- Table View
- List View
Numerical Methods and Methods of Approximation in Science and Engineering
by Karan S. SuranaNumerical Methods and Methods of Approximation in Science and Engineering prepares students and other readers for advanced studies involving applied numerical and computational analysis. Focused on building a sound theoretical foundation, it uses a clear and simple approach backed by numerous worked examples to facilitate understanding of numerical methods and their application. Readers will learn to structure a sequence of operations into a program, using the programming language of their choice; this approach leads to a deeper understanding of the methods and their limitations. The text features highlighted examples, numerous problems, and a complete Solutions Manual for instructors.
Numerical Methods and Optimization: An Introduction (Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series)
by Sergiy Butenko Panos M. PardalosFor students in industrial and systems engineering (ISE) and operations research (OR) to understand optimization at an advanced level, they must first grasp the analysis of algorithms, computational complexity, and other concepts and modern developments in numerical methods. Satisfying this prerequisite, Numerical Methods and Optimization: An Intro
Numerical Methods for Chemical Engineers Using Excel, VBA, and MATLAB
by Victor J. LawWhile teaching the Numerical Methods for Engineers course over the last 15 years, the author found a need for a new textbook, one that was less elementary, provided applications and problems better suited for chemical engineers, and contained instruction in Visual Basic for Applications (VBA). This led to six years of developing teaching notes that
Numerical Methods for Differential Equations: A Computational Approach (Engineering Mathematics Ser. #3)
by J.R. DormandWith emphasis on modern techniques, Numerical Methods for Differential Equations: A Computational Approach covers the development and application of methods for the numerical solution of ordinary differential equations. Some of the methods are extended to cover partial differential equations. All techniques covered in the text are on a program disk included with the book, and are written in Fortran 90. These programs are ideal for students, researchers, and practitioners because they allow for straightforward application of the numerical methods described in the text. The code is easily modified to solve new systems of equations. Numerical Methods for Differential Equations: A Computational Approach also contains a reliable and inexpensive global error code for those interested in global error estimation. This is a valuable text for students, who will find the derivations of the numerical methods extremely helpful and the programs themselves easy to use. It is also an excellent reference and source of software for researchers and practitioners who need computer solutions to differential equations.
Numerical Methods for Energy Applications (Power Systems)
by Nicu Bizon Naser Mahdavi TabatabaeiThis book provides a thorough guide to the use of numerical methods in energy systems and applications. It presents methods for analysing engineering applications for energy systems, discussing finite difference, finite element, and other advanced numerical methods. Solutions to technical problems relating the application of these methods to energy systems are also thoroughly explored. Readers will discover diverse perspectives of the contributing authors and extensive discussions of issues including:• a wide variety of numerical methods concepts and related energy systems applications;• systems equations and optimization, partial differential equations, and finite difference method;• methods for solving nonlinear equations, special methods, and their mathematical implementation in multi-energy sources;• numerical investigations of electrochemical fields and devices; and• issues related to numerical approaches and optimal integration of energy consumption.This is a highly informative and carefully presented book, providing scientific and academic insight for readers with an interest in numerical methods and energy systems.
Numerical Methods for Engineers
by D. Vaughan Griffiths I.M. SmithAlthough pseudocodes, Mathematica, and MATLAB illustrate how algorithms work, designers of engineering systems write the vast majority of large computer programs in the Fortran language. Using Fortran 95 to solve a range of practical engineering problems, Numerical Methods for Engineers, Second Edition provides an introduction to numerical methods,
Numerical Methods for Engineers and Scientists
by Joe D. Hoffman Steven FrankelEmphasizing the finite difference approach for solving differential equations, the second edition of Numerical Methods for Engineers and Scientists presents a methodology for systematically constructing individual computer programs. Providing easy access to accurate solutions to complex scientific and engineering problems, each chapter begins with objectives, a discussion of a representative application, and an outline of special features, summing up with a list of tasks students should be able to complete after reading the chapter- perfect for use as a study guide or for review. The AIAA Journal calls the book "…a good, solid instructional text on the basic tools of numerical analysis."
