- Table View
- List View
Ordered Random Variables: Theory and Applications
by Muhammad Qaiser Shahbaz Mohammad Ahsanullah Saman Hanif Shahbaz Bander M. Al-ZahraniOrdered Random Variables have attracted several authors. The basic building block of Ordered Random Variables is Order Statistics which has several applications in extreme value theory and ordered estimation. The general model for ordered random variables, known as Generalized Order Statistics has been introduced relatively recently by Kamps (1995).
Ordered Regression Models: Parallel, Partial, and Non-Parallel Alternatives (Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences)
by Jun Xu Andrew S. FullertonOrdered Regression Models: Parallel, Partial, and Non-Parallel Alternatives presents regression models for ordinal outcomes, which are variables that have ordered categories but unknown spacing between the categories. The book provides comprehensive coverage of the three major classes of ordered regression models (cumulative, stage, and adjacent) as well as variations based on the application of the parallel regression assumption.The authors first introduce the three "parallel" ordered regression models before covering unconstrained partial, constrained partial, and nonparallel models. They then review existing tests for the parallel regression assumption, propose new variations of several tests, and discuss important practical concerns related to tests of the parallel regression assumption. The book also describes extensions of ordered regression models, including heterogeneous choice models, multilevel ordered models, and the Bayesian approach to ordered regression models. Some chapters include brief examples using Stata and R.This book offers a conceptual framework for understanding ordered regression models based on the probability of interest and the application of the parallel regression assumption. It demonstrates the usefulness of numerous modeling alternatives, showing you how to select the most appropriate model given the type of ordinal outcome and restrictiveness of the parallel assumption for each variable.Web ResourceMore detailed examples are available on a supplementary website. The site also contains JAGS, R, and Stata codes to estimate the models along with syntax to reproduce the results.
Ordered Sets
by Bernd SchröderAn introduction to the basic tools of the theory of (partially) ordered sets such as visualization via diagrams, subsets, homomorphisms, important order-theoretical constructions and classes of ordered sets. Using a thematic approach, the author presents open or recently solved problems to motivate the development of constructions and investigations for new classes of ordered sets. The text can be used as a focused follow-up or companion to a first proof (set theory and relations) or graph theory course.
Ordering Block Designs
by Megan Dewar Brett StevensThe study of combinatorial block designs is a vibrant area of combinatorial mathematics with connections to finite geometries, graph theory, coding theory and statistics. The practice of ordering combinatorial objects can trace its roots to bell ringing which originated in 17th century England, but only emerged as a significant modern research area with the work of F. Gray and N. de Bruijn. These two fascinating areas of mathematics are brought together for the first time in this book. It presents new terminology and concepts which unify existing and recent results from a wide variety of sources. In order to provide a complete introduction and survey, the book begins with background material on combinatorial block designs and combinatorial orderings, including Gray codes -- the most common and well-studied combinatorial ordering concept -- and universal cycles. The central chapter discusses how ordering concepts can be applied to block designs, with definitions from existing (configuration orderings) and new (Gray codes and universal cycles for designs) research. Two chapters are devoted to a survey of results in the field, including illustrative proofs and examples. The book concludes with a discussion of connections to a broad range of applications in computer science, engineering and statistics. This book will appeal to both graduate students and researchers. Each chapter contains worked examples and proofs, complete reference lists, exercises and a list of conjectures and open problems. Practitioners will also find the book appealing for its accessible, self-contained introduction to the mathematics behind the applications.
Ordinal Analysis with an Introduction to Proof Theory (Logic in Asia: Studia Logica Library)
by Toshiyasu AraiThis book provides readers with a guide to both ordinal analysis, and to proof theory. It mainly focuses on ordinal analysis, a research topic in proof theory that is concerned with the ordinal theoretic content of formal theories. However, the book also addresses ordinal analysis and basic materials in proof theory of first-order or omega logic, presenting some new results and new proofs of known ones.Primarily intended for graduate students and researchers in mathematics, especially in mathematical logic, the book also includes numerous exercises and answers for selected exercises, designed to help readers grasp and apply the main results and techniques discussed.
