Browse Results

Showing 18,526 through 18,550 of 24,634 results

Probability, Statistics, and Data: A Fresh Approach Using R (Chapman & Hall/CRC Texts in Statistical Science)

by Darrin Speegle Bryan Clair

This book is a fresh approach to a calculus based, first course in probability and statistics, using R throughout to give a central role to data and simulation. The book introduces probability with Monte Carlo simulation as an essential tool. Simulation makes challenging probability questions quickly accessible and easily understandable. Mathematical approaches are included, using calculus when appropriate, but are always connected to experimental computations. Using R and simulation gives a nuanced understanding of statistical inference. The impact of departure from assumptions in statistical tests is emphasized, quantified using simulations, and demonstrated with real data. The book compares parametric and non-parametric methods through simulation, allowing for a thorough investigation of testing error and power. The text builds R skills from the outset, allowing modern methods of resampling and cross validation to be introduced along with traditional statistical techniques. Fifty-two data sets are included in the complementary R package fosdata. Most of these data sets are from recently published papers, so that you are working with current, real data, which is often large and messy. Two central chapters use powerful tidyverse tools (dplyr, ggplot2, tidyr, stringr) to wrangle data and produce meaningful visualizations. Preliminary versions of the book have been used for five semesters at Saint Louis University, and the majority of the more than 400 exercises have been classroom tested.

Probability, Statistics, and Decision for Civil Engineers (Dover Books on Engineering)

by Jack R Benjamin C. Allin Cornell

Designed as a primary text for civil engineering courses, as a supplementary text for courses in other areas, or for self-study by practicing engineers, this text covers the development of decision theory and the applications of probability within the field. Extensive use of examples and illustrations helps readers develop an in-depth appreciation for the theory's applications, which include strength of materials, soil mechanics, construction planning, and water-resource design. A focus on fundamentals includes such subjects as Bayesian statistical decision theory, subjective probability, and utility theory. This makes the material accessible to engineers trained in classical statistics and also provides a brief elementary introduction to probability. The coverage also addresses in detail the methods for analyzing engineering economic decisions in the face of uncertainty. An Appendix of tables makes this volume particularly useful as a reference text.

Probability, Statistics and Life Cycle Assessment: Guidance for Dealing with Uncertainty and Sensitivity

by Reinout Heijungs

This textbook discusses the use of uncertainty analysis and sensitivity analysis in environmental life cycle assessment (LCA). This is a topic which has received a lot of attention by journals, including the leading (Springer) International Journal of Life Cycle Assessment. Despite its importance, no coherent textbook exists that summarizes the progress that has been made in the last 20 years. This book attempts to fill that gap. Its audience is practitioners (professional and academic) of LCA, teachers, and Ph.D. students. It gives a very broad overview of the field: probability theory, descriptive statistics, inferential statistics, error analysis, sensitivity analysis, decision theory, etc., all in relation to LCA. Much effort has been taken to give a balanced overview, with a uniform terminology and mathematical notation.

Probability, Statistics, and Stochastic Processes

by Peter Olofsson Mikael Andersson

Praise for the First Edition ". . . an excellent textbook . . . well organized and neatly written. " --Mathematical Reviews ". . . amazingly interesting . . . " --Technometrics Thoroughly updated to showcase the interrelationships between probability, statistics, and stochastic processes, Probability, Statistics, and Stochastic Processes, Second Edition prepares readers to collect, analyze, and characterize data in their chosen fields. Beginning with three chapters that develop probability theory and introduce the axioms of probability, random variables, and joint distributions, the book goes on to present limit theorems and simulation. The authors combine a rigorous, calculus-based development of theory with an intuitive approach that appeals to readers' sense of reason and logic. Including more than 400 examples that help illustrate concepts and theory, the Second Edition features new material on statistical inference and a wealth of newly added topics, including: Consistency of point estimators Large sample theory Bootstrap simulation Multiple hypothesis testing Fisher's exact test and Kolmogorov-Smirnov test Martingales, renewal processes, and Brownian motion One-way analysis of variance and the general linear model Extensively class-tested to ensure an accessible presentation, Probability, Statistics, and Stochastic Processes, Second Edition is an excellent book for courses on probability and statistics at the upper-undergraduate level. The book is also an ideal resource for scientists and engineers in the fields of statistics, mathematics, industrial management, and engineering.