Numerical Methods for Engineers and Scientists Using MATLAB®
by Ramin S. EsfandiariThis book provides a pragmatic, methodical and easy-to-follow presentation of numerical methods and their effective implementation using MATLAB, which is introduced at the outset. The author introduces techniques for solving equations of a single variable and systems of equations, followed by curve fitting and interpolation of data. The book also provides detailed coverage of numerical differentiation and integration, as well as numerical solutions of initial-value and boundary-value problems. The author then presents the numerical solution of the matrix eigenvalue problem, which entails approximation of a few or all eigenvalues of a matrix. The last chapter is devoted to numerical solutions of partial differential equations that arise in engineering and science. Each method is accompanied by at least one fully worked-out example showing essential details involved in preliminary hand calculations, as well as computations in MATLAB. This thoroughly-researched resource:
Numerical Methods for Extreme Responses of Dynamical Systems: Finite Dimensional Models
by Mircea D. GrigoriuThis book constructs input finite dimensional (FD) models that are amendable for numerical calculations and provides accurate representations for responses of dynamical systems to these inputs, i.e., numerical solutions of stochastic equations. It establishes conditions under which numerical solutions of these equations deliver accurate estimates of extreme responses of dynamical systems that are needed to, for example, predict extreme weather events and design reliable aircrafts. It is intended to serve a broad audience including graduate students, researchers, engineers, scientists and applied mathematicians interested in the formulation and solutions of complex stochastic problems.
Numerical Methods for Finance
by John A. D. Appleby David C. Edelman John J. H. MillerFeaturing international contributors from both industry and academia, Numerical Methods for Finance explores new and relevant numerical methods for the solution of practical problems in finance. It is one of the few books entirely devoted to numerical methods as applied to the financial field.Presenting state-of-the-art methods in this area
Numerical Methods for Flows: FEF 2017 Selected Contributions (Lecture Notes in Computational Science and Engineering #132)
by Gianluigi Rozza Simona Perotto Harald Van Brummelen Alessandro CorsiniThis book includes selected contributions on applied mathematics, numerical analysis, numerical simulation and scientific computing related to fluid mechanics problems, presented at the FEF-“Finite Element for Flows” conference, held in Rome in spring 2017. Written by leading international experts and covering state-of-the-art topics in numerical simulation for flows, it provides fascinating insights into and perspectives on current and future methodological and numerical developments in computational science. As such, the book is a valuable resource for researchers, as well as Masters and Ph.D students.
Numerical Methods for Fractal-Fractional Differential Equations and Engineering: Simulations and Modeling (Mathematics and its Applications)
by Muhammad Altaf Khan Abdon AtanganaThis book is about the simulation and modeling of novel chaotic systems within the frame of fractal-fractional operators. The methods used, their convergence, stability, and error analysis are given, and this is the first book to offer mathematical modeling and simulations of chaotic problems with a wide range of fractal-fractional operators, to find solutions. Numerical Methods for Fractal-Fractional Differential Equations and Engineering: Simulations and Modeling provides details for stability, convergence, and analysis along with numerical methods and their solution procedures for fractal-fractional operators. The book offers applications to chaotic problems and simulations using multiple fractal-fractional operators and concentrates on models that display chaos. The book details how these systems can be predictable for a while and then can appear to become random. Practitioners, engineers, researchers, and senior undergraduate and graduate students from mathematics and engineering disciplines will find this book of interest._
Numerical Methods for Fractional Calculus (Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series)
by Changpin Li Fanhai ZengNumerical Methods for Fractional Calculus presents numerical methods for fractional integrals and fractional derivatives, finite difference methods for fractional ordinary differential equations (FODEs) and fractional partial differential equations (FPDEs), and finite element methods for FPDEs.The book introduces the basic definitions and propertie
Numerical Methods for Fractional Differentiation (Springer Series in Computational Mathematics #54)
by Kolade M. Owolabi Abdon AtanganaThis book discusses numerical methods for solving partial differential and integral equations, as well as ordinary differential and integral equations, involving fractional differential and integral operators. Differential and integral operators presented in the book include those with exponential decay law, known as Caputo–Fabrizio differential and integral operators, those with power law, known as Riemann–Liouville fractional operators, and those for the generalized Mittag–Leffler function, known as the Atangana–Baleanu fractional operators. The book reviews existing numerical schemes associated with fractional operators including those with power law, while also highlighting new trends in numerical schemes for recently introduced differential and integral operators. In addition, the initial chapters address useful properties of each differential and integral fractional operator. Methods discussed in the book are subsequently used to solved problems arising in many fields of science, technology, and engineering, including epidemiology, chaos, solitons, fractals, diffusion, groundwater, and fluid mechanics. Given its scope, the book offers a valuable resource for graduate students of mathematics and engineering, and researchers in virtually all fields of science, technology, and engineering, as well as an excellent addition to libraries.
