Browse Results

Showing 17,651 through 17,675 of 24,588 results

Physics: Volume 2

by David Halliday Robert Resnick Kenneth S. Krane

Written for the full year or three term Calculus-based University Physics course for science and engineering majors, the publication of the first edition of Physics in 1960 launched the modern era of Physics textbooks. It was a new paradigm at the time and continues to be the dominant model for all texts. Physics is the most realistic option for schools looking to teach a more demanding course. The entirety of Volume 2 of the 5th edition has been edited to clarify conceptual development in light of recent findings of physics education research. End-of-chapter problem sets are thoroughly over-hauled, new problems are added, outdated references are deleted, and new short-answer conceptual questions are added.

Physics and Finance (Undergraduate Lecture Notes in Physics)

by Volker Ziemann

This book introduces physics students to concepts and methods of finance. Despite being perceived as quite distant from physics, finance shares a number of common methods and ideas, usually related to noise and uncertainties. Juxtaposing the key methods to applications in both physics and finance articulates both differences and common features, this gives students a deeper understanding of the underlying ideas. Moreover, they acquire a number of useful mathematical and computational tools, such as stochastic differential equations, path integrals, Monte-Carlo methods, and basic cryptology. Each chapter ends with a set of carefully designed exercises enabling readers to test their comprehension.

Physics and Mathematics Behind Wave Dynamics (Synthesis Lectures on Wave Phenomena in the Physical Sciences)

by Sanichiro Yoshida

Most physical phenomena exhibit spatiotemporal features interpreted as wave dynamics. Various diagnostic technologies use some waves such as light, sound, and microwaves. A proper understanding of wave dynamics is essential to interpret these physical phenomena and apply the technology efficiently. However, the physics underlying the wave-like behavior of real-world systems is not necessarily straightforward. Often the mathematical description of these physics is hard to understand. Consequently, the interpretation of diagnostic signals is not simple, which sometimes leads to an incorrect diagnosis. This book aims to solve these problems by describing the related topics on a sound physical basis and explaining them intuitively for easy digestion. Presents real-world examples of oscillatory and wave systems to help the reader understand wave dynamics while explaining numerical methods. Explains the physics and mathematics underlying wave dynamics in intuitive fashions.

Physics and Mathematics of Quantum Many-Body Systems (Graduate Texts in Physics)

by Hal Tasaki

This book is a self-contained advanced textbook on the mathematical-physical aspects of quantum many-body systems, which begins with a pedagogical presentation of the necessary background information before moving on to subjects of active research, including topological phases of matter. The book explores in detail selected topics in quantum spin systems and lattice electron systems, namely, long-range order and spontaneous symmetry breaking in the antiferromagnetic Heisenberg model in two or higher dimensions (Part I), Haldane phenomena in antiferromagnetic quantum spin chains and related topics in topological phases of quantum matter (Part II), and the origin of magnetism in various versions of the Hubbard model (Part III). Each of these topics represents certain nontrivial phenomena or features that are invariably encountered in a variety of quantum many-body systems, including quantum field theory, condensed matter systems, cold atoms, and artificial quantum systems designed for future quantum computers. The book’s main focus is on universal properties of quantum many-body systems. The book includes roughly 50 problems with detailed solutions. The reader only requires elementary linear algebra and calculus to comprehend the material and work through the problems. Given its scope and format, the book is suitable both for self-study and as a textbook for graduate or advanced undergraduate classes.

Physics and Music: Essential Connections and Illuminating Excursions

by Stefan C. Müller Kinko Tsuji

This book explores the fascinating and intimate relationship between music and physics. Over millennia, the playing of, and listening to music have stimulated creativity and curiosity in people all around the globe. Beginning with the basics, the authors first address the tonal systems of European-type music, comparing them with those of other, distant cultures. They analyze the physical principles of common musical instruments with emphasis on sound creation and particularly charisma. Modern research on the psychology of musical perception – the field known as psychoacoustics – is also described. The sound of orchestras in concert halls is discussed, and its psychoacoustic effects are explained. Finally, the authors touch upon the role of music for our mind and society. Throughout the book, interesting stories and anecdotes give insights into the musical activities of physicists and their interaction with composers and musicians.

