Browse Results

Showing 15,551 through 15,575 of 28,127 results

Mathematical Imagining: A Routine for Secondary Classrooms

by Christof Weber

Imagine a plastic cup lying on the floor. Give the cup a nudge so that it begins to roll. What does the path it takes look like? So begins the journey that Christof Weber takes you on in Mathematical Imagining: A Routine for Secondary Classrooms . Along the way, he makes the case that the ability to imagine, manipulate, and explain mathematical images and situations is fundamental to all mathematics and particularly important to higher level study. Most importantly, drawing on years of experiments in his own classroom, Weber shows that mathematical imagining is a skill that can be taught efficiently and effectively. Mathematical Imagining describes an original routine that gives students space and time to imagine a mathematical situation and then revise, discuss, and act upon the mental images they create. You can use this creative routine to glimpse into your students' thinking and discover teaching opportunities, while empowering them to create their own mathematics.Inside you’ll find the following: An introduction to the routine including the rationale behind it, facilitation guidance, and classroom examples Modifications to implement the routine in your classroom, even with varying time constraints 37 exercises broken into four categories: constructions, problem-solving, reasoning, and paradoxes Discussions of the mathematics involved in each exercise, including possible follow-up questions Instructions on how to create your own exercises beyond the book This one-of-a-kind resource is for secondary teachers looking to inspire student creativity and curiosity, deepen their own subject matter knowledge and pedagogical content knowledge, and invite all students to access the power of their own mathematical imaginations.

Mathematical Immunology of Virus Infections

by Burkhard Ludewig Gennady Bocharov Vitaly Volpert Andreas Meyerhans

This monograph concisely but thoroughly introduces the reader to the field of mathematical immunology. The book covers first basic principles of formulating a mathematical model, and an outline on data-driven parameter estimation and model selection. The authors then introduce the modeling of experimental and human infections and provide the reader with helpful exercises. The target audience primarily comprises researchers and graduate students in the field of mathematical biology who wish to be concisely introduced into mathematical immunology.

Mathematical Inequalities: A Perspective

by Pietro Cerone Silvestru Sever Dragomir

Drawing on the authors' research work from the last ten years, Mathematical Inequalities: A Perspective gives readers a different viewpoint of the field. It discusses the importance of various mathematical inequalities in contemporary mathematics and how these inequalities are used in different applications, such as scientific modeling.The authors

Mathematical Insights into Advanced Computer Graphics Techniques (Mathematics for Industry #32)

by Yoshinori Dobashi Shizuo Kaji Kei Iwasaki

This book presents cutting-edge developments in the advanced mathematical theories utilized in computer graphics research – fluid simulation, realistic image synthesis, and texture, visualization and digital fabrication. A spin-off book from the International Symposium on Mathematical Progress in Expressive Image Synthesis in 2016 and 2017 (MEIS2016/2017) held in Fukuoka, Japan, it includes lecture notes and an expert introduction to the latest research presented at the symposium. The book offers an overview of the emerging interdisciplinary themes between computer graphics and driven mathematic theories, such as discrete differential geometry. Further, it highlights open problems in those themes, making it a valuable resource not only for researchers, but also for graduate students interested in computer graphics and mathematics.

