Browse Results

Showing 18,676 through 18,700 of 27,772 results

Nonlinear Interval Optimization for Uncertain Problems (Springer Tracts in Mechanical Engineering)

by Chao Jiang Xu Han Huichao Xie

This book systematically discusses nonlinear interval optimization design theory and methods. Firstly, adopting a mathematical programming theory perspective, it develops an innovative mathematical transformation model to deal with general nonlinear interval uncertain optimization problems, which is able to equivalently convert complex interval uncertain optimization problems to simple deterministic optimization problems. This model is then used as the basis for various interval uncertain optimization algorithms for engineering applications, which address the low efficiency caused by double-layer nested optimization. Further, the book extends the nonlinear interval optimization theory to design problems associated with multiple optimization objectives, multiple disciplines, and parameter dependence, and establishes the corresponding interval optimization models and solution algorithms. Lastly, it uses the proposed interval uncertain optimization models and methods to deal with practical problems in mechanical engineering and related fields, demonstrating the effectiveness of the models and methods.

Nonlinear Investing: A Quantamental Approach

by Lingjie Ma

This book focuses on nonlinear investing with a quantamental approach. Pricing relationships in financial markets are often nonlinear, which raises serious questions for portfolio management: How can we characterize nonlinear patterns in asset pricing? Why do such nonlinear patterns occur and in what contexts? How can we know whether such relationships will persist in the future? And how much is the value added by a nonlinear over a linear model? These questions cannot be answered by piecing together fundamental prospects based on personal experience and preference, which can be biased, or by torturing the data to make it confess whatever we want (particularly big data, which allows more freedom for data mining). Rather, nonlinear investing should rely on both fundamental insights and quantitative analysis: the former ensures that similar nonlinear patterns will occur in the future and the latter validates the nonlinear pattern with historical data. In this way, quant marries fundamental: a quantamental approach! The book provides a systematic guide to conducting nonlinear investing through quantamental analysis. The author demonstrates how nonlinear investment strategies, achieving both depth and breadth, add significant value to portfolio performance for different asset classes. The primary audience for this book is senior professional investors and quant/fundamental investment shops who look for new ideas to enhance their existing products or develop new products. The book will also be helpful to finance faculty and graduate students who are interested in frontier industry practices.

Nonlinear Least Squares for Inverse Problems

by Guy Chavent

This book provides an introduction into the least squares resolution of nonlinear inverse problems. The first goal is to develop a geometrical theory to analyze nonlinear least square (NLS) problems with respect to their quadratic wellposedness, i.e. both wellposedness and optimizability. Using the results, the applicability of various regularization techniques can be checked. The second objective of the book is to present frequent practical issues when solving NLS problems. Application oriented readers will find a detailed analysis of problems on the reduction to finite dimensions, the algebraic determination of derivatives (sensitivity functions versus adjoint method), the determination of the number of retrievable parameters, the choice of parametrization (multiscale, adaptive) and the optimization step, and the general organization of the inversion code. Special attention is paid to parasitic local minima, which can stop the optimizer far from the global minimum: multiscale parametrization is shown to be an efficient remedy in many cases, and a new condition is given to check both wellposedness and the absence of parasitic local minima. For readers that are interested in projection on non-convex sets, Part II of this book presents the geometric theory of quasi-convex and strictly quasi-convex (s.q.c.) sets. S.q.c. sets can be recognized by their finite curvature and limited deflection and possess a neighborhood where the projection is well-behaved. Throughout the book, each chapter starts with an overview of the presented concepts and results.

Nonlinear Lp-Norm Estimation (Statistics: A Series Of Textbooks And Monographs #100)

by Rene Gonin

Complete with valuable FORTRAN programs that help solve nondifferentiable nonlinear LtandLo.-norm estimation problems, this important reference/text extensively delineates ahistory of Lp-norm estimation. It examines the nonlinear Lp-norm estimation problem that isa viable alternative to least squares estimation problems where the underlying errordistribution is nonnormal, i.e., non-Gaussian.Nonlinear LrNorm Estimation addresses both computational and statistical aspects ofLp-norm estimation problems to bridge the gap between these two fields . . . contains 70useful illustrations ... discusses linear Lp-norm as well as nonlinear Lt, Lo., and Lp-normestimation problems . . . provides all appropriate computational algorithms and FORTRANlistings for nonlinear Lt- and Lo.-norm estimation problems . . . guides readers with clear endof-chapter notes on related topics and outstanding research publications . . . contains numericalexamples plus several practical problems .. . and shows how the data can prescribe variousapplications of Lp-norm alternatives.Nonlinear Lp-Norm Estimation is an indispensable reference for statisticians,operations researchers, numerical analysts, applied mathematicians, biometricians, andcomputer scientists, as well as a text for graduate students in statistics or computer science.