Probability, Statistics, and Stochastic Processes for Engineers and Scientists (Mathematical Engineering, Manufacturing, and Management Sciences)

by Aliakbar Montazer Haghighi Indika Wickramasinghe

Featuring recent advances in the field, this new textbook presents probability and statistics, and their applications in stochastic processes. This book presents key information for understanding the essential aspects of basic probability theory and concepts of reliability as an application. The purpose of this book is to provide an option in this field that combines these areas in one book, balances both theory and practical applications, and also keeps the practitioners in mind. Features Includes numerous examples using current technologies with applications in various fields of study Offers many practical applications of probability in queueing models, all of which are related to the appropriate stochastic processes (continuous time such as waiting time, and fuzzy and discrete time like the classic Gambler’s Ruin Problem) Presents different current topics like probability distributions used in real-world applications of statistics such as climate control and pollution Different types of computer software such as MATLAB®, Minitab, MS Excel, and R as options for illustration, programing and calculation purposes and data analysis Covers reliability and its application in network queues

Probability Theory

by Alexandr A. Borovkov

Probability theory is an actively developing branch of mathematics. It has applications in many areas of science and technology and forms the basis of mathematical statistics. This self-contained, comprehensive book tackles the principal problems and advanced questions of probability theory and random processes in 22 chapters, presented in a logical order but also suitable for dipping into. They include both classical and more recent results, such as large deviations theory, factorization identities, information theory, stochastic recursive sequences. The book is further distinguished by the inclusion of clear and illustrative proofs of the fundamental results that comprise many methodological improvements aimed at simplifying the arguments and making them more transparent. The importance of the Russian school in the development of probability theory has long been recognized. This book is the translation of the fifth edition of the highly successful and esteemed Russian textbook. This edition includes a number of new sections, such as a new chapter on large deviation theory for random walks, which are of both theoretical and applied interest. The frequent references to Russian literature throughout this work lend a fresh dimension and makes it an invaluable source of reference for Western researchers and advanced students in probability related subjects. Probability Theory will be of interest to both advanced undergraduate and graduate students studying probability theory and its applications. It can serve as a basis for several one-semester courses on probability theory and random processes as well as self-study. About the Author Professor Alexandr Borovkov lives and works in the Novosibirsk Academy Town in Russia and is affiliated with both the Sobolev Institute of Mathematics of the Russian Academy of Sciences and the Novosibirsk State University. He is one of the most prominent Russian specialists in probability theory and mathematical statistics. Alexandr Borovkov authored and co-authored more than 200 research papers and ten research monographs and advanced level university textbooks. His contributions to mathematics and its applications are widely recognized, which included election to the Russian Academy of Sciences and several prestigious awards for his research and textbooks.

Probability Theory: An Introduction Using R

by Shailaja R. Deshmukh Akanksha S. Kashikar

This book introduces Probability Theory with R software and explains abstract concepts in a simple and easy-to-understand way by combining theory and computation. It discusses conceptual and computational examples in detail, to provide a thorough understanding of basic techniques and develop an enjoyable read for students seeking suitable material for self-study. It illustrates fundamental concepts including fields, sigma-fields, random variables and their expectations, various modes of convergence of a sequence of random variables, laws of large numbers and the central limit theorem. Computational exercises based on R software are included in each Chapter Includes a brief introduction to the basic functions of R software for beginners in R and serves as a ready reference Includes Numerical computations, simulation studies, and visualizations using R software as easy tools to explain abstract concepts Provides multiple-choice questions for practice Incorporates self-explanatory R codes in every chapter This textbook is for advanced students, professionals, and academic researchers of Statistics, Biostatistics, Economics and Mathematics.