Mathematical Intelligence: A Story of Human Superiority Over Machines

by Mubeen Junaid

A fresh exploration into the 'human nature versus technology&’ argument, revealing an unexpected advantage that humans have over our future robot masters: we&’re actually good at mathematics. There&’s so much discussion about the threat posed by intelligent machines that it sometimes seems as though we should simply surrender to our robot overlords now. But Junaid Mubeen isn&’t ready to throw in the towel just yet. As far as he is concerned, we have the creative edge over computers, because of a remarkable system of thought that humans have developed over the millennia. It&’s familiar to us all, but often badly taught in schools and misrepresented in popular discourse—math. Computers are, of course, brilliant at totting up sums, pattern-seeking, and performing mindless tasks of, well, computation. For all things calculation, machines reign supreme. But Junaid identifies seven areas of intelligence where humans can retain a crucial edge. And in exploring these areas, he opens up a fascinating world where we can develop our uniquely human mathematical talents. Just a few of the fascinating subjects covered in MATHEMATICAL INTELLIGENCE include: -Humans are endowed with a natural sense of numbers that is based on approximation rather than precise calculation. Our in-built estimation skills complement the precision of computers. Interpreting the real world depends on both. -What sets humans apart from other animals is language and abstraction. We have an extraordinary ability to create powerful representations of knowledge— more diverse than the binary language of computers. -Mathematics confers the most robust, logical framework for establishing permanent truths. Reasoning shields us from the dubious claims of pure pattern-recognition systems. -All mathematical truths are derived from a starting set of assumptions, or axioms. Unlike computers, humans have the freedom to break free of convention and examine the logical consequences of our choices. Mathematics rewards our imagination with fascinating and, on occasion, applicable concepts that originate from breaking the rules. -Computers can be tasked to solve a range of problems, but which problems are worth the effort? Questioning is as vital to our repertoire of thinking skills as problem-solving itself.

Mathematical Knowledge and the Interplay of Practices

by José Ferreirós

This book presents a new approach to the epistemology of mathematics by viewing mathematics as a human activity whose knowledge is intimately linked with practice. Charting an exciting new direction in the philosophy of mathematics, José Ferreirós uses the crucial idea of a continuum to provide an account of the development of mathematical knowledge that reflects the actual experience of doing math and makes sense of the perceived objectivity of mathematical results.Describing a historically oriented, agent-based philosophy of mathematics, Ferreirós shows how the mathematical tradition evolved from Euclidean geometry to the real numbers and set-theoretic structures. He argues for the need to take into account a whole web of mathematical and other practices that are learned and linked by agents, and whose interplay acts as a constraint. Ferreirós demonstrates how advanced mathematics, far from being a priori, is based on hypotheses, in contrast to elementary math, which has strong cognitive and practical roots and therefore enjoys certainty.Offering a wealth of philosophical and historical insights, Mathematical Knowledge and the Interplay of Practices challenges us to rethink some of our most basic assumptions about mathematics, its objectivity, and its relationship to culture and science.

Mathematical Knowledge for Primary Teachers

by Andrew Davis Jennifer Suggate Maria Goulding

Now in its fifth edition, the best-selling text Mathematical Knowledge for Primary Teachers provides trainee teachers with clear information about the fundamental mathematical ideas taught in primary schools. With rigorous and comprehensive coverage of all the mathematical knowledge primary teachers need, the text goes beyond rules and routines to help readers deepen their understanding of mathematical ideas and increase their confidence in teaching these ideas. The book has been updated to incorporate changes in the National Curriculum and the associated tests. In addition, Chapter 1 has been expanded to discuss mathematical understanding in the light of the challenges posed by the current changes. These include the re-introduction of traditional calculation methods for multiplication and division, the early coverage of abstract fractions calculations and much more. Features include: ? ‘Check’ questions to test the reader’s understanding ? ‘Challenges’ to increase teachers’ confidence and stretch their mathematical abilities ? ‘Links with the classroom’ to emphasise the relevance of ideas to the classroom context ? Straightforward coverage from theory to practice for all aspects of the Mathematics Framework. The book is accompanied by a website which contains further visual activities and support, designed to scaffold and support the reader’s own understanding. Essential reading for all practising and trainee primary teachers, this book is ideal for those who wish to increase their mathematical understanding and confidence in presenting mathematics in the classroom.

Mathematical Knowledge in Teaching

by Tim Rowland Kenneth Ruthven

The quality of primary and secondary school mathematics teaching is generally agreed to depend crucially on the subject-related knowledge of the teacher. However, there is increasing recognition that effective teaching calls for distinctive forms of subject-related knowledge and thinking. Thus, established ways of conceptualizing, developing and assessing mathematical knowledge for teaching may be less than adequate. These are important issues for policy and practice because of longstanding difficulties in recruiting teachers who are confident and conventionally well-qualified in mathematics, and because of rising concern that teaching of the subject has not adapted sufficiently. The issues to be examined in Mathematical Knowledge in Teaching are of considerable significance in addressing global aspirations to raise standards of teaching and learning in mathematics by developing more effective approaches to characterizing, assessing and developing mathematical knowledge for teaching.

