Browse Results

Showing 1,501 through 1,525 of 27,999 results

Analysis für Dummies (Für Dummies)

by Mark Ryan

Analysis ist Ihnen ein Graus, aber die Prüfung steht vor der Tür? Keine Sorge! "Analysis für Dummies" führt Sie an das Thema heran und wiederholt zunächst die Grundlagen von Algebra, Funktionen und Grafen. Anschließend erläutert der Autor die Regeln der Differentialrechnung, die Feinheiten der Kurvendiskussion sowie das Entscheidende zu Grenzwerten und Stetigkeit. Dank zahlreicher Beispiele und Schritt-für-Schritt-Erklärungen werden Sie schon bald zum Experten. Durch online zur Verfügung gestellte Übungsaufgaben und Lösungen können Sie das Gelernte festigen und Ihren Erfolg überprüfen. So steht der bestandenen Prüfung nichts im Wege.

Analysis für Dummies (Für Dummies)

by Mark Ryan

Analysis ist Ihnen ein Graus, aber die Klausur steht vor der Tür? Keine Sorge! "Analysis für Dummies" führt Sie an das Thema heran und wiederholt zunächst die Grundlagen von Algebra, Funktionen und Graphen. Anschließend erläutert der Autor die Regeln der Differentialrechnung, die Feinheiten der Kurvendiskussion sowie das Entscheidende zu Grenzwerten und Stetigkeit. Dank zahlreicher Beispiele und Schritt-für-Schritt-Erklärungen werden Sie schon bald zum Experten. So steht der bestandenen Prüfung nichts im Wege.

Analysis für Wirtschaftswissenschaftler: Eine kurze Einführung (essentials)

by Pablo Peyrolón

Analysis (Calculus auf Englisch) hat einen sehr schlechten Ruf zwischen Studenten, Schüler und Laien. Das liegt oft an der extremen Abstraktion von Konzepte wie Ableitung oder Integrale. Mit einer Kombination aus der Geschichte der Analysis und mathematische Entwicklung versuche ich Analysis positiv zu präsentieren, die Basics erklären mit dem Ziel, dass wenn man ein Analysis Lehrbuch nimmt, sich nicht mehr fürchten muss. All die Erklärungen sind fokussiert an der Anwendung der Analysis für Wirtschaftswissenschaften Leibniz und Newton, Eltern der modernen Analysis, und Euler, helfen uns bei dieser Einführung in die Analysis mit Geschichte.

Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing (Chapman and Hall/CRC Financial Mathematics Series)

by Pierre Henry-Labordere

Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing is the first book that applies advanced analytical and geometrical methods used in physics and mathematics to the financial field. It even obtains new results when only approximate and partial solutions were previously available.Through the problem of option pricing, th

Analysis I

by Adrian Constantin

​Das Buch umfasst die Analysis in einer Veränderlichen. Es behandelt den Stoff der Vorlesung Analysis 1, wie er gewöhnlich an Hochschulen im deutschsprachigen Raum gelehrt wird und ist sowohl als Lehrbuch als auch zum vertiefenden Selbststudium geeignet. Zahlreiche Beispiele und Übungsaufgaben werden bereitgestellt. Geschichtliche Hintergründe sind durchgehend zu finden. Darüber hinaus wird das wechselseitig fordernde Ineinandergreifen von Theorie und Anwendungen anhand vieler ausführlich beschriebener Themen veranschaulicht, und kurze Erläuterungen bieten eine Einsichtsperspektive zu fortgeschritteneren Gebieten der Analysis.

Analysis I: Eine Einführung in die Mathematik des Kontinuums (Springer Studium Mathematik - Bachelor)

by Daniel Grieser

Entdecken Sie die höhere Mathematik für sich: Was sind die komplexen Zahlen, wie steht es mit der Unendlichkeit, ist 0,999. . . =1 und was steckt hinter der berühmten Eulerschen Formel? Mit diesem kompakten Lehrbuch der Analysis werden Sie dies und vieles mehr verstehen und sich dabei die Grundlagen für das Studium der Mathematik und der Naturwissenschaften aneignen. Das Buch ist aus dem beliebten, in Zusammenarbeit mit Studierenden entstandenen Skript des Autors entstanden und unterstützt Sie besonders beim Übergang von der Schule ins Studium. Mathematische Präzision gepaart mit anschaulichen Erklärungen und motivierenden Beispielen - das wird dieses Buch zu Ihrem ständigen Begleiter machen.