Ordinal Data Analysis: Statistical Perspective with Applications
by Nairanjana Dasgupta Jillian MorrisonThis book is a step-by-step data story for analyzing ordinal data from start to finish. The book is for researchers, statisticians and scientists who are working with datasets where the response is ordinal. This type of data is common in many disciplines, not just in surveys (as is often thought). For example, in the biological sciences, there is an interest in understanding and predicting the (growth) stage (of a plant or animal) based on a multitude of factors. Likewise, ordinal data is common in environmental sciences (for example, stage of a storm), chemical sciences (for example, type of reaction), physical sciences (for example, stage of damage when force is applied), medical sciences (for example, degree of pain) and social sciences (for example, demographic factors like social status categorized in brackets). There has been no complete text about how to model an ordinal response as a function of multiple numerical and categorical predictors. There has always been a reluctance and reticence towards ordinal data as it lies in a no-man’s land between numerical and categorical data. Examples from health sciences are used to illustrate in detail the process of how to analyze ordinal data, from exploratory analysis to modeling, to inference and diagnostics. This book also shows how Likert-type analysis is often used incorrectly and discusses the reason behind it. Similarly, it discusses the methods related to Structural Equations and talks about appropriate uses of this class of methods.The text is meant to serve as a reference book and to be a “how-to” resource along with the “why” and “when” for modeling ordinal data.Key Features: Includes applications of the statistical theory Includes illustrated examples with the associated R and SAS code Discusses the key differences between the different methods that are used for ordinal data analysis Bridges the gap between methods for ordinal data analysis used in different disciplines
Ordinal Definability and Recursion Theory: The Cabal Seminar, Volume III
by Alexander S. Kechris Benedikt Löwe John R. SteelThe proceedings of the Los Angeles Caltech-UCLA 'Cabal Seminar' were originally published in the 1970s and 1980s. Ordinal Definability and Recursion Theory is the third in a series of four books collecting the seminal papers from the original volumes together with extensive unpublished material, new papers on related topics and discussion of research developments since the publication of the original volumes. Focusing on the subjects of 'HOD and its Local Versions' (Part V) and 'Recursion Theory' (Part VI), each of the two sections is preceded by an introductory survey putting the papers into present context. These four volumes will be a necessary part of the book collection of every set theorist.
Ordinary and Partial Differential Equation Routines in C, C++, Fortran, Java, Maple, and MATLAB
by H.J. Lee W.E. SchiesserThis book provides a set of ODE/PDE integration routines in the six most widely used computer languages, enabling scientists and engineers to apply ODE/PDE analysis toward solving complex problems. This text concisely reviews integration algorithms, then analyzes the widely used Runge-Kutta method. It first presents a complete code before discussin
Ordinary And Partial Differential Equations
by Victor Henner Tatyana Belozerova Mikhail KhennerCovers ODEs and PDEs—in One Textbook Until now, a comprehensive textbook covering both ordinary differential equations (ODEs) and partial differential equations (PDEs) didn’t exist. Fulfilling this need, Ordinary and Partial Differential Equations provides a complete and accessible course on ODEs and PDEs using many examples and exercises as well as intuitive, easy-to-use software. Teaches the Key Topics in Differential Equations The text includes all the topics that form the core of a modern undergraduate or beginning graduate course in differential equations. It also discusses other optional but important topics such as integral equations, Fourier series, and special functions. Numerous carefully chosen examples offer practical guidance on the concepts and techniques. Guides Students through the Problem-Solving Process Requiring no user programming, the accompanying computer software allows students to fully investigate problems, thus enabling a deeper study into the role of boundary and initial conditions, the dependence of the solution on the parameters, the accuracy of the solution, the speed of a series convergence, and related questions. The ODE module compares students’ analytical solutions to the results of computations while the PDE module demonstrates the sequence of all necessary analytical solution steps.
Ordinary Differential Equations: Introduction and Qualitative Theory, Third Edition (Chapman & Hall/CRC Pure and Applied Mathematics)
by Jane CroninDesigned for a rigorous first course in ordinary differential equations, Ordinary Differential Equations: Introduction and Qualitative Theory, Third Edition includes basic material such as the existence and properties of solutions, linear equations, autonomous equations, and stability as well as more advanced topics in periodic solutions of
Ordinary Differential Equations
by Mark G. Davidson William A. AdkinsUnlike most texts in differential equations, this textbook gives an early presentation of the Laplace transform, which is then used to motivate and develop many of the remaining differential equation concepts for which it is particularly well suited. For example, the standard solution methods for constant coefficient linear differential equations are immediate and simplified, and solution methods for constant coefficient systems are streamlined. By introducing the Laplace transform early in the text, students become proficient in its use while at the same time learning the standard topics in differential equations. The text also includes proofs of several important theorems that are not usually given in introductory texts. These include a proof of the injectivity of the Laplace transform and a proof of the existence and uniqueness theorem for linear constant coefficient differential equations. Along with its unique traits, this text contains all the topics needed for a standard three- or four-hour, sophomore-level differential equations course for students majoring in science or engineering. These topics include: first order differential equations, general linear differential equations with constant coefficients, second order linear differential equations with variable coefficients, power series methods, and linear systems of differential equations. It is assumed that the reader has had the equivalent of a one-year course in college calculus.
