Browse Results

Showing 23,601 through 23,625 of 25,255 results

Theory and Practice of Lesson Study in Mathematics: An International Perspective (Advances in Mathematics Education)

by Rongjin Huang Akihiko Takahashi João Pedro da Ponte

This book brings together and builds on the current research efforts on adaptation, conceptualization, and theorization of Lesson Study (LS). It synthesizes and illustrates major perspectives for theorizing LS and enriches the conceptualization of LS by interpreting the activity as it is used in Japan and China from historical and cultural perspectives. Presenting the practices and theories of LS with practicing teachers and prospective teachers in more than 10 countries, it enables the reader to take a comparative perspective. Finally, the book presents and discusses studies on key aspects of LS such as lesson planning, post-lesson discussion, guiding theories, connection between research and practice, and upscaling.Lesson Study, which has originated in Asia as a powerful effective professional development model, has spread globally. Although the positive effects of lesson study on teacher learning, student learning, and curriculum reforms have been widely documented, conceptualization of and research on LS have just begun to emerge. This book, including 38 chapters contributed by 90 scholars from 21 countries, presents a truly international collaboration on research on and adaptation of LS, and significantly advances the development of knowledge about this process.Chapter 15: "How Variance and Invariance Can Inform Teachers’ Enactment of Mathematics Lessons" of this book is available open access under a CC BY 4.0 license at link.springer.comTheory and Practice of Lesson Study in Mathematics: An International Perspective shows that the power of Lesson Study to transform the role of teachers in classroom research cannot be explained by a simple replication model. Here we see Lesson Study being successful internationally when its key principles and practices are taken seriously and are adapted to meet local issues and challenges. (Max Stephens, Senior research fellow at The University of Melbourne)It works. Instruction improves, learning improves. Wide scale? Enduring? Deep impact? Lesson study has it. When something works as well as lesson study does, while alternative systems for improving instruction fail, or only succeed on small scale or evaporate as quickly as they show promise, it is time to understand how and why lesson study works. This volume brings the research on lesson study together from around the world. Here is what we already know and here is the way forward for research and practice informed by research. It is time to wake up and pay attention to what has worked so well, on wide scale for so long.(Phil Dara, A leading author of the Common Core State Standards of Mathematics in the U.S.)

Theory and Practice of Relational Databases

by Stefan Stanczyk Bob Champion Richard Leyton

The study of relationship databases is a core component of virtually every undergraduate computer science degree course. This new edition of Theory and Practice of Relationship Databases retains all the features that made the previous edition such as success, and goes on to give even more comprehensive and informative coverage.Written in a tutorial style and containing a great many examples and exercises as well as extensively using illustrative and explanatory graphics, the author has produced an undergraduate textbook of great depth and clarity that is very easy to follow. The subject of relational databases is brought to life by the writing style and the inclusion of an homogenous case study that reinforces the issues dealt with in each chapter.The primary objective of the book is to present a comprehensive explanation of the process of development of database application systems within the framework of a set processing paradigm. Since the majority of these applications are built as relationship systems, a complete though reasonably concise account of that model is presented. Dr. Stanczyk has achieved this by concentrating on the issues that contribute significantly to the application development while de-emphasizing purely theoretical aspects of the subject. This has led to an imaginative and highly practical textbook that will be an excellent read for the undergraduate computer science student.

Theory and Practice of STEAM Education in Japan (Routledge Research in Education)

by Tetsuo Isozaki

With unique insights into the potential power of Japan’s STEM education, Isozaki and his team of contributors share multiple perspectives on STEM education theory and practices in Japan.Examining how Japan has become an economic superpower based on scientific and technological innovations, this book provides a particular focus on the theoretical and practical analysis of STEM education from historical and comparative perspectives. Additionally, it links the theory and practice of STEM education from primary education to teacher education at universities across Japan and considers both societal and individual needs in advancing STEM literacy. Chapters are written by researchers from a diverse range of fields in education, including science, mathematics, technology, and pedagogy. The book also offers practical teaching tools and materials for teacher education and assessment to promote STEM literacy in students so that they are able to address local and global socio-scientific issues in a real-world context.Covering a wide spectrum of STEM education, this book provides valuable insights and practical suggestions, from a Japanese perspective, for academic researchers, policymakers, and educators who are interested in STEM education.

Theory and Principled Methods for the Design of Metaheuristics

by Yossi Borenstein Alberto Moraglio

Metaheuristics, and evolutionary algorithms in particular, are known to provide efficient, adaptable solutions for many real-world problems, but the often informal way in which they are defined and applied has led to misconceptions, and even successful applications are sometimes the outcome of trial and error. Ideally, theoretical studies should explain when and why metaheuristics work, but the challenge is huge: mathematical analysis requires significant effort even for simple scenarios and real-life problems are usually quite complex. In this book the editors establish a bridge between theory and practice, presenting principled methods that incorporate problem knowledge in evolutionary algorithms and other metaheuristics. The book consists of 11 chapters dealing with the following topics: theoretical results that show what is not possible, an assessment of unsuccessful lines of empirical research; methods for rigorously defining the appropriate scope of problems while acknowledging the compromise between the class of problems to which a search algorithm is applied and its overall expected performance; the top-down principled design of search algorithms, in particular showing that it is possible to design algorithms that are provably good for some rigorously defined classes; and, finally, principled practice, that is reasoned and systematic approaches to setting up experiments, metaheuristic adaptation to specific problems, and setting parameters. With contributions by some of the leading researchers in this domain, this book will be of significant value to scientists, practitioners, and graduate students in the areas of evolutionary computing, metaheuristics, and computational intelligence.