Analysis I

by Matthias Hieber

Dieses Lehrbuch zeichnet sich durch einen klaren und modernen Aufbau aus und ist auf eine breit angelegte Grundausbildung ausgerichtet. Es ist der erste Band einer zweiteiligen Einführung in die Analysis, die Studierende der Mathematik und verwandter Studienrichtungen (etwa Physik, Informatik und Ingenieurwissenschaften) sowie deren Dozenten anspricht. Zentrale Grundkonzepte werden bereits frühzeitig eingeführt und diskutiert – jedoch zunächst nicht in einem allgemeinen, sondern in einem angemessenen und überschaubaren Rahmen. Diese Konzepte werden anschließend mit steigender Komplexität vertiefend behandelt und aus verschiedenen Blickwinkeln beleuchtet. Eine Vielzahl von Beispielen und Aufgaben zeigt die Vernetzung und Verzahnung der Analysis mit anderen Teilgebieten der Mathematik und gibt den Studierenden weitreichende Möglichkeiten, ihr Wissen und Verständnis dieser Thematik zu vertiefen bzw. zu verbreitern. Kapitelweise ausgelagerte Anmerkungen und Ergänzungen dienen als Zusatz- und Hintergrundinformation zum behandelten Stoff und runden diesen ab, ohne den Blick auf das Wesentliche zu verstellen.

Analysis II

by Matthias Hieber

Dieses Lehrbuch zeichnet sich durch einen klaren und modernen Aufbau aus und ist auf eine breit angelegte Grundausbildung ausgerichtet. Es ist der zweite Band einer Einführung in die Analysis, die Studierende der Mathematik und verwandter Studienrichtungen (etwa Physik, Informatik und Ingenieurwissenschaften) sowie deren Dozenten anspricht. Zentrale Grundkonzepte werden bereits frühzeitig eingeführt und diskutiert – jedoch zunächst nicht in einem allgemeinen, sondern in einem angemessenen und überschaubaren Rahmen. Diese Konzepte werden anschließend mit steigender Komplexität vertiefend behandelt und aus verschiedenen Blickwinkeln beleuchtet. Eine Vielzahl von Beispielen und Aufgaben zeigt die Vernetzung und Verzahnung der Analysis mit anderen Teilgebieten der Mathematik und gibt den Studierenden weitreichende Möglichkeiten, ihr Wissen und Verständnis dieser Thematik zu vertiefen bzw. zu verbreitern. Kapitelweise ausgelagerte Anmerkungen und Ergänzungen dienen als Zusatz- und Hintergrundinformation zum behandelten Stoff und runden diesen ab, ohne den Blick auf das Wesentliche zu verstellen.

Analysis II für Dummies (Für Dummies)

by Mark Zegarelli

Nach der Analysis ist vor der Analysis. Dies ist das richtige Buch für Sie, wenn es in der Analysis ein wenig mehr sein soll oder auch muss. Mark Zegarelli erklärt Ihnen, was Sie zur infiniten Integration und zu differential- und multivariablen Gleichungen wissen müssen. Er fährt mit Taylorreihe und Substitutionen fort und führt Sie auch in die Dritte Dimension der Analysis; und das ist lange noch nicht alles! Im Ton verbindlich, in der Sache kompetent führt er Ihre Analysiskenntnisse auf eine neue Stufe.

Analysis in Euclidean Space

by Kenneth Hoffman

Developed for an introductory course in mathematical analysis at MIT, this text focuses on concepts, principles, and methods. Its introductions to real and complex analysis are closely formulated, and they constitute a natural introduction to complex function theory.Starting with an overview of the real number system, the text presents results for subsets and functions related to Euclidean space of n dimensions. It offers a rigorous review of the fundamentals of calculus, emphasizing power series expansions and introducing the theory of complex-analytic functions. Subsequent chapters cover sequences of functions, normed linear spaces, and the Lebesgue interval. They discuss most of the basic properties of integral and measure, including a brief look at orthogonal expansions. A chapter on differentiable mappings concludes the text, addressing implicit and inverse function theorems and the change of variable theorem. Exercises appear throughout the book, and extensive supplementary material includes a bibliography, list of symbols, index, and appendix with background in elementary set theory

Analysis in Euclidean Space (Dover Books on Mathematics)

by Kenneth Hoffman

Developed for an introductory course in mathematical analysis at MIT, this text focuses on concepts, principles, and methods. Its introductions to real and complex analysis are closely formulated, and they constitute a natural introduction to complex function theory. Starting with an overview of the real number system, the text presents results for subsets and functions related to Euclidean space of n dimensions. It offers a rigorous review of the fundamentals of calculus, emphasizing power series expansions and introducing the theory of complex-analytic functions. Subsequent chapters cover sequences of functions, normed linear spaces, and the Lebesgue interval. They discuss most of the basic properties of integral and measure, including a brief look at orthogonal expansions. A chapter on differentiable mappings addresses implicit and inverse function theorems and the change of variable theorem. Exercises appear throughout the book, and extensive supplementary material includes a Bibliography, List of Symbols, Index, and an Appendix with background in elementary set theory.