Ordinary Differential Equations
by Michael D. GreenbergFeatures a balance between theory, proofs, and examples and provides applications across diverse fields of studyOrdinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory.Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps and provides all the necessary details. Topical coverage includes:First-Order Differential EquationsHigher-Order Linear EquationsApplications of Higher-Order Linear EquationsSystems of Linear Differential EquationsLaplace TransformSeries SolutionsSystems of Nonlinear Differential EquationsIn addition to plentiful exercises and examples throughout, each chapter concludes with a summary that outlines key concepts and techniques. The book's design allows readers to interact with the content, while hints, cautions, and emphasis are uniquely featured in the margins to further help and engage readers.Written in an accessible style that includes all needed details and steps, Ordinary Differential Equations is an excellent book for courses on the topic at the upper-undergraduate level. The book also serves as a valuable resource for professionals in the fields of engineering, physics, and mathematics who utilize differential equations in their everyday work. An Instructors Manual is available upon request. Email sfriedman@wiley.com for information. There is also a Solutions Manual available. The ISBN is 9781118398999.
Ordinary Differential Equations: An Introduction to the Fundamentals (Textbooks in Mathematics)
by Kenneth B. HowellThe Second Edition of Ordinary Differential Equations: An Introduction to the Fundamentals builds on the successful First Edition. It is unique in its approach to motivation, precision, explanation and method. Its layered approach offers the instructor opportunity for greater flexibility in coverage and depth. Students will appreciate the author’s approach and engaging style. Reasoning behind concepts and computations motivates readers. New topics are introduced in an easily accessible manner before being further developed later. The author emphasizes a basic understanding of the principles as well as modeling, computation procedures and the use of technology. The students will further appreciate the guides for carrying out the lengthier computational procedures with illustrative examples integrated into the discussion. Features of the Second Edition: Emphasizes motivation, a basic understanding of the mathematics, modeling and use of technology A layered approach that allows for a flexible presentation based on instructor's preferences and students’ abilities An instructor’s guide suggesting how the text can be applied to different courses New chapters on more advanced numerical methods and systems (including the Runge-Kutta method and the numerical solution of second- and higher-order equations) Many additional exercises, including two "chapters" of review exercises for first- and higher-order differential equations An extensive on-line solution manual About the author: Kenneth B. Howell earned bachelor’s degrees in both mathematics and physics from Rose-Hulman Institute of Technology, and master’s and doctoral degrees in mathematics from Indiana University. For more than thirty years, he was a professor in the Department of Mathematical Sciences of the University of Alabama in Huntsville. Dr. Howell published numerous research articles in applied and theoretical mathematics in prestigious journals, served as a consulting research scientist for various companies and federal agencies in the space and defense industries, and received awards from the College and University for outstanding teaching. He is also the author of Principles of Fourier Analysis, Second Edition (Chapman & Hall/CRC, 2016).
Ordinary Differential Equations (Dover Books on Mathematics)
by Edward L. InceThe theory of ordinary differential equations in real and complex domains is here clearly explained and analyzed. Not only classical theory, but also the main developments of modern times are covered. Exhaustive sections on the existence and nature of solutions, continuous transformation groups, the algebraic theory of linear differential systems, and the solution of differential equations by contour integration are as valuable to the pure mathematician as the fine treatment of the equations of Legendre, Bessel, and Mathieu, the conditions for the oscillatory character of solutions of a differential equation, and the relation between a linear differential system and an integral equation are to the engineer and the physicist.Partial contents: real domain (elementary methods of integration, the existence and nature of solutions, continuous transformation-groups, linear differential equations-the general theory, with constant coefficients, solutions, algebraic theory, Sturmian theory, and later developments); complex domain (existence theorems, equations of first order, non-linear equations of higher order, solutions, systems, classifications of linear equations, oscillation theorems).
