementary linear algebra (or matrix theory) is assumed. Examples and problems are given that extend or amplify the analysis in many cases.

Analysis of Operators on Function Spaces: The Serguei Shimorin Memorial Volume (Trends in Mathematics)

by Alexandru Aleman Haakan Hedenmalm Dmitry Khavinson Mihai Putinar

This book contains both expository articles and original research in the areas of function theory and operator theory. The contributions include extended versions of some of the lectures by invited speakers at the conference in honor of the memory of Serguei Shimorin at the Mittag-Leffler Institute in the summer of 2018. The book is intended for all researchers in the fields of function theory, operator theory and complex analysis in one or several variables. The expository articles reflecting the current status of several well-established and very dynamical areas of research will be accessible and useful to advanced graduate students and young researchers in pure and applied mathematics, and also to engineers and physicists using complex analysis methods in their investigations.

Analysis of Ordinal Categorical Data (Wiley Series in Probability and Statistics #656)

by Alan Agresti

Statistical science’s first coordinated manual of methods for analyzing ordered categorical data, now fully revised and updated, continues to present applications and case studies in fields as diverse as sociology, public health, ecology, marketing, and pharmacy. Analysis of Ordinal Categorical Data, Second Edition provides an introduction to basic descriptive and inferential methods for categorical data, giving thorough coverage of new developments and recent methods. Special emphasis is placed on interpretation and application of methods including an integrated comparison of the available strategies for analyzing ordinal data. Practitioners of statistics in government, industry (particularly pharmaceutical), and academia will want this new edition.

Analysis of Panel Data

by Cheng Hsiao

This book provides a comprehensive, coherent, and intuitive review of panel data methodologies that are useful for empirical analysis. Substantially revised from the second edition, it includes two new chapters on modeling cross-sectionally dependent data and dynamic systems of equations. Some of the more complicated concepts have been further streamlined. Other new material includes correlated random coefficient models, pseudo-panels, duration and count data models, quantile analysis, and alternative approaches for controlling the impact of unobserved heterogeneity in nonlinear panel data models.

Analysis of Panel Data (Econometric Society Monographs #Series Number 34)

by Cheng Hsiao

Now in its fourth edition, this comprehensive introduction of fundamental panel data methodologies provides insights on what is most essential in panel literature. A capstone to the forty-year career of a pioneer of panel data analysis, this new edition's primary contribution will be the coverage of advancements in panel data analysis, a statistical method widely used to analyze two or higher-dimensional panel data. The topics discussed in early editions have been reorganized and streamlined to comprehensively introduce panel econometric methodologies useful for identifying causal relationships among variables, supported by interdisciplinary examples and case studies. This book, to be featured in Cambridge's Econometric Society Monographs series, has been the leader in the field since the first edition. It is essential reading for researchers, practitioners and graduate students interested in the analysis of microeconomic behavior.

Analysis of Poverty Data by Small Area Estimation

by Monica Pratesi

A comprehensive guide to implementing SAE methods for poverty studies and poverty mapping There is an increasingly urgent demand for poverty and living conditions data, in relation to local areas and/or subpopulations. Policy makers and stakeholders need indicators and maps of poverty and living conditions in order to formulate and implement policies, (re)distribute resources, and measure the effect of local policy actions. Small Area Estimation (SAE) plays a crucial role in producing statistically sound estimates for poverty mapping. This book offers a comprehensive source of information regarding the use of SAE methods adapted to these distinctive features of poverty data derived from surveys and administrative archives. The book covers the definition of poverty indicators, data collection and integration methods, the impact of sampling design, weighting and variance estimation, the issue of SAE modelling and robustness, the spatio-temporal modelling of poverty, and the SAE of the distribution function of income and inequalities. Examples of data analyses and applications are provided, and the book is supported by a website describing scripts written in SAS or R software, which accompany the majority of the presented methods. Key features: Presents a comprehensive review of SAE methods for poverty mapping Demonstrates the applications of SAE methods using real-life case studies Offers guidance on the use of routines and choice of websites from which to download them Analysis of Poverty Data by Small Area Estimation offers an introduction to advanced techniques from both a practical and a methodological perspective, and will prove an invaluable resource for researchers actively engaged in organizing, managing and conducting studies on poverty.