Mathematical Knowledge, Objects and Applications: Essays in Memory of Mark Steiner (Jerusalem Studies in Philosophy and History of Science)

by Yemima Ben-Menahem Carl J. Posy

This book provides a survey of a number of the major issues in the philosophy of mathematics, such as ontological questions regarding the nature of mathematical objects, epistemic questions about the acquisition of mathematical knowledge, and the intriguing riddle of the applicability of mathematics to the physical world. Some of these issues go back to the nascent years of mathematics itself, others are just beginning to draw the attention of scholars. In addressing these questions, some of the papers in this volume wrestle with them directly, while others use the writings of philosophers such as Hume and Wittgenstein to approach their problems by way of interpretation and critique. The contributors include prominent philosophers of science and mathematics as well as promising younger scholars. The volume seeks to share the concerns of philosophers of mathematics with a wider audience and will be of interest to historians, mathematicians and philosophers alike.

Mathematical Learning and Cognition in Early Childhood: Integrating Interdisciplinary Research into Practice

by Katherine M. Robinson Helena P. Osana Donna Kotsopoulos

This book explores mathematical learning and cognition in early childhood from interdisciplinary perspectives, including developmental psychology, neuroscience, cognitive psychology, and education. It examines how infants and young children develop numerical and mathematical skills, why some children struggle to acquire basic abilities, and how parents, caregivers, and early childhood educators can promote early mathematical development. The first section of the book focuses on infancy and toddlerhood with a particular emphasis on the home environment and how parents can foster early mathematical skills to prepare their children for formal schooling. The second section examines topics in preschool and kindergarten, such as the development of counting procedures and principles, the use of mathematics manipulatives in instruction, and the impacts of early intervention. The final part of the book focuses on particular instructional approaches in the elementary school years, such as different additive concepts, schema-based instruction, and methods of division. Chapters analyze the ways children learn to think about, work with, and master the language of mathematical concepts, as well as provide effective approaches to screening and intervention.Included among the topics:The relationship between early gender differences and future mathematical learning and participation.The connection between mathematical and computational thinking.Patterning abilities in young children.Supporting children with learning difficulties and intellectual disabilities.The effectiveness of tablets as elementary mathematics education tools. Mathematical Learning and Cognition in Early Childhood is an essential resource for researchers, graduate students, and professionals in infancy and early childhood development, child and school psychology, neuroscience, mathematics education, educational psychology, and social work.

Mathematical Literacy: Developing Identities of Inclusion (Studies in Mathematical Thinking and Learning Series)

by Yvette Solomon

Why do so many learners, even those who are successful, feel that they are outsiders in the world of mathematics? Taking the central importance of language in the development of mathematical understanding as its starting point, Mathematical Literacy explores students’ experiences of doing mathematics from primary school to university - what they think mathematics is, how it is presented to them, and what they feel about it. Building on a range of theory which focuses on community, knowledge, and identity, the author examines two particular issues: the relationship between language, learning, and mathematical knowledge, and the relationship between identity, equity, and processes of exclusion/inclusion. In this comprehensive and accessible book, the author extends our understanding of the process of gaining mathematical fluency, and provides tools for an exploration of mathematics learning across different groups in different social contexts. Mathematical Literacy’s analysis of how learners develop particular relationships with the subject, and what we might do to promote equity through the development of positive relationships, is of interest across all sectors of education—to researchers, teacher educators, and university educators.

Mathematical Logic

by Joseph R. Shoenfield

This classic introduction to the main areas of mathematical logic provides the basis for a first graduate course in the subject. It embodies the viewpoint that mathematical logic is not a collection of vaguely related results, but a coherent method of attacking some of the most interesting problems, which face the mathematician. The author presents the basic concepts in an unusually clear and accessible fashion, concentrating on what he views as the central topics of mathematical logic: proof theory, model theory, recursion theory, axiomatic number theory, and set theory. There are many exercises, and they provide the outline of what amounts to a second book that goes into all topics in more depth. This book has played a role in the education of many mature and accomplished researchers.