Analysis kompakt fur Dummies (Für Dummies)

by Mark Ryan

An der Analysis kommen Sie nicht vorbei: Sei es nun in der Schule oder wenn Sie Natur-, Ingenieurs-, oder Wirtschaftswissenschaften studieren. Dieses Buch hilft Ihnen, wenn Sie sich einen schnellen Überblick über das Thema verschaffen wollen. Mark Ryan erklärt Ihnen leicht verständlich, was Sie über Grenzwerte und Funktionen unbedingt wissen sollten. So ist dies Ihr perfekter Nachhilfelehrer für die Tasche: freundlich, kompetent, günstig.

Analysis, Modelling, Optimization, and Numerical Techniques: ICAMI, San Andres Island, Colombia, November 2013 (Springer Proceedings in Mathematics & Statistics #121)

by Gerard Olivar Tost Olga Vasilieva

This book highlights recent compelling research results and trends in various aspects of contemporary mathematics, emphasizing applicabilitions to real-world situations. The chapters present exciting new findings and developments in situations where mathematical rigor is combined with common sense. A multi-disciplinary approach, both within each chapter and in the volume as a whole, leads to practical insights that may result in a more synthetic understanding of specific global issues as well as their possible solutions. The volume will be of interest not only to experts in mathematics, but also to graduate students, scientists, and practitioners from other fields including physics, biology, geology, management, and medicine.

Analysis of a Model for Epilepsy: Application of a Max-Type Difference Equation to Mesial Temporal Lobe Epilepsy (Chapman & Hall/CRC Monographs and Research Notes in Mathematics)

by Candace M. Kent David M. Chan

In the 1960s and 1970s, mathematical biologists Sir Robert M. May, E.C. Pielou, and others utilized difference equations as models of ecological and epidemiological phenomena. Since then, with or without applications, the mathematics of difference equations has evolved into a field unto itself. Difference equations with the maximum (or the minimum or the "rank-type") function were rigorously investigated from the mid-1990s into the 2000s, without any applications in mind. These equations often involved arguments varying from reciprocal terms with parameters in the numerators to other special functions. Recently, the authors of Analysis of a Model for Epilepsy: Application of a Max-Type Difference Equation to Mesial Temporal Lobe Epilepsy and their colleagues investigated the first known application of a "max-type" difference equation. Their equation is a phenomenological model of epileptic seizures. In this book, the authors expand on that research and present a more comprehensive development of mathematical, numerical, and biological results. Additionally, they describe the first documented instance of a novel dynamical behavior that they call rippled almost periodic behavior, which can be described as an unpredictable pseudo-periodic behavior. Features: Suitable for researchers in mathematical neuroscience and potentially as supplementary reading for postgraduate students Thoroughly researched and replete with references

Analysis of Arithmetic for Mathematics Teaching

by Gaea Leinhardt

This volume emerges from a partnership between the American Federation of Teachers and the Learning Research and Development Center at the University of Pittsburgh. The partnership brought together researchers and expert teachers for intensive dialogue sessions focusing on what each community knows about effective mathematical learning and instruction. The chapters deal with the research on, and conceptual analysis of, specific arithmetic topics (addition, subtraction, multiplication, division, decimals, and fractions) or with overarching themes that pervade the early curriculum and constitute the links with the more advanced topics of mathematics (intuition, number sense, and estimation). Serving as a link between the communities of cognitive researchers and mathematics educators, the book capitalizes on the recent research successes of cognitive science and reviews the literature of the math education community as well.

Analysis of Binary Data (Chapman And Hall/crc Monographs On Statistics And Applied Probability Ser. #32)

by D.R. Cox

The first edition of this book (1970) set out a systematic basis for the analysis of binary data and in particular for the study of how the probability of 'success' depends on explanatory variables. The first edition has been widely used and the general level and style have been preserved in the second edition, which contains a substantial amount of new material. This amplifies matters dealt with only cryptically in the first edition and includes many more recent developments. In addition the whole material has been reorganized, in particular to put more emphasis on m.aximum likelihood methods.There are nearly 60 further results and exercises. The main points are illustrated by practical examples, many of them not in the first edition, and some general essential background material is set out in new Appendices.