Nonlinear Maps and their Applications

by Clara Grácio Daniele Fournier-Prunaret Tetsushi Ueta Yoshifumi Nishio

In the field of Dynamical Systems, nonlinear iterative processes play an important role. Nonlinear mappings can be found as immediate models for many systems from different scientific areas, such as engineering, economics, biology, or can also be obtained via numerical methods permitting to solve non-linear differential equations. In both cases, the understanding of specific dynamical behaviors and phenomena is of the greatest interest for scientists. This volume contains papers that were presented at the International Workshop on Nonlinear Maps and their Applications (NOMA 2011) held in Évora, Portugal, on September 15-16, 2011. This kind of collaborative effort is of paramount importance in promoting communication among the various groups that work in dynamical systems and networks in their research theoretical studies as well as for applications. This volume is suitable for graduate students as well as researchers in the field.

Nonlinear Maps and their Applications

by Ricardo López-Ruiz Yoshifumi Nishio Danièle Fournier-Prunaret Clara Grácio

In the field of Dynamical Systems, nonlinear iterative processes play an important role. Nonlinear mappings can be found as immediate models for many systems from different scientific areas, such as engineering, economics, biology, or can also be obtained via numerical methods permitting to solve non-linear differential equations. In both cases, the understanding of specific dynamical behaviors and phenomena is of the greatest interest for scientists. This volume contains papers that were presented at the International Workshop on Nonlinear Maps and their Applications (NOMA 2013) held in Zaragoza, Spain, on September 3-4, 2013. This kind of collaborative effort is of paramount importance in promoting communication among the various groups that work in dynamical systems and networks in their research theoretical studies as well as for applications. This volume is suitable for graduate students as well as researchers in the field.

Nonlinear Mathematical Physics and Natural Hazards

by Boyka Aneva Mihaela Kouteva-Guentcheva

This book is devoted to current advances in the field of nonlinear mathematical physics and modeling of critical phenomena that can lead to catastrophic events. Pursuing a multidisciplinary approach, it gathers the work of scientists who are developing mathematical and computational methods for the study and analysis of nonlinear phenomena and who are working actively to apply these tools and create conditions to mitigate and reduce the negative consequences of natural and socio-economic disaster risk. This book summarizes the contributions of the International School and Workshop on Nonlinear Mathematical Physics and Natural Hazards, organized within the framework of the South East Europe Network in Mathematical and Theoretical Physics (SEENET MTP) and supported by UNESCO. It was held at the Bulgarian Academy of Sciences from November 28 to December 2, 2013. The contributions are divided into two major parts in keeping with the scientific program of the meeting. Among the topics covered in Part I (Nonlinear Mathematical Physics towards Critical Phenomena) are predictions and correlations in self organized criticality, space-time structure of extreme current and activity events in exclusion processes, quantum spin chains and integrability of many-body systems, applications of discriminantly separable polynomials, MKdV-type equations, and chaotic behavior in Yang-Mills theories. Part II (Seismic Hazard and Risk) is devoted to probabilistic seismic hazard assessment, seismic risk mapping, seismic monitoring, networking and data processing in Europe, mainly in South-East Europe. The book aims to promote collaboration at the regional and European level to better understand and model phenomena that can cause natural and socio-economic disasters, and to contribute to the joint efforts to mitigate the negative consequence of natural disasters. This collection of papers reflects contemporary efforts on capacity building through developing skills, exchanging knowledge and practicing mathematical methods for modeling nonlinear phenomena, disaster risk preparedness and natural hazards mitigation. The target audience includes students and researchers in mathematical and theoretical physics, earth physics, applied physics, geophysics, seismology and earthquake danger and risk mitigation.

Nonlinear Mode Decomposition

by Dmytro Iatsenko

This work introduces a new method for analysing measured signals: nonlinear mode decomposition, or NMD. It justifies NMD mathematically, demonstrates it in several applications and explains in detail how to use it in practice. Scientists often need to be able to analyse time series data that include a complex combination of oscillatory modes of differing origin, usually contaminated by random fluctuations or noise. Furthermore, the basic oscillation frequencies of the modes may vary in time; for example, human blood flow manifests at least six characteristic frequencies, all of which wander in time. NMD allows us to separate these components from each other and from the noise, with immediate potential applications in diagnosis and prognosis. Mat Lab codes for rapid implementation are available from the author. NMD will most likely come to be used in a broad range of applications.