The Physics Behind... (The Behind... series)

by Russ Swan

Can you really lose weight by consuming nothing but ice cream and beer? How does the latest blockbuster movie get squeezed onto a disk, and how do they make the pictures seem 3D? How much does a selfie weigh? What's the science behind forensic investigations, body scans, and the dating of ancient artefacts?The Physics Behind... takes the reader on a fascinating journey through the scientific principles that that make the modern world work. Could there be life on Mars? Why is north really south? How do self-driving cars find their way around? These and many more topics are explored by starting with the basic science that makes them tick - examining the physics behind them. Packed with detailed original artwork and infographics, The Physics Behind... is perfect for anyone who has ever been curious about the science of life.Including:- The physics behind modern life: Wi-Fi, Facial recognition, touchscreens, microwave ovens, the ice cream and beer diet, taking a selfie, Flash memory, a bag of sugar, catching the train, calendars and clocks- The physics behind entertainment: optical discs, lasers, white water, executive toys, the electric guitar, music, 3D movies- The physics behind analysis: medical imaging, looking at little things, spectroscopy, crime scene investigation, tricorder, microfluidics, radiocarbon dating, proving the Earth is round- The physics behind space: rocket science, space weather, Planet Nine, space telescopes, is there anybody out there? life on Earth, life on Mars- The physics behind big science: what's the matter?, time travel, bomb or meltdown?, the Large Hadron Collider, the Human Genome Project, the Standard Model, gravity, everything- The physics behind the weird universe: strings, rings and other things, N-dimensional space, the hypercube, antimatter, the dark universe, quantum weirdness, quantum biology, time crystals and Majorana- The physics behind the environment: weather forecasts, climate change, renewable energy, migration, peacock feathers, sunburn, rainbows, spider silk- The physics behind transportation: autonomous autos, Hyperloop, Maglev, satellite navigation, motor sport, going rreeaallllyy fast, stealth- The physics behind everything else: curve balls, the Mpemba Effect, why north is really south, perpetual motion and the heat death of the universe, and the physics behind this book.

The Physics Behind...: Discover The Physics Of Everyday Life

by Russ Swan

Can you really lose weight by consuming nothing but ice cream and beer? How does the latest blockbuster movie get squeezed onto a disk, and how do they make the pictures seem 3D? How much does a selfie weigh? What's the science behind forensic investigations, body scans, and the dating of ancient artefacts?The Physics Behind... takes the reader on a fascinating journey through the scientific principles that that make the modern world work. Could there be life on Mars? Why is north really south? How do self-driving cars find their way around? These and many more topics are explored by starting with the basic science that makes them tick - examining the physics behind them. Packed with detailed original artwork and infographics, The Physics Behind... is perfect for anyone who has ever been curious about the science of life.Including:- The physics behind modern life: Wi-Fi, Facial recognition, touchscreens, microwave ovens, the ice cream and beer diet, taking a selfie, Flash memory, a bag of sugar, catching the train, calendars and clocks- The physics behind entertainment: optical discs, lasers, white water, executive toys, the electric guitar, music, 3D movies- The physics behind analysis: medical imaging, looking at little things, spectroscopy, crime scene investigation, tricorder, microfluidics, radiocarbon dating, proving the Earth is round- The physics behind space: rocket science, space weather, Planet Nine, space telescopes, is there anybody out there? life on Earth, life on Mars- The physics behind big science: what's the matter?, time travel, bomb or meltdown?, the Large Hadron Collider, the Human Genome Project, the Standard Model, gravity, everything- The physics behind the weird universe: strings, rings and other things, N-dimensional space, the hypercube, antimatter, the dark universe, quantum weirdness, quantum biology, time crystals and Majorana- The physics behind the environment: weather forecasts, climate change, renewable energy, migration, peacock feathers, sunburn, rainbows, spider silk- The physics behind transportation: autonomous autos, Hyperloop, Maglev, satellite navigation, motor sport, going rreeaallllyy fast, stealth- The physics behind everything else: curve balls, the Mpemba Effect, why north is really south, perpetual motion and the heat death of the universe, and the physics behind this book.

Physics Education (Challenges in Physics Education)

by Raimund Girwidz Hans Ernst Fischer

This book offers a comprehensive overview of the theoretical background and practice of physics teaching and learning and assists in the integration of highly interesting topics into physics lessons. Researchers in the field, including experienced educators, discuss basic theories, the methods and some contents of physics teaching and learning, highlighting new and traditional perspectives on physics instruction. A major aim is to explain how physics can be taught and learned effectively and in a manner enjoyable for both the teacher and the student. Close attention is paid to aspects such as teacher competences and requirements, lesson structure, and the use of experiments in physics lessons. The roles of mathematical and physical modeling, multiple representations, instructional explanations, and digital media in physics teaching are all examined. Quantitative and qualitative research on science education in schools is discussed, as quality assessment of physics instruction. The book is of great value to researchers involved in the teaching and learning of physics, to those training physics teachers, and to pre-service and practising physics teachers.