Probability Theory: A Comprehensive Course

by Achim Klenke

This second edition of the popular textbook contains a comprehensive course in modern probability theory. Overall, probabilistic concepts play an increasingly important role in mathematics, physics, biology, financial engineering and computer science. They help us in understanding magnetism, amorphous media, genetic diversity and the perils of random developments at financial markets, and they guide us in constructing more efficient algorithms. To address these concepts, the title covers a wide variety of topics, many of which are not usually found in introductory textbooks, such as: * limit theorems for sums of random variables * martingales * percolation * Markov chains and electrical networks * construction of stochastic processes * Poisson point process and infinite divisibility * large deviation principles and statistical physics * Brownian motion * stochastic integral and stochastic differential equations. The theory is developed rigorously and in a self-contained way, with the chapters on measure theory interlaced with the probabilistic chapters in order to display the power of the abstract concepts in probability theory. This second edition has been carefully extended and includes many new features. It contains updated figures (over 50), computer simulations and some difficult proofs have been made more accessible. A wealth of examples and more than 270 exercises as well as biographic details of key mathematicians support and enliven the presentation. It will be of use to students and researchers in mathematics and statistics in physics, computer science, economics and biology.

Probability Theory: A Comprehensive Course (Universitext)

by Achim Klenke

This popular textbook, now in a revised and expanded third edition, presents a comprehensive course in modern probability theory.Probability plays an increasingly important role not only in mathematics, but also in physics, biology, finance and computer science, helping to understand phenomena such as magnetism, genetic diversity and market volatility, and also to construct efficient algorithms. Starting with the very basics, this textbook covers a wide variety of topics in probability, including many not usually found in introductory books, such as: limit theorems for sums of random variables martingales percolation Markov chains and electrical networks construction of stochastic processes Poisson point process and infinite divisibility large deviation principles and statistical physics Brownian motion stochastic integrals and stochastic differential equations. The presentation is self-contained and mathematically rigorous, with the material on probability theory interspersed with chapters on measure theory to better illustrate the power of abstract concepts.This third edition has been carefully extended and includes new features, such as concise summaries at the end of each section and additional questions to encourage self-reflection, as well as updates to the figures and computer simulations. With a wealth of examples and more than 290 exercises, as well as biographical details of key mathematicians, it will be of use to students and researchers in mathematics, statistics, physics, computer science, economics and biology.

Probability Theory: A Concise Course

by Y. A. Rozanov

This book, a concise introduction to modern probability theory and certain of its ramifications, deals with a subject indispensable to natural scientists and mathematicians alike. Here the readers, with some knowledge of mathematics, will find an excellent treatment of the elements of probability together with numerous applications. Professor Y. A. Rozanov, an internationally known mathematician whose work in probability theory and stochastic processes has received wide acclaim, combines succinctness of style with a judicious selection of topics. His book is highly readable, fast-moving, and self-contained.The author begins with basic concepts and moves on to combination of events, dependent events and random variables. He then covers Bernoulli trials and the De Moivre-Laplace theorem, which involve three important probability distributions (binomial, Poisson, and normal or Gaussian). The last three chapters are devoted to limit theorems, a detailed treatment of Markov chains, continuous Markov processes. Also included are appendixes on information theory, game theory, branching processes, and problems of optimal control. Each of the eight chapters and four appendixes has been equipped with numerous relevant problems (150 of them), many with hints and answers. This volume is another in the popular series of fine translations from the Russian by Richard A. Silverman. Dr. Silverman, a former member of the Courant Institute of Mathematical Sciences of New York University and the Lincoln Laboratory of the Massachusetts Institute of Technology, is himself the author of numerous papers on applied probability theory. He has heavily revised the English edition and added new material. The clear exposition, the ample illustrations and problems, the cross-references, index, and bibliography make this book useful for self-study or the classroom.

Probability Theory and Statistical Inference: Empirical Modeling with Observational Data

by Aris Spanos

Doubt over the trustworthiness of published empirical results is not unwarranted and is often a result of statistical mis-specification: invalid probabilistic assumptions imposed on data. Now in its second edition, this bestselling textbook offers a comprehensive course in empirical research methods, teaching the probabilistic and statistical foundations that enable the specification and validation of statistical models, providing the basis for an informed implementation of statistical procedure to secure the trustworthiness of evidence. Each chapter has been thoroughly updated, accounting for developments in the field and the author's own research. The comprehensive scope of the textbook has been expanded by the addition of a new chapter on the Linear Regression and related statistical models. This new edition is now more accessible to students of disciplines beyond economics and includes more pedagogical features, with an increased number of examples as well as review questions and exercises at the end of each chapter.