Analysis of Pretest-Posttest Designs

by null Peter L. Bonate

How do you analyze pretest-posttest data? Difference scores? Percent change scores? ANOVA? In medical, psychological, sociological, and educational studies, researchers often design experiments in which they collect baseline (pretest) data prior to randomization. However, they often find it difficult to decide which method of statistical analysis i

Analysis of Pseudo-Differential Operators (Trends in Mathematics)

by Shahla Molahajloo M. W. Wong

This volume, like its predecessors, is based on the special session on pseudo-differential operators, one of the many special sessions at the 11th ISAAC Congress, held at Linnaeus University in Sweden on August 14-18, 2017. It includes research papers presented at the session and invited papers by experts in fields that involve pseudo-differential operators.The first four chapters focus on the functional analysis of pseudo-differential operators on a spectrum of settings from Z to Rn to compact groups. Chapters 5 and 6 discuss operators on Lie groups and manifolds with edge, while the following two chapters cover topics related to probabilities. The final chapters then address topics in differential equations.

Analysis of Quantal Response Data

by Byron J.T. Morgan

This book takes the standard methods as the starting point, and then describes a wide range of relatively new approaches and procedures designed to deal with more complicated data and experiments - including much recent research in the area. Throughout mention is given to the computing requirements - facilities available in large computing packages like BMDP, SAS and SPSS are also described.

Analysis of Questionnaire Data with R

by Bruno Falissard

While theoretical statistics relies primarily on mathematics and hypothetical situations, statistical practice is a translation of a question formulated by a researcher into a series of variables linked by a statistical tool. As with written material, there are almost always differences between the meaning of the original text and translated text.

Analysis of Repeated Measures: A Practical Approach For Behavioural Scientists (Chapman And Hall/crc Monographs On Statistics And Applied Probability Ser. #41)

by Martin J. Crowder David J. Hand

Repeated measures data arise when the same characteristic is measured on each case or subject at several times or under several conditions. There is a multitude of techniques available for analysing such data and in the past this has led to some confusion. This book describes the whole spectrum of approaches, beginning with very simple and crude methods, working through intermediate techniques commonly used by consultant statisticians, and concluding with more recent and advanced methods. Those covered include multiple testing, response feature analysis, univariate analysis of variance approaches, multivariate analysis of variance approaches, regression models, two-stage line models, approaches to categorical data and techniques for analysing crossover designs. The theory is illustrated with examples, using real data brought to the authors during their work as statistical consultants.

Analysis of Repeated Measures Data

by M. Ataharul Islam Rafiqul I. Chowdhury

This book presents a broad range of statistical techniques to address emerging needs in the field of repeated measures. It also provides a comprehensive overview of extensions of generalized linear models for the bivariate exponential family of distributions, which represent a new development in analysing repeated measures data. The demand for statistical models for correlated outcomes has grown rapidly recently, mainly due to presence of two types of underlying associations: associations between outcomes, and associations between explanatory variables and outcomes. The book systematically addresses key problems arising in the modelling of repeated measures data, bearing in mind those factors that play a major role in estimating the underlying relationships between covariates and outcome variables for correlated outcome data. In addition, it presents new approaches to addressing current challenges in the field of repeated measures and models based on conditional and joint probabilities. Markov models of first and higher orders are used for conditional models in addition to conditional probabilities as a function of covariates. Similarly, joint models are developed using both marginal-conditional probabilities as well as joint probabilities as a function of covariates. In addition to generalized linear models for bivariate outcomes, it highlights extended semi-parametric models for continuous failure time data and their applications in order to include models for a broader range of outcome variables that researchers encounter in various fields. The book further discusses the problem of analysing repeated measures data for failure time in the competing risk framework, which is now taking on an increasingly important role in the field of survival analysis, reliability and actuarial science. Details on how to perform the analyses are included in each chapter and supplemented with newly developed R packages and functions along with SAS codes and macro/IML. It is a valuable resource for researchers, graduate students and other users of statistical techniques for analysing repeated measures data.