Nonlinear Modeling of Solar Radiation and Wind Speed Time Series

by Luigi Fortuna Giuseppe Nunnari Silvia Nunnari

This brief is a clear, concise description of the main techniques of time series analysis --stationary, autocorrelation, mutual information, fractal and multifractal analysis, chaos analysis, etc. -- as they are applied to the influence of wind speed and solar radiation on the production of electrical energy from these renewable sources. The problem of implementing prediction models is addressed by using the embedding-phase-space approach: a powerful technique for the modeling of complex systems. Readers are also guided in applying the main machine learning techniques for classification of the patterns hidden in their time series and so will be able to perform statistical analyses that are not possible by using conventional techniques. The conceptual exposition avoids unnecessary mathematical details and focuses on concrete examples in order to ensure a better understanding of the proposed techniques. Results are well-illustrated by figures and tables.

Nonlinear Models for Repeated Measurement Data (Chapman And Hall/crc Monographs On Statistics And Applied Probability Ser. #62)

by Marie Davidian

Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.

Nonlinear, Nonlocal and Fractional Turbulence: Alternative Recipes for the Modeling of Turbulence

by Kolumban Hutter Peter William Egolf

Experts of fluid dynamics agree that turbulence is nonlinear and nonlocal. Because of a direct correspondence, nonlocality also implies fractionality. Fractional dynamics is the physics related to fractal (geometrical) systems and is described by fractional calculus. Up-to-present, numerous criticisms of linear and local theories of turbulence have been published. Nonlinearity has established itself quite well, but so far only a very small number of general nonlocal concepts and no concrete nonlocal turbulent flow solutions were available. This book presents the first analytical and numerical solutions of elementary turbulent flow problems, mainly based on a nonlocal closure. Considerations involve anomalous diffusion (Lévy flights), fractal geometry (fractal-β, bi-fractal and multi-fractal model) and fractional dynamics. Examples include a new ‘law of the wall’ and a generalization of Kraichnan’s energy-enstrophy spectrum that is in harmony with non-extensive and non-equilibrium thermodynamics (Tsallis thermodynamics) and experiments. Furthermore, the presented theories of turbulence reveal critical and cooperative phenomena in analogy with phase transitions in other physical systems, e.g., binary fluids, para-ferromagnetic materials, etc.; the two phases of turbulence identifying the laminar streaks and coherent vorticity-rich structures. This book is intended, apart from fluids specialists, for researchers in physics, as well as applied and numerical mathematics, who would like to acquire knowledge about alternative approaches involved in the analytical and numerical treatment of turbulence.

Nonlinear Optical and Atomic Systems

by Christophe Besse Jean-Claude Garreau

Focusing on the interface between mathematics and physics, this book offers an introduction to the physics, the mathematics, and the numerical simulation of nonlinear systems in optics and atomic physics. The text covers a wide spectrum of current research on the subject, which is an extremely active field in physics and mathematical physics, with a very broad range of implications, both for fundamental science and technological applications: light propagation in microstructured optical fibers, Bose-Einstein condensates, disordered systems, and the newly emerging field of nonlinear quantum mechanics. Accessible to PhD students, this book will also be of interest to post-doctoral researchers and seasoned academics.

Nonlinear Optimal Control Theory (Chapman & Hall/CRC Applied Mathematics & Nonlinear Science)

by Leonard David Berkovitz Negash G. Medhin

Nonlinear Optimal Control Theory presents a deep, wide-ranging introduction to the mathematical theory of the optimal control of processes governed by ordinary differential equations and certain types of differential equations with memory. Many examples illustrate the mathematical issues that need to be addressed when using optimal control techniqu

Nonlinear Optimization: Methods and Applications (International Series in Operations Research & Management Science #282)

by H. A. Eiselt Carl-Louis Sandblom

This book provides a comprehensive introduction to nonlinear programming, featuring a broad range of applications and solution methods in the field of continuous optimization. It begins with a summary of classical results on unconstrained optimization, followed by a wealth of applications from a diverse mix of fields, e.g. location analysis, traffic planning, and water quality management, to name but a few. In turn, the book presents a formal description of optimality conditions, followed by an in-depth discussion of the main solution techniques. Each method is formally described, and then fully solved using a numerical example.