Analysis of Biomarker Data

by Stephen W. Looney Joseph L. Hagan

A "how to" guide for applying statistical methods to biomarker data analysisPresenting a solid foundation for the statistical methods that are used to analyze biomarker data, Analysis of Biomarker Data: A Practical Guide features preferred techniques for biomarker validation. The authors provide descriptions of select elementary statistical methods that are traditionally used to analyze biomarker data with a focus on the proper application of each method, including necessary assumptions, software recommendations, and proper interpretation of computer output. In addition, the book discusses frequently encountered challenges in analyzing biomarker data and how to deal with them, methods for the quality assessment of biomarkers, and biomarker study designs. Covering a broad range of statistical methods that have been used to analyze biomarker data in published research studies, Analysis of Biomarker Data: A Practical Guide also features:A greater emphasis on the application of methods as opposed to the underlying statistical and mathematical theoryThe use of SAS®, R , and other software throughout to illustrate the presented calculations for each exampleNumerous exercises based on real-world data as well as solutions to the problems to aid in reader comprehensionThe principles of good research study design and the methods for assessing the quality of a newly proposed biomarkerA companion website that includes a software appendix with multiple types of software and complete data sets from the book's examplesAnalysis of Biomarker Data: A Practical Guide is an ideal upper-undergraduate and graduate-level textbook for courses in the biological or environmental sciences. An excellent reference for statisticians who routinely analyze and interpret biomarker data, the book is also useful for researchers who wish to perform their own analyses of biomarker data, such as toxicologists, pharmacologists, epidemiologists, environmental and clinical laboratory scientists, and other professionals in the health and environmental sciences.

Analysis of Capture-Recapture Data (Chapman & Hall/CRC Interdisciplinary Statistics)

by Rachel S. McCrea Byron J. Morgan

An important first step in studying the demography of wild animals is to identify the animals uniquely through applying markings, such as rings, tags, and bands. Once the animals are encountered again, researchers can study different forms of capture-recapture data to estimate features, such as the mortality and size of the populations. Capture-rec

Analysis of Categorical Data from Historical Perspectives: Essays in Honour of Shizuhiko Nishisato (Behaviormetrics: Quantitative Approaches to Human Behavior #17)

by Eric J. Beh Rosaria Lombardo Jose G. Clavel

This collection of essays is in honor of Shizuhiko Nishisato on his 88th birthday and consists of invited contributions only. The book contains essays on the analysis of categorical data, which includes quantification theory, cluster analysis, and other areas of multidimensional data analysis, covering more than half a century of research by the 41 interdisciplinary and international researchers who are contributors. Thus, it offers the wisdom and experience of work past and present and attracts a new generation of researchers to this field. Central to this wisdom and experience is that of Prof. Nishisato, who has spent much of the past 60 years mentoring and providing leadership in the research of quantification theory, especially that of “dual scaling”. The book includes contributions by leading researchers who have worked alongside Prof. Nishisato, published with him, been mentored by him, or whose work has been influenced by the research he has undertaken over his illustrious career. This book inspires researchers young and old as it highlights the significant contributions, past and present, that Prof. Nishisato has made in his field.

Analysis of Categorical Data with R (Chapman & Hall/CRC Texts in Statistical Science)

by Christopher R. Bilder Thomas M. Loughin

Analysis of Categorical Data with R, Second Edition presents a modern account of categorical data analysis using the R software environment. It covers recent techniques of model building and assessment for binary, multicategory, and count response variables and discusses fundamentals, such as odds ratio and probability estimation. The authors give detailed advice and guidelines on which procedures to use and why to use them.The second edition is a substantial update of the first based on the authors’ experiences of teaching from the book for nearly a decade. The book is organized as before, but with new content throughout, and there are two new substantive topics in the advanced topics chapter—group testing and splines. The computing has been completely updated, with the "emmeans" package now integrated into the book. The examples have also been updated, notably to include new examples based on COVID-19, and there are more than 90 new exercises in the book. The solutions manual and teaching videos have also been updated.Features: Requires no prior experience with R, and offers an introduction to the essential features and functions of R Includes numerous examples from medicine, psychology, sports, ecology, and many other areas Integrates extensive R code and output Graphically demonstrates many of the features and properties of various analysis methods Offers a substantial number of exercises in all chapters, enabling use as a course text or for self-study Supplemented by a website with data sets, code, and teaching videos Analysis of Categorical Data with R, Second Edition is primarily designed for a course on categorical data analysis taught at the advanced undergraduate or graduate level. Such a course could be taught in a statistics or biostatistics department, or within mathematics, psychology, social science, ecology, or another quantitative discipline. It could also be used by a self-learner and would make an ideal reference for a researcher from any discipline where categorical data arise.