Mathematical Logic

by Stephen Cole Kleene

Undergraduate students with no prior classroom instruction in mathematical logic will benefit from this evenhanded multipart text. It begins with an elementary but thorough overview of mathematical logic of first order. The treatment extends beyond a single method of formulating logic to offer instruction in a variety of techniques: model theory (truth tables), Hilbert-type proof theory, and proof theory handled through derived rules.The second part supplements the previously discussed material and introduces some of the newer ideas and the more profound results of twentieth-century logical research. Subsequent chapters explore the study of formal number theory, with surveys of the famous incompleteness and undecidability results of Godel, Church, Turing, and others. The emphasis in the final chapter reverts to logic, with examinations of Godel's completeness theorem, Gentzen's theorem, Skolem's paradox and nonstandard models of arithmetic, and other theorems. The author, Stephen Cole Kleene, was Cyrus C. MacDuffee Professor of Mathematics at the University of Wisconsin, Madison. Preface. Bibliography. Theorem and Lemma Numbers: Pages. List of Postulates. Symbols and Notations. Index.

Mathematical Logic and Theoretical Computer Science

by David Kueker

Mathematical Logic and Theoretical Computer Science covers various topics ranging from recursion theory to Zariski topoi. Leading international authorities discuss selected topics in a number of areas, including denotational semanitcs, reccuriosn theoretic aspects fo computer science, model theory and algebra, Automath and automated reasoning, stability theory, topoi and mathematics, and topoi and logic.The most up-to-date review available in its field, Mathematical Logic and Theoretical Computer Science will be of interest to mathematical logicians, computer scientists, algebraists, algebraic geometers, differential geometers, differential topologists, and graduate students in mathematics and computer science.

Mathematical Logic for Computer Science

by Mordechai Ben-Ari

Mathematical Logic for Computer Science is a mathematics textbook with theorems and proofs, but the choice of topics has been guided by the needs of students of computer science. The method of semantic tableaux provides an elegant way to teach logic that is both theoretically sound and easy to understand. The uniform use of tableaux-based techniques facilitates learning advanced logical systems based on what the student has learned from elementary systems. The logical systems presented are: propositional logic, first-order logic, resolution and its application to logic programming, Hoare logic for the verification of sequential programs, and linear temporal logic for the verification of concurrent programs. The third edition has been entirely rewritten and includes new chapters on central topics of modern computer science: SAT solvers and model checking.

Mathematical Logic: Essays On Set Theory, Model Theory, Philosophical Logic And Philosophy Of Mathematics (Ontos Mathematical Logic Ser. #5)

by Roman Kossak

This book, presented in two parts, offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions. Its first part, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. The exposition does not assume any prerequisites; it is rigorous, but as informal as possible. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are used to study and classify mathematical structures. Although more advanced, this second part is accessible to the reader who is either already familiar with basic mathematical logic, or has carefully read the first part of the book. Classical developments in model theory, including the Compactness Theorem and its uses, are discussed. Other topics include tameness, minimality, and order minimality of structures. The book can be used as an introduction to model theory, but unlike standard texts, it does not require familiarity with abstract algebra. This book will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background.

Mathematical Logic: On Numbers, Sets, Structures, and Symmetry (Springer Graduate Texts in Philosophy #4)

by Roman Kossak

This textbook is a second edition of the successful, Mathematical Logic: On Numbers, Sets, Structures, and Symmetry. It retains the original two parts found in the first edition, while presenting new material in the form of an added third part to the textbook. The textbook offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions. Part I, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are usedto study and classify mathematical structures. The added Part III to the book is closer to what one finds in standard introductory mathematical textbooks. Definitions, theorems, and proofs that are introduced are still preceded by remarks that motivate the material, but the exposition is more formal, and includes more advanced topics. The focus is on the notion of countable categoricity, which analyzed in detail using examples from the first two parts of the book. This textbook is suitable for graduate students in mathematical logic and set theory and will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background.