Ordinary Differential Equations: Basics and Beyond
by David G. Schaeffer John W. CainThis book develops the theory of ordinary differential equations (ODEs), starting from an introductory level (with no prior experience in ODEs assumed) through to a graduate-level treatment of the qualitative theory, including bifurcation theory (but not chaos). While proofs are rigorous, the exposition is reader-friendly, aiming for the informality of face-to-face interactions. A unique feature of this book is the integration of rigorous theory with numerous applications of scientific interest. Besides providing motivation, this synthesis clarifies the theory and enhances scientific literacy. Other features include: (i) a wealth of exercises at various levels, along with commentary that explains why they matter; (ii) figures with consistent color conventions to identify nullclines, periodic orbits, stable and unstable manifolds; and (iii) a dedicated website with software templates, problem solutions, and other resources supporting the text. Given its many applications, the book may be used comfortably in science and engineering courses as well as in mathematics courses. Its level is accessible to upper-level undergraduates but still appropriate for graduate students. The thoughtful presentation, which anticipates many confusions of beginning students, makes the book suitable for a teaching environment that emphasizes self-directed, active learning (including the so-called inverted classroom).
Ordinary Differential Equations
by Bernd J. SchroersOrdinary Differential Equations introduces key concepts and techniques in the field and shows how they are used in current mathematical research and modelling. It deals specifically with initial value problems, which play a fundamental role in a wide range of scientific disciplines, including mathematics, physics, computer science, statistics and biology. This practical book is ideal for students and beginning researchers working in any of these fields who need to understand the area of ordinary differential equations in a short time.<P> Advisory: Bookshare has learned that this book offers only partial accessibility. We have kept it in the collection because it is useful for some of our members. To explore further access options with us, please contact us through the Book Quality link on the right sidebar. Benetech is actively working on projects to improve accessibility issues such as these.
Ordinary Differential Equations: Mathematical Tools For Physicists
by Raza Tahir-KheliThis textbook describes rules and procedures for the use of Differential Operators (DO) in Ordinary Differential Equations (ODE). The book provides a detailed theoretical and numerical description of ODE. It presents a large variety of ODE and the chosen groups are used to solve a host of physical problems. Solving these problems is of interest primarily to students of science, such as physics, engineering, biology and chemistry. <P><P> Scientists are greatly assisted by using the DO obeying several simple algebraic rules. The book describes these rules and, to help the reader, the vocabulary and the definitions used throughout the text are provided. A thorough description of the relatively straightforward methodology for solving ODE is given. <P><P>The book provides solutions to a large number of associated problems. ODE that are integrable, or those that have one of the two variables missing in any explicit form are also treated with solved problems. The physics and applicable mathematics are explained and many associated problems are analyzed and solved in detail. Numerical solutions are analyzed and the level of exactness obtained under various approximations is discussed in detail.
Ordinary Differential Equations and Dynamical Systems
by Thomas C. SiderisThis book is a mathematically rigorous introduction to the beautiful subject of ordinary differential equations for beginning graduate or advanced undergraduate students. Students should have a solid background in analysis and linear algebra. The presentation emphasizes commonly used techniques without necessarily striving for completeness or for the treatment of a large number of topics. The first half of the book is devoted to the development of the basic theory: linear systems, existence and uniqueness of solutions to the initial value problem, flows, stability, and smooth dependence of solutions upon initial conditions and parameters. Much of this theory also serves as the paradigm for evolutionary partial differential equations. The second half of the book is devoted to geometric theory: topological conjugacy, invariant manifolds, existence and stability of periodic solutions, bifurcations, normal forms, and the existence of transverse homoclinic points and their link to chaotic dynamics. A common thread throughout the second part is the use of the implicit function theorem in Banach space. Chapter 5, devoted to this topic, the serves as the bridge between the two halves of the book.
Ordinary Differential Equations and Mechanical Systems
by Jan AwrejcewiczThis book applies a step-by-step treatment of the current state-of-the-art of ordinary differential equations used in modeling of engineering systems/processes and beyond. It covers systematically ordered problems, beginning with first and second order ODEs, linear and higher-order ODEs of polynomial form, theory and criteria of similarity, modeling approaches, phase plane and phase space concepts, stability optimization and ending on chaos and synchronization. Presenting both an overview of the theory of the introductory differential equations in the context of applicability and a systematic treatment of modeling of numerous engineering and physical problems through linear and non-linear ODEs, the volume is self-contained, yet serves both scientific and engineering interests. The presentation relies on a general treatment, analytical and numerical methods, concrete examples and engineering intuition. The scientific background used is well balanced between elementary and advanced level, making it as a unique self-contained source for both theoretically and application oriented graduate and doctoral students, university teachers, researchers and engineers of mechanical, civil and mechatronic engineering.
Ordinary Differential Equations and Stability Theory: An Introduction (Dover Books on Mathematics)
by David A. SanchezThis brief modern introduction to the subject of ordinary differential equations emphasizes stability theory. Concisely and lucidly expressed, it is intended as a supplementary text for advanced undergraduates or beginning graduate students who have completed a first course in ordinary differential equations.The author begins by developing the notions of a fundamental system of solutions, the Wronskian, and the corresponding fundamental matrix. Subsequent chapters explore the linear equation with constant coefficients, stability theory for autonomous and nonautonomous systems, and the problems of the existence and uniqueness of solutions and related topics. Problems at the end of each chapter and two Appendixes on special topics enrich the text.