Physics Education Today: Innovative Methodologies, Tools and Evaluation (Challenges in Physics Education)

by Claudio Fazio Paul Logman

This book provides an in-depth exploration of the latest developments in physics education. It presents a comprehensive look into cutting-edge research and ideas used to improve physics education around the world. Topics covered include (but are not limited to) the use of problem-based learning, the design and evaluation of teaching materials, and the use of digital technologies. This book is essential for anyone looking to stay up-to-date on the latest educational innovations and to develop an understanding of effective teaching approaches. It is aimed at researchers, teachers, students, policymakers, and educational leaders in the field of physics education.

Physics I: 501 Practice Problems For Dummies (+ Free Online Practice)

by The Experts at Dummies

Overcome your study inertia and polish your knowledge of physics Physics I: 501 Practice Problems For Dummies gives you 501 opportunities to practice solving problems from all the major topics covered you Physics I class—in the book and online! Get extra help with tricky subjects, solidify what you’ve already learned, and get in-depth walk-throughs for every problem with this useful book. These practice problems and detailed answer explanations will help you succeed in this tough-but-required class, no matter what your skill level. Thanks to Dummies, you have a resource to help you put key concepts into practice. Work through practice problems on all Physics I topics covered in school classes Step through detailed solutions to build your understanding Access practice questions online to study anywhere, any time Improve your grade and up your study game with practice, practice, practiceThe material presented in Physics I: 501 Practice Problems For Dummies is an excellent resource for students, as well as parents and tutors looking to help supplement Physics I instruction. Physics I: 501 Practice Problems For Dummies (9781119883715) was previously published as Physics I Practice Problems For Dummies (9781118853153). While this version features a new Dummies cover and design, the content is the same as the prior release and should not be considered a new or updated product.

Physics I For Dummies

by Steven Holzner

An easy-to-follow guide to introductory physics, from the Big Bang to relativity All science, technology, engineering, and math majors in college and university require some familiarity with physics. Other career paths, like medicine, are also only open to students who understand this fundamental science. But don’t worry if you find physics to be intimidating or confusing. You just need the right guide! In Physics I For Dummies, you’ll find a roadmap to physics success that walks you through every major topic in introductory physics, including motion, energy, waves, thermodynamics, electromagnetism, relativity, and more. You’ll learn the basic principles and math formulas of physics through clear and straightforward examples and instruction, and without unnecessary jargon or complicated theory. In this book, you’ll also find: Up-to-date examples and explanations appearing alongside the latest discoveries and research in physics, discussed at a level appropriate for beginning students All the info found in an intro physics course, arranged in an intuitive sequence that will give first-year students a head start in their high school or college physics class The latest teaching techniques to ensure that you remember and retain what you read and practice in the bookPhysics I For Dummies is proof that physics can fun, accessible, challenging, and rewarding, all at the same time! Whether you’re a high school or undergraduate student looking for a leg-up on basic physics concepts or you’re just interested in how our universe works, this book will help you understand the thermodynamic, electromagnetic, relativistic, and everything in between.

Physics, Nature and Society: A Guide to Order and Complexity in Our World (The Frontiers Collection)

by Joaquín Marro

This wide-ranging and accessible book serves as a fascinating guide to the strategies and concepts that help us understand the boundaries between physics, on the one hand, and sociology, economics, and biology on the other. From cooperation and criticality to flock dynamics and fractals, the author addresses many of the topics belonging to the broad theme of complexity. He chooses excellent examples (requiring no prior mathematical knowledge) to illuminate these ideas and their implications. The lively style and clear description of the relevant models will appeal both to novices and those with an existing knowledge of the field.