Mathematical Maturity via Discrete Mathematics (Dover Books on Mathematics)

by Vadim Ponomarenko

Designed for a one-semester course for undergraduate majors in math, computer science, and computer engineering, this text helps students take the crucial step from consuming mathematics to producing mathematics. Author Vadim Ponomarenko employs the general concept of discrete mathematics to introduce the basic knowledge of proof techniques and their uses.Like other beginning texts on methods of proof, this treatment offers definitions, theorems, and techniques. Unlike other books, it explains how to read, interpret, and use definitions, demonstrating not only general proof strategies — like proof of induction — but also the specific methods of thought for implementing these strategies. All techniques are built from scratch to provide an intellectually consistent whole. Each chapter contains several exercises, for which the author provides hints rather than solutions to encourage creative thinking.

Mathematical Meditations (AK Peters/CRC Recreational Mathematics Series)

by Snezana Lawrence

Mathematical Meditations identifies, explores, and celebrates those aspects of mathematics that are good for you and your overall wellbeing. It is necessary for everyone to have a little time to think every so often: to contemplate, meditate, and try to understand where you are and what is going on around you. Mathematics can help you with all of that.The Meditations in this book are the product of thousands of years of mathematical discourse. As you read through the book and work through the various exercises, you will discover new mechanisms that allow you to contemplate and understand some complex mathematical principles. However, the focus will always be wider than a mere dry comprehension of theory, as you will be encouraged to meditate upon the deeper intrinsic beauty of mathematics and what it can reveal to us about the world around us.Features An original, engaging narrative format replete with novel exercises and examples Could be used in a classroom setting for liberal arts students, mathematics undergraduates, or high school teachers Accessible to anyone who wants to explore a different kind of perspective on mathematics

Mathematical Methods and Models for Economists

by Angel de la Fuente

This book is intended as a textbook for a first-year Ph. D. course in mathematics for economists and as a reference for graduate students in economics. It provides a self-contained, rigorous treatment of most of the concepts and techniques required to follow the standard first-year theory sequence in micro and macroeconomics. The topics covered include an introduction to analysis in metric spaces, differential calculus, comparative statics, convexity, static optimization, dynamical systems and dynamic optimization. The book includes a large number of applications to standard economic models and over two hundred fully worked-out problems.

Mathematical Methods and Models in Biomedicine

by Urszula Ledzewicz Heinz Schättler Eugene Kashdan Avner Friedman

Mathematical biomedicine is a rapidly developing interdisciplinary field of research that connects the natural and exact sciences in an attempt to respond to the modeling and simulation challenges raised by biology and medicine. There exist a large number of mathematical methods and procedures that can be brought in to meet these challenges and this book presents a palette of such tools ranging from discrete cellular automata to cell population based models described by ordinary differential equations to nonlinear partial differential equations representing complex time- and space-dependent continuous processes. Both stochastic and deterministic methods are employed to analyze biological phenomena in various temporal and spatial settings. This book illustrates the breadth and depth of research opportunities that exist in the general field of mathematical biomedicine by highlighting some of the fascinating interactions that continue to develop between the mathematical and biomedical sciences. It consists of five parts that can be read independently, but are arranged to give the reader a broader picture of specific research topics and the mathematical tools that are being applied in its modeling and analysis. The main areas covered include immune system modeling, blood vessel dynamics, cancer modeling and treatment, and epidemiology. The chapters address topics that are at the forefront of current biomedical research such as cancer stem cells, immunodominance and viral epitopes, aggressive forms of brain cancer, or gene therapy. The presentations highlight how mathematical modeling can enhance biomedical understanding and will be of interest to both the mathematical and the biomedical communities including researchers already working in the field as well as those who might consider entering it. Much of the material is presented in a way that gives graduate students and young researchers a starting point for their own work.