Analysis of Safety Data of Drug Trials: An Update

by Ton J. Cleophas Aeilko H. Zwinderman

In 2010, the 5th edition of the textbook, "Statistics Applied to Clinical Studies", was published by Springer and since then has been widely distributed. The primary object of clinical trials of new drugs is to demonstrate efficacy rather than safety. However, a trial in humans which does not adequately address safety is unethical, while the assessment of safety variables is an important element of the trial.An effective approach is to present summaries of the prevalence of adverse effects and their 95% confidence intervals. In order to estimate the probability that the differences between treatment and control group occurred merely by chance, a statistical test can be performed. In the past few years, this pretty crude method has been supplemented and sometimes, replaced with more sophisticated and better sensitive methodologies, based on machine learning clusters and networks, and multivariate analyses. As a result, it is time that an updated version of safety data analysis was published. The issue of dependency also needs to be addressed. Adverse effects may be either dependent or independent of the main outcome. For example, an adverse effect of alpha blockers is dizziness and this occurs independently of the main outcome "alleviation of Raynaud 's phenomenon". In contrast, the adverse effect "increased calorie intake" occurs with "increased exercise", and this adverse effect is very dependent on the main outcome "weight loss". Random heterogeneities, outliers, confounders, interaction factors are common in clinical trials, and all of them can be considered as kinds of adverse effects of the dependent type. Random regressions and analyses of variance, high dimensional clusterings, partial correlations, structural equations models, Bayesian methods are helpful for their analysis. The current edition was written for non-mathematicians, particularly medical and health professionals and students. It provides examples of modern analytic methods so far largely unused in safety analysis. All of the 14 chapters have two core characteristics, First, they are intended for current usage, and they are particularly concerned with that usage. Second, they try and tell what readers need to know in order to understand and apply the methods. For that purpose, step by step analyses of both hypothesized and real data examples are provided.

Analysis of Socio-Economic Conditions: Insights from a Fuzzy Multi-dimensional Approach (Routledge Advances in Social Economics)

by Gianni Betti and Achille Lemmi

Showcasing fuzzy set theory, this book highlights the enormous potential of fuzzy logic in helping to analyse the complexity of a wide range of socio-economic patterns and behaviour. The contributions to this volume explore the most up-to-date fuzzy-set methods for the measurement of socio-economic phenomena in a multidimensional and/or dynamic perspective. Thus far, fuzzy-set theory has primarily been utilised in the social sciences in the field of poverty measurement. These chapters examine the latest work in this area, while also exploring further applications including social exclusion, the labour market, educational mismatch, sustainability, quality of life and violence against women. The authors demonstrate that real-world situations are often characterised by imprecision, uncertainty and vagueness, which cannot be properly described by the classical set theory which uses a simple true–false binary logic. By contrast, fuzzy-set theory has been shown to be a powerful tool for describing the multidimensionality and complexity of social phenomena. This book will be of significant interest to economists, statisticians and sociologists utilising quantitative methods to explore socio-economic phenomena.

Analysis of Survival Data

by D.R. Cox

This monograph contains many ideas on the analysis of survival data to present a comprehensive account of the field. The value of survival analysis is not confined to medical statistics, where the benefit of the analysis of data on such factors as life expectancy and duration of periods of freedom from symptoms of a disease as related to a treatment applied individual histories and so on, is obvious. The techniques also find important applications in industrial life testing and a range of subjects from physics to econometrics. In the eleven chapters of the book the methods and applications of are discussed and illustrated by examples.

Analysis of Survival Data with Dependent Censoring: Copula-Based Approaches (SpringerBriefs in Statistics)

by Takeshi Emura Yi-Hau Chen

This book introduces readers to copula-based statistical methods for analyzing survival data involving dependent censoring. Primarily focusing on likelihood-based methods performed under copula models, it is the first book solely devoted to the problem of dependent censoring. <P><P> The book demonstrates the advantages of the copula-based methods in the context of medical research, especially with regard to cancer patients’ survival data. Needless to say, the statistical methods presented here can also be applied to many other branches of science, especially in reliability, where survival analysis plays an important role. <P> The book can be used as a textbook for graduate coursework or a short course aimed at (bio-) statisticians. To deepen readers’ understanding of copula-based approaches, the book provides an accessible introduction to basic survival analysis and explains the mathematical foundations of copula-based survival models.