Nonlinear Optimization: Models and Applications (Textbooks in Mathematics)

by William P. Fox

Optimization is the act of obtaining the "best" result under given circumstances. In design, construction, and maintenance of any engineering system, engineers must make technological and managerial decisions to minimize either the effort or cost required or to maximize benefits. There is no single method available for solving all optimization problems efficiently. Several optimization methods have been developed for different types of problems. The optimum-seeking methods are mathematical programming techniques (specifically, nonlinear programming techniques). Nonlinear Optimization: Models and Applications presents the concepts in several ways to foster understanding. Geometric interpretation: is used to re-enforce the concepts and to foster understanding of the mathematical procedures. The student sees that many problems can be analyzed, and approximate solutions found before analytical solutions techniques are applied. Numerical approximations: early on, the student is exposed to numerical techniques. These numerical procedures are algorithmic and iterative. Worksheets are provided in Excel, MATLAB®, and Maple™ to facilitate the procedure. Algorithms: all algorithms are provided with a step-by-step format. Examples follow the summary to illustrate its use and application. Nonlinear Optimization: Models and Applications: Emphasizes process and interpretation throughout Presents a general classification of optimization problems Addresses situations that lead to models illustrating many types of optimization problems Emphasizes model formulations Addresses a special class of problems that can be solved using only elementary calculus Emphasizes model solution and model sensitivity analysis About the author: William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. He received his Ph.D. at Clemson University and has taught at the United States Military Academy and at Francis Marion University where he was the chair of mathematics. He has written many publications including over 20 books, and over 150 journal articles. Currently, he is an adjunct professor in the Department of Mathematics at the College of William and Mary. He is the emeritus director of both the High School Mathematical Contest in Modeling and the Mathematical Contest in Modeling.

Nonlinear Optimization (Springer Undergraduate Texts in Mathematics and Technology)

by Miguel A. Goberna Marco A. López Francisco J. Aragón Margarita M.L. Rodríguez

This textbook on nonlinear optimization focuses on model building, real world problems, and applications of optimization models to natural and social sciences. Organized into two parts, this book may be used as a primary text for courses on convex optimization and non-convex optimization. Definitions, proofs, and numerical methods are well illustrated and all chapters contain compelling exercises. The exercises emphasize fundamental theoretical results on optimality and duality theorems, numerical methods with or without constraints, and derivative-free optimization. Selected solutions are given. Applications to theoretical results and numerical methods are highlighted to help students comprehend methods and techniques.

Nonlinear Optimization

by Andrzej Ruszczynski

Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern topics such as optimality conditions and numerical methods for problems involving nondifferentiable functions, semidefinite programming, metric regularity and stability theory of set-constrained systems, and sensitivity analysis of optimization problems. Based on a decade's worth of notes the author compiled in successfully teaching the subject, this book will help readers to understand the mathematical foundations of the modern theory and methods of nonlinear optimization and to analyze new problems, develop optimality theory for them, and choose or construct numerical solution methods. It is a must for anyone seriously interested in optimization.

Nonlinear Optimization Applications Using the GAMS Technology

by Neculai Andrei

Here is a collection of nonlinear optimization applications from the real world, expressed in the General Algebraic Modeling System (GAMS). The concepts are presented so that the reader can quickly modify and update them to represent real-world situations.

Nonlinear Option Pricing (Chapman and Hall/CRC Financial Mathematics Series)

by Julien Guyon Pierre Henry-Labordere

New Tools to Solve Your Option Pricing ProblemsFor nonlinear PDEs encountered in quantitative finance, advanced probabilistic methods are needed to address dimensionality issues. Written by two leaders in quantitative research-including Risk magazine's 2013 Quant of the Year-Nonlinear Option Pricing compares various numerical methods for solving hi

Nonlinear Ordinary Differential Equations

by R. Grimshaw

Ordinary differential equations have long been an important area of study because of their wide application in physics, engineering, biology, chemistry, ecology, and economics. Based on a series of lectures given at the Universities of Melbourne and New South Wales in Australia, Nonlinear Ordinary Differential Equations takes the reader from basic elementary notions to the point where the exciting and fascinating developments in the theory of nonlinear differential equations can be understood and appreciated. Each chapter is self-contained, and includes a selection of problems together with some detailed workings within the main text. Nonlinear Ordinary Differential Equations helps develop an understanding of the subtle and sometimes unexpected properties of nonlinear systems and simultaneously introduces practical analytical techniques to analyze nonlinear phenomena. This excellent book gives a structured, systematic, and rigorous development of the basic theory from elementary concepts to a point where readers can utilize ideas in nonlinear differential equations.

Nonlinear Ordinary Differential Equations

by Martin Hermann Masoud Saravi

The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march method. This book comprehensively investigates various new analytical and numerical approximation techniques that are used in solving nonlinear-oscillator and structural-system problems. Students often rely on the finite element method to such an extent that on graduation they have little or no knowledge of alternative methods of solving problems. To rectify this, the book introduces several new approximation techniques.