Probability Theory the Logic of Science

by E. T. Jaynes

The standard rules of probability can be interpreted as uniquely valid principles in logic. In this book, E. T. Jaynes dispels the imaginary distinction between 'probability theory' and 'statistical inference', leaving a logical unity and simplicity, which provides greater technical power and flexibility in applications. This book goes beyond the conventional mathematics of probability theory, viewing the subject in a wider context. New results are discussed, along with applications of probability theory to a wide variety of problems in physics, mathematics, economics, chemistry and biology. It contains many exercises and problems, and is suitable for use as a textbook on graduate level courses involving data analysis. The material is aimed at readers who are already familiar with applied mathematics at an advanced undergraduate level or higher. The book will be of interest to scientists working in any area where inference from incomplete information is necessary.

Probability With a View Towards Statistics, Volume I (Chapman And Hall/crc Probability Ser.)

by J. Hoffman-Jorgensen

Volume I of this two-volume text and reference work begins by providing a foundation in measure and integration theory. It then offers a systematic introduction to probability theory, and in particular, those parts that are used in statistics. This volume discusses the law of large numbers for independent and non-independent random variables, transforms, special distributions, convergence in law, the central limit theorem for normal and infinitely divisible laws, conditional expectations and martingales. Unusual topics include the uniqueness and convergence theorem for general transforms with characteristic functions, Laplace transforms, moment transforms and generating functions as special examples. The text contains substantive applications, e.g., epidemic models, the ballot problem, stock market models and water reservoir models, and discussion of the historical background. The exercise sets contain a variety of problems ranging from simple exercises to extensions of the theory.

Probability With a View Towards Statistics, Volume II

by J. Hoffman-Jorgensen

Volume II of this two-volume text and reference work concentrates on the applications of probability theory to statistics, e.g., the art of calculating densities of complicated transformations of random vectors, exponential models, consistency of maximum estimators, and asymptotic normality of maximum estimators. It also discusses topics of a pure probabilistic nature, such as stochastic processes, regular conditional probabilities, strong Markov chains, random walks, and optimal stopping strategies in random games. Unusual topics include the transformation theory of densities using Hausdorff measures, the consistency theory using the upper definition function, and the asymptotic normality of maximum estimators using twice stochastic differentiability. With an emphasis on applications to statistics, this is a continuation of the first volume, though it may be used independently of that book. Assuming a knowledge of linear algebra and analysis, as well as a course in modern probability, Volume II looks at statistics from a probabilistic point of view, touching only slightly on the practical computation aspects.

Probability with Applications in Engineering, Science, and Technology

by Matthew A. Carlton Jay L. Devore

This book provides a contemporary and lively postcalculus introduction to the subject of probability. The exposition reflects a desirable balance between fundamental theory and many applications involving a broad range of real problem scenarios. It is intended to appeal to a wide audience, including mathematics and statistics majors, prospective engineers and scientists, and those business and social science majors interested in the quantitative aspects of their disciplines. A one-term course would cover material in the core chapters (1-4), hopefully supplemented by selections from one or more of the remaining chapters on statistical inference (Ch. 5), Markov chains (Ch. 6), stochastic processes (Ch. 7), and signal processing (Ch. 8). The last chapter is specifically designed for electrical and computer engineers, making the book suitable for a one-term class on random signals and noise. Alternatively, there is certainly enough material for those lucky enough to be teaching or taking a year-long course. Most of the core will be accessible to those who have taken a year of univariate differential and integral calculus; matrix algebra, multivariate calculus, and engineering mathematics are needed for the later, more advanced chapters. One unique feature of this book is the inclusion of sections that illustrate the importance of software for carrying out simulations when answers to questions cannot be obtained analytically; R and Matlab code are provided so that students can create their own simulations. Another feature that sets this book apart is the Introduction, which addresses the question "Why study probability?" by surveying selected examples from recent journal articles and discussing some classic problems whose solutions run counter to intuition. The book contains about 1100 exercises, ranging from straightforward to reasonably challenging; roughly 700 of these appear in the first four chapters. The book's preface provides more information about our purpose, content, mathematical level, and suggestions for what can be covered in courses of varying duration.