Numerical Methods for Hyperbolic Equations
by Elena Vázquez-Cendón Arturo Hidalgo Pilar García-Navarro Luis CeaNumerical Methods for Hyperbolic Equations is a collection of 49 articles presented at the International Conference on Numerical Methods for Hyperbolic Equations: Theory and Applications (Santiago de Compostela, Spain, 4-8 July 2011). The conference was organized to honour Professor Eleuterio Toro in the month of his 65th birthday. The topics cover
Numerical Methods for Initial Value Problems in Physics
by Francisco S. GuzmánThis textbook is a comprehensive overview of the construction, implementation, and application of important numerical methods for the solution of Initial Value Problems (IVPs). Beginning with IVPs involving Ordinary Differential Equations (ODEs) and progressing to problems with Partial Differential Equations (PDEs) in 1+1 and 3+1 dimensions, it provides readers with a clear and systematic progression from simple to complex concepts. The numerical methods selected in this textbook can solve a considerable variety of problems and the applications presented cover a wide range of topics, including population dynamics, chaos, celestial mechanics, geophysics, astrophysics, and more. Each chapter contains a variety of solved problems and exercises, with code included. These examples are designed to motivate and inspire readers to delve deeper into the state-of-the-art problems in their own fields. The code is written in Fortran 90, in a library-free style, making them easy to program and efficient to run. The appendix also includes the same code in C++, making the book accessible to a variety of programming backgrounds. At the end of each chapter, there are brief descriptions of how the methods could be improved, along with one or two projects that can be developed with the methods and codes described. These projects are highly engaging, from synchronization of chaos and message encryption to gravitational waves emitted by a binary system and non-linear absorption of a scalar field. With its clear explanations, hands-on approach, and practical examples, this textbook is an essential resource for advanced undergraduate and graduate students who want to the learn how to use numerical methods to tackle challenging problems.
Numerical Methods for Inverse Scattering Problems
by Jingzhi Li Hongyu LiuThis book highlights the latest developments on the numerical methods for inverse scattering problems associated with acoustic, electromagnetic, and elastic waves. Inverse scattering problems are concerned with identifying unknown or inaccessible objects by wave probing data, which makes possible many industrial and engineering applications including radar and sonar, medical imaging, nondestructive testing, remote sensing, and geophysical exploration. The mathematical study of inverse scattering problems is an active field of research. This book presents a comprehensive and unified mathematical treatment of various inverse scattering problems mainly from a numerical reconstruction perspective. It highlights the collaborative research outputs by the two groups of the authors yet surveys and reviews many existing results by global researchers in the literature. The book consists of three parts respectively corresponding to the studies on acoustic, electromagnetic, and elastic scattering problems. In each part, the authors start with in-depth theoretical and computational treatments of the forward scattering problems and then discuss various numerical reconstruction schemes for the associated inverse scattering problems in different scenarios of practical interest. In addition, the authors provide an overview of the existing results in the literature by other researchers. This book can serve as a handy reference for researchers or practitioners who are working on or implementing inverse scattering methods. It can also serve as a graduate textbook for research students who are interested in working on numerical algorithms for inverse scattering problems.
Numerical Methods for Metamaterial Design
by Kenneth DiestThis book describes a relatively new approach for the design of electromagnetic metamaterials. Numerical optimization routines are combined with electromagnetic simulations to tailor the broadband optical properties of a metamaterial to have predetermined responses at predetermined wavelengths. After a review of both the major efforts within the field of metamaterials and the field of mathematical optimization, chapters covering both gradient-based and derivative-free design methods are considered. Selected topics including surrogate-base optimization, adaptive mesh search, and genetic algorithms are shown to be effective, gradient-free optimization strategies. Additionally, new techniques for representing dielectric distributions in two dimensions, including level sets, are demonstrated as effective methods for gradient-based optimization. Each chapter begins with a rigorous review of the optimization strategy used, and is followed by numerous examples that combine the strategy with either electromagnetic simulations or analytical solutions of the scattering problem. Throughout the text, we address the strengths and limitations of each method, as well as which numerical methods are best suited for different types of metamaterial designs. This book is intended to provide a detailed enough treatment of the mathematical methods used, along with sufficient examples and additional references, that senior level undergraduates or graduate students who are new to the fields of plasmonics, metamaterials, or optimization methods; have an understanding of which approaches are best-suited for their work and how to implement the methods themselves.