Analysis of the Gravity Field: Direct and Inverse Problems (Lecture Notes in Geosystems Mathematics and Computing)

by Fernando Sansò Daniele Sampietro

This textbook presents a comprehensive treatment of the theory and implementation of inverse methods in the analysis and interpretation of Earth’s gravity field. By restricting their consideration to a local rather than global level, the authors focus on the use of observations and data that are more sensitive to local mass anomalies. All necessary theoretical aspects are reformulated in terms of a Euclidean framework so that less complex tools from mathematical analysis can be utilized.Divided into three parts, the text begins with a review of basic mathematical properties of gravitation, computing gravity from mass distributions, and relevant methods from Fourier analysis. In the second part of the text, the Earth’s gravity field and its properties are introduced, and the preprocessing and processing of gravity data are explored. Finally, elementary inverse theory is discussed, after which the general inversion problem is considered via application of both the Tikhonov deterministic approach and a stochastic MCMC model. Throughout, examples and exercises are provided to both clarify material and to illustrate real-word applications for readers. Analysis of the Gravity Field: Direct and Inverse Problems is carefully written to be accessible to both mathematicians and geophysicists without sacrificing mathematical rigor. Readers should have a familiarity with the basics of mathematical analysis, as well as some knowledge of statistics and probability theory. Detailed proofs of more advanced results are relegated to appendices so that readers can concentrate on solution algorithms.

Analysis of the Navier-Stokes Problem: Solution of a Millennium Problem (Synthesis Lectures on Mathematics & Statistics)

by Alexander G. Ramm

This book revises and expands upon the prior edition, The Navier-Stokes Problem. The focus of this book is to provide a mathematical analysis of the Navier-Stokes Problem (NSP) in R^3 without boundaries. Before delving into analysis, the author begins by explaining the background and history of the Navier-Stokes Problem. This edition includes new analysis and an a priori estimate of the solution. The estimate proves the contradictory nature of the Navier-Stokes Problem. The author reaches the conclusion that the solution to the NSP with smooth and rapidly decaying data cannot exist for all positive times. By proving the NSP paradox, this book provides a solution to the millennium problem concerning the Navier-Stokes Equations and shows that they are physically and mathematically contradictive.

The Analysis of Time Series: An Introduction, Sixth Edition

by Chris Chatfield

Since 1975, The Analysis of Time Series: An Introduction has introduced legions of statistics students and researchers to the theory and practice of time series analysis. With each successive edition, bestselling author Chris Chatfield has honed and refined his presentation, updated the material to reflect advances in the field, and presented inter

The Analysis of Time Series: An Introduction with R (Chapman & Hall/CRC Texts in Statistical Science)

by Chris Chatfield Haipeng Xing

This new edition of this classic title, now in its seventh edition, presents a balanced and comprehensive introduction to the theory, implementation, and practice of time series analysis. The book covers a wide range of topics, including ARIMA models, forecasting methods, spectral analysis, linear systems, state-space models, the Kalman filters, nonlinear models, volatility models, and multivariate models.

Analysis of Variance, Design, and Regression: Linear Modeling for Unbalanced Data, Second Edition (Chapman & Hall/CRC Texts in Statistical Science #121)

by Ronald Christensen

Analysis of Variance, Design, and Regression: Linear Modeling for Unbalanced Data, Second Edition presents linear structures for modeling data with an emphasis on how to incorporate specific ideas (hypotheses) about the structure of the data into a linear model for the data. The book carefully analyzes small data sets by using tools that are easily scaled to big data. The tools also apply to small relevant data sets that are extracted from big data. New to the Second Edition Reorganized to focus on unbalanced data Reworked balanced analyses using methods for unbalanced data Introductions to nonparametric and lasso regression Introductions to general additive and generalized additive models Examination of homologous factors Unbalanced split plot analyses Extensions to generalized linear models R, Minitab®, and SAS code on the author’s website The text can be used in a variety of courses, including a yearlong graduate course on regression and ANOVA or a data analysis course for upper-division statistics students and graduate students from other fields. It places a strong emphasis on interpreting the range of computer output encountered when dealing with unbalanced data.

Refine Search

Showing 1,476 through 1,500 of 27,137 results