Probability with Applications in Engineering, Science, and Technology

by Matthew A. Carlton Jay L. Devore

This book provides a contemporary and lively postcalculus introduction to the subject of probability. The exposition reflects a desirable balance between fundamental theory and many applications involving a broad range of real problem scenarios. It is intended to appeal to a wide audience, including mathematics and statistics majors, prospective engineers and scientists, and those business and social science majors interested in the quantitative aspects of their disciplines. A one-term course would cover material in the core chapters (1-4), hopefully supplemented by selections from one or more of the remaining chapters on statistical inference (Ch. 5), Markov chains (Ch. 6), stochastic processes (Ch. 7), and signal processing (Ch. 8). The last chapter is specifically designed for electrical and computer engineers, making the book suitable for a one-term class on random signals and noise. Alternatively, there is certainly enough material for those lucky enough to be teaching or taking a year-long course. Most of the core will be accessible to those who have taken a year of univariate differential and integral calculus; matrix algebra, multivariate calculus, and engineering mathematics are needed for the later, more advanced chapters. One unique feature of this book is the inclusion of sections that illustrate the importance of software for carrying out simulations when answers to questions cannot be obtained analytically; R and Matlab code are provided so that students can create their own simulations. Another feature that sets this book apart is the Introduction, which addresses the question "Why study probability?" by surveying selected examples from recent journal articles and discussing some classic problems whose solutions run counter to intuition. The book contains about 1100 exercises, ranging from straightforward to reasonably challenging; roughly 700 of these appear in the first four chapters. The book's preface provides more information about our purpose, content, mathematical level, and suggestions for what can be covered in courses of varying duration.

Probability with Martingales

by David Williams

This is a masterly introduction to the modern and rigorous theory of probability. The author adopts the martingale theory as his main theme and moves at a lively pace through the subject's rigorous foundations. Measure theory is introduced and then immediately exploited by being applied to real probability theory. Classical results, such as Kolmogorov's Strong Law of Large Numbers and Three-Series Theorem are proved by martingale techniques. A proof of the Central Limit Theorem is also given. The author's style is entertaining and inimitable with pedagogy to the fore. Exercises play a vital role; there is a full quota of interesting and challenging problems, some with hints.

Probability with R: An Introduction with Computer Science Applications

by Jane M. Horgan

Provides a comprehensive introduction to probability with an emphasis on computing-related applications This self-contained new and extended edition outlines a first course in probability applied to computer-related disciplines. As in the first edition, experimentation and simulation are favoured over mathematical proofs. The freely down-loadable statistical programming language R is used throughout the text, not only as a tool for calculation and data analysis, but also to illustrate concepts of probability and to simulate distributions. The examples in Probability with R: An Introduction with Computer Science Applications, Second Edition cover a wide range of computer science applications, including: testing program performance; measuring response time and CPU time; estimating the reliability of components and systems; evaluating algorithms and queuing systems. Chapters cover: The R language; summarizing statistical data; graphical displays; the fundamentals of probability; reliability; discrete and continuous distributions; and more. This second edition includes: improved R code throughout the text, as well as new procedures, packages and interfaces; updated and additional examples, exercises and projects covering recent developments of computing; an introduction to bivariate discrete distributions together with the R functions used to handle large matrices of conditional probabilities, which are often needed in machine translation; an introduction to linear regression with particular emphasis on its application to machine learning using testing and training data; a new section on spam filtering using Bayes theorem to develop the filters; an extended range of Poisson applications such as network failures, website hits, virus attacks and accessing the cloud; use of new allocation functions in R to deal with hash table collision, server overload and the general allocation problem. The book is supplemented with a Wiley Book Companion Site featuring data and solutions to exercises within the book. Primarily addressed to students of computer science and related areas, Probability with R: An Introduction with Computer Science Applications, Second Edition is also an excellent text for students of engineering and the general sciences. Computing professionals who need to understand the relevance of probability in their areas of practice will find it useful.