Nonlinear Parabolic Equations and Hyperbolic-Parabolic Coupled Systems (Monographs And Surveys In Pure And Applied Math #76)

by Songmu Zheng

This monograph is devoted to the global existence, uniqueness and asymptotic behaviour of smooth solutions to both initial value problems and initial boundary value problems for nonlinear parabolic equations and hyperbolic parabolic coupled systems. Most of the material is based on recent research carried out by the author and his collaborators.The book can be divided into two parts. In the first part, the results on decay of solutions to nonlinear parabolic equations and hyperbolic parabolic coupled systems are obtained, and a chapter is devoted to the global existence of small smooth solutions to fully nonlinear parabolic equations and quasilinear hyperbolic parabolic coupled systems. Applications of the results to nonlinear thermoelasticity and fluid dynamics are also shown.Some nonlinear parabolic equations and coupled systems arising from the study of phase transitions are investigated in the second part of the book. The global existence, uniqueness and asymptotic behaviour of smooth solutions with arbitrary initial data are obtained. The final chapter is further devoted to related topics: multiplicity of equilibria and the existence of a global attractor, inertial manifold and inertial set.A knowledge of partial differential equations and Sobolev spaces is assumed. As an aid to the reader, the related concepts and results are collected and the relevant references given in the firstchapter. The work will be of interest to researchers and graduate students in pure and applied mathematics, mathematical physics and applied sciences.

Nonlinear Parameter Optimization Using R Tools

by John C. Nash

Nonlinear Parameter Optimization Using RJohn C. Nash, Telfer School of Management, University of Ottawa, CanadaA systematic and comprehensive treatment of optimization software using RIn recent decades, optimization techniques have been streamlined by computational and artificial intelligence methods to analyze more variables, especially under non-linear, multivariable conditions, more quickly than ever before.Optimization is an important tool for decision science and for the analysis of physical systems used in engineering. Nonlinear Parameter Optimization with R explores the principal tools available in R for function minimization, optimization, and nonlinear parameter determination and features numerous examples throughout.Nonlinear Parameter Optimization with R:* Provides a comprehensive treatment of optimization techniques* Examines optimization problems that arise in statistics and how to solve them using R* Enables researchers and practitioners to solve parameter determination problems* Presents traditional methods as well as recent developments in R* Is supported by an accompanying website featuring R code, examples and datasetsResearchers and practitioners who have to solve parameter determination problems who are users of R but are novices in the field optimization or function minimization will benefit from this book. It will also be useful for scientists building and estimating nonlinear models in various fields such as hydrology, sports forecasting, ecology, chemical engineering, pharmaco-kinetics, agriculture, economics and statistics.

Nonlinear Partial Differential Equations

by Kenneth H. Karlsen Helge Holden

The topic of the 2010 Abel Symposium, hosted at the Norwegian Academy of Science and Letters, Oslo, was Nonlinear Partial Differential Equations, the study of which is of fundamental importance in mathematics and in almost all of natural sciences, economics, and engineering. This area of mathematics is currently in the midst of an unprecedented development worldwide. Differential equations are used to model phenomena of increasing complexity, and in areas that have traditionally been outside the realm of mathematics. New analytical tools and numerical methods are dramatically improving our understanding of nonlinear models. Nonlinearity gives rise to novel effects reflected in the appearance of shock waves, turbulence, material defects, etc., and offers challenging mathematical problems. On the other hand, new mathematical developments provide new insight in many applications. These proceedings present a selection of the latest exciting results by world leading researchers.

Nonlinear Partial Differential Equations for Future Applications: Sendai, Japan, July 10–28 and October 2–6, 2017 (Springer Proceedings in Mathematics & Statistics #346)

by Shigeaki Koike Hideo Kozono Takayoshi Ogawa Shigeru Sakaguchi

This volume features selected, original, and peer-reviewed papers on topics from a series of workshops on Nonlinear Partial Differential Equations for Future Applications that were held in 2017 at Tohoku University in Japan. The contributions address an abstract maximal regularity with applications to parabolic equations, stability, and bifurcation for viscous compressible Navier–Stokes equations, new estimates for a compressible Gross–Pitaevskii–Navier–Stokes system, singular limits for the Keller–Segel system in critical spaces, the dynamic programming principle for stochastic optimal control, two kinds of regularity machineries for elliptic obstacle problems, and new insight on topology of nodal sets of high-energy eigenfunctions of the Laplacian. This book aims to exhibit various theories and methods that appear in the study of nonlinear partial differential equations.

Refine Search

Showing 18,676 through 18,700 of 27,772 results