Ordinary Differential Equations for Engineers: Problems with MATLAB Solutions
by Ali Ümit KeskinThis monograph presents teaching material in the field of differential equations while addressing applications and topics in electrical and biomedical engineering primarily. The book contains problems with varying levels of difficulty, including Matlab simulations. The target audience comprises advanced undergraduate and graduate students as well as lecturers, but the book may also be beneficial for practicing engineers alike.
Ordinary Differential Equations with Applications (Texts in Applied Mathematics #34)
by Carmen ChiconeThis book, developed during 20 years of the author teaching differential equations courses at his home university, is designed to serve as a text for a graduate level course focused on the central theory of the subject with attention paid to applications and connections to other advanced topics in mathematics. Core theory includes local existence and uniqueness, the phase plane, Poincaré-Bendixson theory, Lyapunov and linearized stability, linear systems, Floquet theory, the Grobman–Hartman theorem, persistence of rest points and periodic orbits, the stable and center manifold theorems, and bifurcation theory. This edition includes expanded treatment of deterministic chaos, perturbation theory for periodic solutions, boundary value problems, optimization, and a wide range of their applications. In addition, it contains a formulation and new proof of a theorem on instability of rest points in the presence of an eigenvalue with positive real part, and new proofs of differential inequalities and Lyapunov’s center theorem. New sections present discussions of global bifurcation, the Crandall–Rabinowitz theorem, and Alekseev’s formula. Of particular note is a new chapter on basic control theory, a discussion of optimal control, and a proof of a useful special case of the maximum principle. A key feature of earlier editions, a wide selection of original exercises, is respected in this edition with the inclusion of a wealth of new exercises. Reviews of the first edition:“As an applied mathematics text on linear and nonlinear equations, the book by Chicone is written with stimulating enthusiasm. It will certainly appeal to many students and researchers.”—F. Verhulst, SIAM Review “The author writes lucidly and in an engaging conversational style. His book is wide-ranging in its subject matter, thorough in its presentation, and written at a generally high level of generality, detail, and rigor.”—D. S. Shafer, Mathematical Reviews
Orienteering Problems: Models and Algorithms for Vehicle Routing Problems with Profits (EURO Advanced Tutorials on Operational Research)
by Pieter Vansteenwegen Aldy GunawanThis tutorial introduces readers to several variants of routing problems with profits. In these routing problems each node has a certain profit, and not all nodes need to be visited. Since the orienteering problem (OP) is by far the most frequently studied problem in this category of routing problems, the book mainly focuses on the OP. In turn, other problems are presented as variants of the OP, focusing on the similarities and differences. The goal of the OP is to determine a subset of nodes to visit and in which order, so that the total collected profit is maximized and a given time budget is not exceeded.The book provides a comprehensive review of variants of the OP, such as the team OP, the team OP with time windows, the profitable tour problem, and the prize-collecting travelling salesperson problem. In addition, it presents mathematical models and techniques for solving these OP variants and discusses their complexity. Several simple examples and benchmark instances, together with their best-known results, are also included. Finally, the book reviews the latest applications of these problems in the fields of logistics, tourism and others.
Origametry: Mathematical Methods in Paper Folding
by Thomas C. HullOrigami, the art of paper folding, has a rich mathematical theory. Early investigations go back to at least the 1930s, but the twenty-first century has seen a remarkable blossoming of the mathematics of folding. Besides its use in describing origami and designing new models, it is also finding real-world applications from building nano-scale robots to deploying large solar arrays in space. Written by a world expert on the subject, Origametry is the first complete reference on the mathematics of origami. It brings together historical results, modern developments, and future directions into a cohesive whole. Over 180 figures illustrate the constructions described while numerous 'diversions' provide jumping-off points for readers to deepen their understanding. This book is an essential reference for researchers of origami mathematics and its applications in physics, engineering, and design. Educators, students, and enthusiasts will also find much to enjoy in this fascinating account of the mathematics of folding.
Origami^{3} (AK Peters/CRC Recreational Mathematics Series)
by Thomas HullThe book contains papers from the proceedings of the 3rd International Meeting of Origami Science, Math, and Education, sponsored by OrigamiUSA. They cover topics ranging from the mathematics of origami using polygon constructions and geometric projections, applications, and science of origami, and the use of origami in education.