Probability with Statistical Applications

by Rinaldo B. Schinazi

This second edition textbook offers a practical introduction to probability for undergraduates at all levels with different backgrounds and views towards applications. Calculus is a prerequisite for understanding the basic concepts, however the book is written with a sensitivity to students' common difficulties with calculus that does not obscure the thorough treatment of the probability content. The first six chapters of this text neatly and concisely cover the material traditionally required by most undergraduate programs for a first course in probability. The comprehensive text includes a multitude of new examples and exercises, and careful revisions throughout. Particular attention is given to the expansion of the last three chapters of the book with the addition of one entirely new chapter (9) on 'Finding and Comparing Estimators.' The classroom-tested material presented in this second edition forms the basis for a second course introducing mathematical statistics.

Probability without Equations: Concepts for Clinicians

by Bart K. Holland

An award-winning teacher gives a non-technical explanation of the probability and statistics needed by physicians to interpret laboratory results.Although few physicians, nurses, dentists, and other health professionals perform laboratory tests themselves, they all need to be able to interpret the results as well as understand findings reported in the medical literature. A general understanding of probability and statistics is essential for those needing to make daily decisions about the significance of research data, drug interaction precautions, or a patient's positive laboratory test for a rare disease.Written with these needs in mind, Probability without Equations offers a thorough explanation of the subject without overwhelming the reader with equations and footnotes. Award-winning teacher Bart Holland presents a nontechnical treatment of intuitive concepts and presents numerous examples from medical research and practice. In plain language, this book explains the topics that clinicians need to understand:• Analysis of variance• "P-values" and the "t-test"• Hazard models• Regression and correlations• Alpha and beta errors"The Nobel prize-winning physicist Ernest Rutherford was fond of saying that if you need statistics to analyze the results of an experiment, you don't have a very good experiment. In a way he was right. However, a recurrent problem in medicine is that in a certain sense you commonly don't have a good experiment—but not because medical research scientists are generally incompetent! The nature of the data they work with is simply not as predictable as the data in some other fields, so the predictive nature of findings in medical science is generally rather imperfect."—from the introduction

Probably Not: Future Prediction Using Probability and Statistical Inference

by Lawrence N. Dworsky

A revised edition that explores random numbers, probability, and statistical inference at an introductory mathematical level Written in an engaging and entertaining manner, the revised and updated second edition of Probably Not continues to offer an informative guide to probability and prediction. The expanded second edition contains problem and solution sets. In addition, the book’s illustrative examples reveal how we are living in a statistical world, what we can expect, what we really know based upon the information at hand and explains when we only think we know something. The author introduces the principles of probability and explains probability distribution functions. The book covers combined and conditional probabilities and contains a new section on Bayes Theorem and Bayesian Statistics, which features some simple examples including the Presecutor’s Paradox, and Bayesian vs. Frequentist thinking about statistics. New to this edition is a chapter on Benford’s Law that explores measuring the compliance and financial fraud detection using Benford’s Law. This book: Contains relevant mathematics and examples that demonstrate how to use the concepts presented Features a new chapter on Benford’s Law that explains why we find Benford’s law upheld in so many, but not all, natural situations Presents updated Life insurance tables Contains updates on the Gantt Chart example that further develops the discussion of random events Offers a companion site featuring solutions to the problem sets within the book Written for mathematics and statistics students and professionals, the updated edition of Probably Not: Future Prediction Using Probability and Statistical Inference, Second Edition combines the mathematics of probability with real-world examples. LAWRENCE N. DWORSKY, PhD, is a retired Vice President of the Technical Staff and Director of Motorola’s Components Research Laboratory in Schaumburg, Illinois, USA. He is the author of Introduction to Numerical Electrostatics Using MATLAB from Wiley.