Physics of Biological Oscillators: New Insights into Non-Equilibrium and Non-Autonomous Systems (Understanding Complex Systems)

by Aneta Stefanovska Peter V. E. McClintock

This book, based on a selection of invited presentations from a topical workshop, focusses on time-variable oscillations and their interactions. The problem is challenging, because the origin of the time variability is usually unknown. In mathematical terms, the oscillations are non-autonomous, reflecting the physics of open systems where the function of each oscillator is affected by its environment. Time-frequency analysis being essential, recent advances in this area, including wavelet phase coherence analysis and nonlinear mode decomposition, are discussed. Some applications to biology and physiology are described.Although the most important manifestation of time-variable oscillations is arguably in biology, they also crop up in, e.g. astrophysics, or for electrons on superfluid helium. The book brings together the research of the best international experts in seemingly very different disciplinary areas.

Physics of Complex Systems: Discovery in the Age of Gödel

by Dragutin T. Mihailović Darko Kapor Siniša Crvenković Anja Mihailović

This book analyses the physics of complex systems to elaborate the problems encountered in teaching and research. Inspired by the of Kurt Gödel (including his incompleteness theorems) it considers the concept of time, the idea of models and the concept of complexity before trying to assess the state of physics in general. Using both general and practical examples, the idea of information is discussed, emphasizing its physical interpretation, debates ideas in depth using examples and evidence to provide detailed considerations on the topics. Based on the authors’ own research on these topics, this book puts forward the idea that the application of information measures can provide new results in the study of complex systems. Helpful for those already familiar with the concepts who wish to deepen their critical understanding, Physics of Complex Systems will be extremely valuable both for people that are already involved in complex systems and also readers beginning their journey into the subject. This work will encourage readers to follow and continue these ideas, enabling them to investigate the various topics further.

The Physics of Computing

by Luca Gammaitoni

This book presents a self-contained introduction to the physics of computing, by addressing the fundamental underlying principles that involve the act of computing, regardless of the actual machine that is used to compute. Questions like “what is the minimum energy required to perform a computation?”, “what is the ultimate computational speed that a computer can achieve?” or “how long can a memory last”, are addressed here, starting from basic physics principles. The book is intended for physicists, engineers, and computer scientists, and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge in physics and mathematics.

The Physics of Laser Plasmas and Applications - Volume 1: Physics of Laser Matter Interaction (Springer Series in Plasma Science and Technology)

by Hideaki Takabe

The series of books discusses the physics of laser and matter interaction, fluid dynamics of high-temperature and high-density compressible plasma, and kinetic phenomena and particle dynamics in laser-produced plasma. The book (Vol.1) gives the physics of intense-laser absorption in matter and/or plasma in non-relativistic and relativistic laser-intensity regime. In many cases, it is explained with clear images of physics so that an intuitive understanding of individual physics is possible for non-specialists. For intense-laser of 1013-16 W/cm2, the laser energy is mainly absorbed via collisional process, where the oscillation energy is converted to thermal energy by non-adiabatic Coulomb collision with the ions. Collisionless interactions with the collective modes in plasma are also described. The main topics are the interaction of ultra-intense laser and plasma for the intensity near and over 1018W/cm2. In such regime, relativistic dynamics become essential. A new physics appears due to the relativistic effects, such as mass correction, relativistic nonlinear force, chaos physics of particle motions, and so on. The book provides clearly the theoretical base for challenging the laser-plasma interaction physics in the wide range of power lasers. It is suitable as a textbook for upper-undergraduate and graduate students as well as for readers who want to understand the whole physics structure about what happen when an intense-laser irradiates any materials including solids, gas etc. Explaining the physics intuitively without complicated mathematics, it is also a valuable resource for engineering students and researchers as well as for self-study.

Physics of Liquid Matter (Soft and Biological Matter)

by Paola Gallo Mauro Rovere

This book offers a didactic and a self-contained treatment of the physics of liquid and flowing matter with a statistical mechanics approach. Experimental and theoretical methods that were developed to study fluids are now frequently applied to a number of more complex systems generically referred to as soft matter. As for simple liquids, also for complex fluids it is important to understand how their macroscopic behavior is determined by the interactions between the component units. Moreover, in recent years new and relevant insights have emerged from the study of anomalous phases and metastable states of matter. In addition to the traditional topics concerning fluids in normal conditions, the authors of this book discuss recent developments in the field of disordered systems in condensed and soft matter. In particular they emphasize computer simulation techniques that are used in the study of soft matter and the theories and study of slow glassy dynamics. For these reasons the book includes a specific chapter about metastability, supercooled liquids and glass transition.The book is written for graduate students and active researchers in the field.