Analysis of Complex Diseases: A Mathematical Perspective

by PhD, Guanyu Wang

A complex disease involves many etiological and risk factors operating at multiple levels-molecular, cellular, organismal, and environmental. The incidence of such diseases as cancer, obesity, and diabetes are increasing in occurrence, urging us to think fundamentally and use a broader perspective to identify their connection and revolutionize trea

The Analysis of Contingency Tables

by Brian S. Everitt

Much of the data collected in medicine and the social sciences is categorical, for example, sex, marital status, blood group, whether a smoker or not and so on, rather than interval-scaled. Frequently the researcher collecting such data is interested in the relationships or associations between pairs, or between a set of such categorical variables;

Analysis of Correlated Data with SAS and R

by Mohamed M. Shoukri

Analysis of Correlated Data with SAS and R: 4th edition presents an applied treatment of recently developed statistical models and methods for the analysis of hierarchical binary, count and continuous response data. It explains how to use procedures in SAS and packages in R for exploring data, fitting appropriate models, presenting programming codes and results. The book is designed for senior undergraduate and graduate students in the health sciences, epidemiology, statistics, and biostatistics as well as clinical researchers, and consulting statisticians who can apply the methods with their own data analyses. In each chapter a brief description of the foundations of statistical theory needed to understand the methods is given, thereafter the author illustrates the applicability of the techniques by providing sufficient number of examples. The last three chapters of the 4th edition contain introductory material on propensity score analysis, meta-analysis and the treatment of missing data using SAS and R. These topics were not covered in previous editions. The main reason is that there is an increasing demand by clinical researchers to have these topics covered at a reasonably understandable level of complexity. Mohamed Shoukri is principal scientist and professor of biostatistics at The National Biotechnology Center, King Faisal Specialist Hospital and Research Center and Al-Faisal University, Saudi Arabia. Professor Shoukri’s research includes analytic epidemiology, analysis of hierarchical data, and clinical biostatistics. He is an associate editor of the 3Biotech journal, a Fellow of the Royal Statistical Society and an elected member of the International Statistical Institute.

The Analysis of Covariance and Alternatives

by Bradley E. Huitema

A complete guide to cutting-edge techniques and best practices for applying covariance analysis methods The Second Edition of Analysis of Covariance and Alternatives sheds new light on its topic, offering in-depth discussions of underlying assumptions, comprehensive interpretations of results, and comparisons of distinct approaches. The book has been extensively revised and updated to feature an in-depth review of prerequisites and the latest developments in the field. The author begins with a discussion of essential topics relating to experimental design and analysis, including analysis of variance, multiple regression, effect size measures and newly developed methods of communicating statistical results. Subsequent chapters feature newly added methods for the analysis of experiments with ordered treatments, including two parametric and nonparametric monotone analyses as well as approaches based on the robust general linear model and reversed ordinal logistic regression. Four groundbreaking chapters on single-case designs introduce powerful new analyses for simple and complex single-case experiments. This Second Edition also features coverage of advanced methods including: Simple and multiple analysis of covariance using both the Fisher approach and the general linear model approach Methods to manage assumption departures, including heterogeneous slopes, nonlinear functions, dichotomous dependent variables, and covariates affected by treatments Power analysis and the application of covariance analysis to randomized-block designs, two-factor designs, pre- and post-test designs, and multiple dependent variable designs Measurement error correction and propensity score methods developed for quasi-experiments, observational studies, and uncontrolled clinical trials Thoroughly updated to reflect the growing nature of the field, Analysis of Covariance and Alternatives is a suitable book for behavioral and medical scineces courses on design of experiments and regression and the upper-undergraduate and graduate levels. It also serves as an authoritative reference work for researchers and academics in the fields of medicine, clinical trials, epidemiology, public health, sociology, and engineering.

Analysis of Data from Randomized Controlled Trials: A Practical Guide

by Jos W.R. Twisk

This book provides a practical guide to the analysis of data from randomized controlled trials (RCT). It gives an answer to the question of how to estimate the intervention effect in an appropriate way. This problem is examined for different RCT designs, such as RCTs with one follow-up measurement, RCTs with more than one follow-up measurement, cluster RCTs, cross-over trials, stepped wedge trials, and N-of-1 trials. The statistical methods are explained in a non-mathematical way and are illustrated by extensive examples. All datasets used in the book are available for download, so readers can reanalyse the examples to gain a better understanding of the methods used. Although most examples are taken from epidemiological and clinical studies, this book is also highly recommended for researchers working in other fields.

Refine Search

Showing 1,501 through 1,525 of 27,999 results