Numerical Methods for Mixed Finite Element Problems: Applications to Incompressible Materials and Contact Problems (Lecture Notes in Mathematics #2318)
by Jean Deteix Thierno Diop Michel FortinThis book focuses on iterative solvers and preconditioners for mixed finite element methods. It provides an overview of some of the state-of-the-art solvers for discrete systems with constraints such as those which arise from mixed formulations.Starting by recalling the basic theory of mixed finite element methods, the book goes on to discuss the augmented Lagrangian method and gives a summary of the standard iterative methods, describing their usage for mixed methods. Here, preconditioners are built from an approximate factorisation of the mixed system.A first set of applications is considered for incompressible elasticity problems and flow problems, including non-linear models.An account of the mixed formulation for Dirichlet’s boundary conditions is then given before turning to contact problems, where contact between incompressible bodies leads to problems with two constraints.This book is aimed at graduate students and researchers in the field of numerical methods and scientific computing.
Numerical Methods for Nonlinear Partial Differential Equations
by Sören BartelsThe description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
Numerical Methods for Optimal Control Problems (Springer INdAM Series #29)
by Maurizio Falcone Roberto Ferretti Lars Grüne William M. McEneaneyThis work presents recent mathematical methods in the area of optimal control with a particular emphasis on the computational aspects and applications. Optimal control theory concerns the determination of control strategies for complex dynamical systems, in order to optimize some measure of their performance. Started in the 60's under the pressure of the "space race" between the US and the former USSR, the field now has a far wider scope, and embraces a variety of areas ranging from process control to traffic flow optimization, renewable resources exploitation and management of financial markets. These emerging applications require more and more efficient numerical methods for their solution, a very difficult task due the huge number of variables. The chapters of this volume give an up-to-date presentation of several recent methods in this area including fast dynamic programming algorithms, model predictive control and max-plus techniques. This book is addressed to researchers, graduate students and applied scientists working in the area of control problems, differential games and their applications.
Numerical Methods for Ordinary Differential Equations
by J. C. ButcherA new edition of this classic work, comprehensively revised to present exciting new developments in this important subject The study of numerical methods for solving ordinary differential equations is constantly developing and regenerating, and this third edition of a popular classic volume, written by one of the world's leading experts in the field, presents an account of the subject which reflects both its historical and well-established place in computational science and its vital role as a cornerstone of modern applied mathematics. In addition to serving as a broad and comprehensive study of numerical methods for initial value problems, this book contains a special emphasis on Runge-Kutta methods by the mathematician who transformed the subject into its modern form dating from his classic 1963 and 1972 papers. A second feature is general linear methods which have now matured and grown from being a framework for a unified theory of a wide range of diverse numerical schemes to a source of new and practical algorithms in their own right. As the founder of general linear method research, John Butcher has been a leading contributor to its development; his special role is reflected in the text. The book is written in the lucid style characteristic of the author, and combines enlightening explanations with rigorous and precise analysis. In addition to these anticipated features, the book breaks new ground by including the latest results on the highly efficient G-symplectic methods which compete strongly with the well-known symplectic Runge-Kutta methods for long-term integration of conservative mechanical systems. This third edition of Numerical Methods for Ordinary Differential Equations will serve as a key text for senior undergraduate and graduate courses in numerical analysis, and is an essential resource for research workers in applied mathematics, physics and engineering.
Numerical Methods for PDEs: State of the Art Techniques (SEMA SIMAI Springer Series #15)
by Daniele Antonio Di Pietro Alexandre Ern Luca FormaggiaThis volume gathers contributions from participants of the Introductory School and the IHP thematic quarter on Numerical Methods for PDE, held in 2016 in Cargese (Corsica) and Paris, providing an opportunity to disseminate the latest results and envisage fresh challenges in traditional and new application fields. Numerical analysis applied to the approximate solution of PDEs is a key discipline in applied mathematics, and over the last few years, several new paradigms have appeared, leading to entire new families of discretization methods and solution algorithms. This book is intended for researchers in the field.
Numerical Methods for Physics (Python)
by Alejandro L. GarciaThis book covers a broad spectrum of the most important, basic numerical and analytical techniques used in physics —including ordinary and partial differential equations, linear algebra, Fourier transforms, integration, and probability. This version of the text uses Python with Matlab, C++, and FORTRAN versions of the programs also available on-line.
Numerical Methods for Reliability and Safety Assessment
by Seifedine Kadry Abdelkhalak El HamiThis book offers unique insight on structural safety and reliability by combining computational methods that address multiphysics problems, involving multiple equations describing different physical phenomena and multiscale problems, involving discrete sub-problems that together describe important aspects of a system at multiple scales. The book examines a range of engineering domains and problems using dynamic analysis, nonlinear methods, error estimation, finite element analysis and other computational techniques. This book also: · Introduces novel numerical methods · Illustrates new practical applications · Examines recent engineering applications · Presents up-to-date theoretical results · Offers perspective relevant to a wide audience, including teaching faculty/graduate students, researchers and practicing engineers.