Physics of Oscillations and Waves: With Use Of Matlab And Python (Undergraduate Texts In Physics Ser.)

by Arnt Inge Vistnes

In this textbook a combination of standard mathematics and modern numerical methods is used to describe a wide range of natural wave phenomena, such as sound, light and water waves, particularly in specific popular contexts, e.g. colors or the acoustics of musical instruments. It introduces the reader to the basic physical principles that allow the description of the oscillatory motion of matter and classical fields, as well as resulting concepts including interference, diffraction, and coherence. Numerical methods offer new scientific insights and make it possible to handle interesting cases that can’t readily be addressed using analytical mathematics; this holds true not only for problem solving but also for the description of phenomena. Essential physical parameters are brought more into focus, rather than concentrating on the details of which mathematical trick should be used to obtain a certain solution. Readers will learn how time-resolved frequency analysis offers a deeper understanding of the interplay between frequency and time, which is relevant to many phenomena involving oscillations and waves. Attention is also drawn to common misconceptions resulting from uncritical use of the Fourier transform. The book offers an ideal guide for upper-level undergraduate physics students and will also benefit physics instructors. Program codes in Matlab and Python, together with interesting files for use in the problems, are provided as free supplementary material.

Physics of Self-Organization and Evolution

by Werner Ebeling Rainer Feistel

This thoroughly updated version of the German authoritative work on self-organization has been completely rewritten by internationally renowned experts and experienced book authors to also include a review of more recent literature. It retains the original enthusiasm and fascination surrounding thermodynamic systems far from equilibrium, synergetics, and the origin of life, representing an easily readable book and tutorial on this exciting field. The book is unique in covering in detail the experimental and theoretical fundamentals of self-organizing systems as well as such selected features as random processes, structural networks and multistable systems, while focusing on the physical and theoretical modeling of natural selection and evolution processes. The authors take examples from physics, chemistry, biology and social systems, and include results hitherto unpublished in English. The result is a one-stop resource relevant for students and scientists in physics or related interdisciplinary fields, including mathematical physics, biophysics, information science and nanotechnology.

The Physics of the Dark Photon: A Primer (SpringerBriefs in Physics)

by Marco Fabbrichesi Emidio Gabrielli Gaia Lanfranchi

This book is about the dark photon which is a new gauge boson whose existence has been conjectured. Due to its interaction with the ordinary, visible photon, such a particle can be experimentally detected via specific signatures. In this book, the authors review the physics of the dark photon from the theoretical and experimental point of view. They discuss the difference between the massive and the massless case, highlighting how the two phenomena arise from the same vector portal between the dark and the visible sector. A review of the cosmological and astrophysical observations is provided, together with the connection to dark matter physics. Then, a perspective on current and future experimental limits on the parameters of the massless and massive dark photon is given, as well as the related bounds on milli-charged fermions. The book is intended for graduate students and young researchers who are embarking on dark photon research, and offers them a clear and up-to-date introduction to the subject.

The Physics of Wall Street: A Brief History of Predicting the Unpredictable

by James Owen Weatherall

A look inside the world of &“quants&” and how science can (and can&’t) predict financial markets: &“Entertaining and enlightening&” (The New York Times). After the economic meltdown of 2008, Warren Buffett famously warned, &“beware of geeks bearing formulas.&” But while many of the mathematicians and software engineers on Wall Street failed when their abstractions turned ugly in practice, a special breed of physicists has a much deeper history of revolutionizing finance. Taking us from fin-de-siècle Paris to Rat Pack–era Las Vegas, from wartime government labs to Yippie communes on the Pacific coast, James Owen Weatherall shows how physicists successfully brought their science to bear on some of the thorniest problems in economics, from options pricing to bubbles. The crisis was partly a failure of mathematical modeling. But even more, it was a failure of some very sophisticated financial institutions to think like physicists. Models—whether in science or finance—have limitations; they break down under certain conditions. And in 2008, sophisticated models fell into the hands of people who didn&’t understand their purpose, and didn&’t care. It was a catastrophic misuse of science. The solution, however, is not to give up on models; it&’s to make them better. This book reveals the people and ideas on the cusp of a new era in finance, from a geophysicist using a model designed for earthquakes to predict a massive stock market crash to a physicist-run hedge fund earning 2,478.6% over the course of the 1990s. Weatherall shows how an obscure idea from quantum theory might soon be used to create a far more accurate Consumer Price Index. The Physics of Wall Street will change how we think about our economic future. &“Fascinating history . . . Happily, the author has a gift for making complex concepts clear to lay readers.&” —Booklist