Mathematical Methods and Models in Economic Planning, Management and Budgeting

by Galimkair Mutanov

This book describes a system of mathematical models and methods that can be used to analyze real economic and managerial decisions and to improve their effectiveness. Application areas include: management of development and operation budgets, assessment and management of economic systems using an energy entropy approach, equation of exchange rates and forecasting foreign exchange operations, evaluation of innovative projects, monitoring of governmental programs, risk management of investment processes, decisions on the allocation of resources, and identification of competitive industrial clusters. The proposed methods and models were tested on the example of Kazakhstan's economy, but the generated solutions will be useful for applications at other levels and in other countries. Regarding your book "Mathematical Methods and Models in Economics", I am impressed because now it is time when "econometrics" is becoming more appreciated by economists and by schools that are the hosts or employers of modern economists. . . . Your presented results really impressed me. John F. Nash, Jr. , Princeton University, Nobel Memorial Prize in Economic Sciences The book is within my scope of interest because of its novelty and practicality. First, there is a need for realistic modeling of complex systems, both natural and artificial that conclude computer and economic systems. There has been an ongoing effort in developing models dealing with complexity and incomplete knowledge. Consequently, it is clear to recognize the contribution of Mutanov to encapsulate economic modeling with emphasis on budgeting and innovation. Secondly, the method proposed by Mutanov has been verified by applying to the case of the Republic of Kazakhstan, with her vibrant emerging economy. Thirdly, Chapter 5 of the book is of particular interest for the computer technology community because it deals with innovation. In summary, the book of Mutanov should become one of the outstanding recognized pragmatic guides for dealing with innovative systems. Andrzej Rucinski, University of New Hampshire This book is unique in its theoretical findings and practical applicability. The book is an illuminating study based on an applied mathematical model which uses methods such as linear programming and input-output analysis. Moreover, this work demonstrates the author's great insight and academic brilliance in the fields of finance, technological innovations and marketing vis-à-vis the market economy. From both theoretical and practical standpoint, this work is indeed a great achievement. Yeon Cheon Oh, President of Seoul National University

Mathematical Methods and Quantum Mathematics for Economics and Finance

by Belal Ehsan Baaquie

Given the rapid pace of development in economics and finance, a concise and up-to-date introduction to mathematical methods has become a prerequisite for all graduate students, even those not specializing in quantitative finance. This book offers an introductory text on mathematical methods for graduate students of economics and finance–and leading to the more advanced subject of quantum mathematics. The content is divided into five major sections: mathematical methods are covered in the first four sections, and can be taught in one semester. The book begins by focusing on the core subjects of linear algebra and calculus, before moving on to the more advanced topics of probability theory and stochastic calculus. Detailed derivations of the Black-Scholes and Merton equations are provided – in order to clarify the mathematical underpinnings of stochastic calculus. Each chapter of the first four sections includes a problem set, chiefly drawn from economics and finance. In turn, section five addresses quantum mathematics. The mathematical topics covered in the first four sections are sufficient for the study of quantum mathematics; Black-Scholes option theory and Merton’s theory of corporate debt are among topics analyzed using quantum mathematics.

Mathematical Methods for Accident Reconstruction: A Forensic Engineering Perspective

by Harold Franck Darren Franck

Over the past 25 years, Harold and Darren Franck have investigated hundreds of accidents involving vehicles of almost every shape, size, and type imaginable. In Mathematical Methods for Accident Reconstruction: A Forensic Engineering Perspective, these seasoned experts demonstrate the application of mathematics to modeling accident reconstructions

Mathematical Methods for Curves and Surfaces

by Tom Lyche Larry L. Schumaker Marie-Laurence Mazure Michael Floater Knut Mørken

Contains a carefully edited selection of papers that were presented at the Symposium on Trends in Approximation Theory, held in May 2000, and at the Oslo Conference on Mathematical Methods for Curves and Surfaces, held in July 2000. Mathematical Methods for Curves and Surfaces covers topics such as B#65533;zier curves, conic sections, offsets, and wavelets.

Refine Search

Showing 15,551 through 15,575 of 28,127 results