Probably Overthinking It: How to Use Data to Answer Questions, Avoid Statistical Traps, and Make Better Decisions

by Allen B. Downey

An essential guide to the ways data can improve decision making. Statistics are everywhere: in news reports, at the doctor’s office, and in every sort of forecast, from the stock market to the weather. Blogger, teacher, and computer scientist Allen B. Downey knows well that people have an innate ability both to understand statistics and to be fooled by them. As he makes clear in this accessible introduction to statistical thinking, the stakes are big. Simple misunderstandings have led to incorrect medical prognoses, underestimated the likelihood of large earthquakes, hindered social justice efforts, and resulted in dubious policy decisions. There are right and wrong ways to look at numbers, and Downey will help you see which are which. Probably Overthinking It uses real data to delve into real examples with real consequences, drawing on cases from health campaigns, political movements, chess rankings, and more. He lays out common pitfalls—like the base rate fallacy, length-biased sampling, and Simpson’s paradox—and shines a light on what we learn when we interpret data correctly, and what goes wrong when we don’t. Using data visualizations instead of equations, he builds understanding from the basics to help you recognize errors, whether in your own thinking or in media reports. Even if you have never studied statistics—or if you have and forgot everything you learned—this book will offer new insight into the methods and measurements that help us understand the world.

Probably Overthinking It: How to Use Data to Answer Questions, Avoid Statistical Traps, and Make Better Decisions

by Allen B. Downey

An essential guide to the ways data can improve decision making. Statistics are everywhere: in news reports, at the doctor’s office, and in every sort of forecast, from the stock market to the weather. Blogger, teacher, and computer scientist Allen B. Downey knows well that people have an innate ability both to understand statistics and to be fooled by them. As he makes clear in this accessible introduction to statistical thinking, the stakes are big. Simple misunderstandings have led to incorrect medical prognoses, underestimated the likelihood of large earthquakes, hindered social justice efforts, and resulted in dubious policy decisions. There are right and wrong ways to look at numbers, and Downey will help you see which are which. Probably Overthinking It uses real data to delve into real examples with real consequences, drawing on cases from health campaigns, political movements, chess rankings, and more. He lays out common pitfalls—like the base rate fallacy, length-biased sampling, and Simpson’s paradox—and shines a light on what we learn when we interpret data correctly, and what goes wrong when we don’t. Using data visualizations instead of equations, he builds understanding from the basics to help you recognize errors, whether in your own thinking or in media reports. Even if you have never studied statistics—or if you have and forgot everything you learned—this book will offer new insight into the methods and measurements that help us understand the world.

Probably the Best Book on Statistics Ever Written: How to Beat the Odds and Make Better Decisions

by Haim Shapira

Taking an amusing and digestible look at the usually dry world of probability and statistics, this is the ultimate guide to how you can incorporate them into everyday life, from one of the world's most sought-after experts in game theory. This is the only book you need to become a statistics whizz! Numbers are everywhere – food packaging, weather forecasts, social media, adverts, and more. You can&’t escape them. But you can learn to understand them – and avoid being fooled! This book breaks down the key fundamentals in statistics in a fun and accessible way so that you can understand the numbers that occupy your life. • Make sense of sports stats – discover who is the greatest scorer of all time • Learn to interpret scientific studies and how they&’re reported in the media so you&’re never misled again • Discover tips and tricks to make you a more successful gambler • Explore what role stats has to play in flat-earth conspiracy arguments • Read about misunderstood probabilities in the Sally Clarke and OJ Simpson trials With easy-to-follow explanations, tables, graphs, and real-life examples, this book helps you evaluate your options, calculate your chances of success, and make better decisions.

Probing the Early Universe with the CMB Scalar, Vector and Tensor Bispectrum

by Maresuke Shiraishi

The non-Gaussianity in the primordial density fluctuations is a key feature to clarify the early Universe and it has been probed with the Cosmic Microwave Background (CMB) bispectrum. In recent years, we have treated the novel-type CMB bispectra, which originate from the vector- and tensor-mode perturbations and include the violation of the rotational or parity invariance. On the basis of our current works, this thesis provides the general formalism for the CMB bispectrum sourced by the non-Gaussianity in the scalar, vector and tensor-mode perturbations. Applying this formalism, we calculate the CMB bispectra from the two scalars and a graviton correlation and primordial magnetic fields, and then outline new constraints on these magnitudes. Furthermore, this formalism can be easily extended to the cases where the rotational or parity invariance is broken. We also compute the CMB bispectra from the scalar-mode non-Gaussianities with a preferred direction and the tensor-mode non-Gaussianities induced by the parity-violating Weyl cubic terms. Here, we show that these bispectra include unique signals, which any symmetry-invariant models can never produce.

Refine Search

Showing 18,526 through 18,550 of 24,634 results