Physics with Excel and Python: Using the Same Data Structure Volume I: Basics, Exercises and Tasks

by Dieter Mergel

This book is intended to serve as a basic introduction to scientific computing by treating problems from various areas of physics - mechanics, optics, acoustics, and statistical reasoning in the context of the evaluation of measurements. After working through these examples, students are able to independently work on physical problems that they encounter during their studies. For every exercise, the author introduces the physical problem together with a data structure that serves as an interface to programming in Excel and Python. When a solution is achieved in one application, it can easily be translated into the other one and presumably any other platform for scientific computing. This is possible because the basic techniques of vector and matrix calculation and array broadcasting are also achieved with spreadsheet techniques, and logical queries and for-loops operate on spreadsheets from simple Visual Basic macros. So, starting to learn scientific calculation with Excel, e.g., at High School, is a targeted road to scientific computing. The primary target groups of this book are students with a major or minor subject in physics, who have interest in computational techniques and at the same time want to deepen their knowledge of physics. Math, physics and computer science teachers and Teacher Education students will also find a companion in this book to help them integrate computer techniques into their lessons. Even professional physicists who want to venture into Scientific Computing may appreciate this book.

Physics with Photons Using the ATLAS Run 2 Data: Calibration and Identification, Measurement of the Higgs Boson Mass and Search for Supersymmetry in Di-Photon Final State (Springer Theses)

by Stefano Manzoni

The work presented in this book is based on the proton-proton collision data from the Large Hadron Collider at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector in 2015 and 2016. The research program of the ATLAS experiment includes the precise measurement of the parameters of the Standard Model, and the search for signals of physics beyond the SM. Both these approaches are pursued in this thesis, which presents two different analyses: the measurement of the Higgs boson mass in the di-photon decay channel, and the search for production of supersymmetric particles (gluinos, squarks or winos) in a final state containing two photons and missing transverse momentum. Finally, ATLAS detector performance studies, which are key ingredients for the two analyses outlined before, are also carried out and described.

Physics—Problems, Solutions, and Computer Calculations: Vol. 1 Mechanics, Properties of Matter, and Heat

by Wan Muhamad Wan Hassan

Knowledge of and skill in physics are essential foundations for studies in science and engineering. This book offers students an introduction to the basic concepts and principles of physics. It covers various topics specifically related to physical mechanics, the properties of matter, and heat. Each chapter begins with a summary of concepts, principles, definitions, and formulae to be discussed, as well as ending with problems and solutions that illustrate the specific topic. Steps are detailed to help build reasoning and understanding. There are 300 worked problems and 100 exercises in the book, as well as 306 figures to help the reader visualize the processes being addressed. Computer calculations and solutions are carried out using wxMaxima to give insight and help build computational skills. The book is aimed at first-year undergraduate students studying introductory physics, and would also be useful for physics teachers in their instruction, particularly the exercises at the end of each chapter.

Physik für Studierende der Biowissenschaften, Chemie und Medizin

by Gerhard Rufa

Dieses Lehrbuch bietet eine klar strukturierte Einführung in die Physik, wobei die Grundlagen, wie sie für Studierende mit Physik im Nebenfach benötigt werden, in einer leicht verständlichen Weise dargestellt werden. Die physikalischen Begriffe und Gesetzmäßigkeiten werden anhand vieler Abbildungen sowie durch Beispiele aus dem täglichen Leben, den Biowissenschaften, der Chemie und der Medizin erläutert. Vorkenntnisse aus der Physik werden nicht vorausgesetzt, sodass Studierende sich selbstständig das physikalische Grundlagenwissen erarbeiten können und ein Verständnis der abstrakten physikalischen Begriffe und Gesetzmäßigkeiten erhalten.Ergänzt wird dieses Lehrbuch von dem separaten Übungsbuch Physik für Studierende der Biowissenschaften, Chemie und Medizin, das eine Vielzahl von Übungsserien und Testserien mit ausführlichen Lösungen und Erklärungen enthält. Es hilft Studierenden, sich anhand ausgewählter physikalischer Probleme Schritt für Schritt die Physik und auch die erforderliche Mathematik zu erarbeiten. Beide Bücher eignen sich somit hervorragend als Ergänzung zur Vorlesung sowie für die Klausurvorbereitung.

Refine Search

Showing 17,651 through 17,675 of 24,588 results