Theory and Simulation in Physics for Materials Applications: Cutting-Edge Techniques in Theoretical and Computational Materials Science (Springer Series in Materials Science #296)

by Elena V. Levchenko Yannick J. Dappe Guido Ori

This book provides a unique and comprehensive overview of the latest advances, challenges and accomplishments in the rapidly growing field of theoretical and computational materials science. Today, an increasing number of industrial communities rely more and more on advanced atomic-scale methods to obtain reliable predictions of materials properties, complement qualitative experimental analyses and circumvent experimental difficulties. The book examines some of the latest and most advanced simulation techniques currently available, as well as up-to-date theoretical approaches adopted by a selected panel of twelve international research teams. It covers a wide range of novel and advanced materials, exploring their structural, elastic, optical, mass and electronic transport properties. The cutting-edge techniques presented appeal to physicists, applied mathematicians and engineers interested in advanced simulation methods in materials science. The book can also be used as additional literature for undergraduate and postgraduate students with majors in physics, chemistry, applied mathematics and engineering.

Theory and Simulation Methods for Electronic and Phononic Transport in Thermoelectric Materials (SpringerBriefs in Physics)

by Neophytos Neophytou

This book introduces readers to state-of-the-art theoretical and simulation techniques for determining transport in complex band structure materials and nanostructured-geometry materials, linking the techniques developed by the electronic transport community to the materials science community. Starting from the semi-classical Boltzmann Transport Equation method for complex band structure materials, then moving on to Monte Carlo and fully quantum mechanical models for nanostructured materials, the book addresses the theory and computational complexities of each method, as well as their advantages and capabilities. Presented in language that is accessible to junior computational scientists, while including enough detail and depth with regards to numerical implementation to tackle modern research problems, it offers a valuable resource for computational scientists and postgraduate researchers whose work involves the theory and simulation of electro-thermal transport in advanced materials.

Theory and Simulation of Random Phenomena: Mathematical Foundations and Physical Applications (UNITEXT for Physics)

by Ettore Vitali Mario Motta Davide Emilio Galli

The purpose of this book is twofold: first, it sets out to equip the reader with a sound understanding of the foundations of probability theory and stochastic processes, offering step-by-step guidance from basic probability theory to advanced topics, such as stochastic differential equations, which typically are presented in textbooks that require a very strong mathematical background. Second, while leading the reader on this journey, it aims to impart the knowledge needed in order to develop algorithms that simulate realistic physical systems. Connections with several fields of pure and applied physics, from quantum mechanics to econophysics, are provided. Furthermore, the inclusion of fully solved exercises will enable the reader to learn quickly and to explore topics not covered in the main text. The book will appeal especially to graduate students wishing to learn how to simulate physical systems and to deepen their knowledge of the mathematical framework, which has very deep connections with modern quantum field theory.

Theory and Statistical Applications of Stochastic Processes

by Yuliya Mishura Georgiy Shevchenko

This book is concerned with the theory of stochastic processes and the theoretical aspects of statistics for stochastic processes. It combines classic topics such as construction of stochastic processes, associated filtrations, processes with independent increments, Gaussian processes, martingales, Markov properties, continuity and related properties of trajectories with contemporary subjects: integration with respect to Gaussian processes, Itȏ integration, stochastic analysis, stochastic differential equations, fractional Brownian motion and parameter estimation in diffusion models.

Theory and Synthesis of Linear Passive Time-Invariant Networks

by Dante C. Youla

Exploring the overlap of mathematics and engineering network synthesis, this book presents a rigorous treatment of the key principles underpinning linear lumped passive time-invariant networks. Based around a series of lectures given by the author, this thoughtfully written book draws on his wide experience in the field, carefully revealing the essential mathematical structure of network synthesis problems. Topics covered include passive n-ports, broadband matching, the design of passive multiplexes and two-state passive devices. It also includes material not usually found in existing texts, such as the theoretical behavior of transverse electromagnetic (TEM) coupled transmission lines. Introducing fundamental principles in a formal theorem-proof style, illustrated by worked examples, this book is an invaluable resource for graduate students studying linear networks and circuit design, academic researchers, and professional circuit engineers.

Theory and Technology of Roll Stamping

by Vyacheslav Aleksandrovich Golenkov Sergey Yuryevich Radchenko Daniil Olegovich Dorokhov

This book gives a complete overview of the roll stamping process of metal forming. This fundamentally new technique features an integrated local loading of the plastic deformation zone of the workpiece, simultaneously combining the die forging operation and local deformation of the deformation zone by rotating rollers or drive rolls. The book presents the basics of the theory behind roll stamping, delivering a complete technical analysis including the key results of mathematical modeling studies and a discussion of methodologies for designing novel roll stamping techniques. The aim of the new metal forming processes proposed in the book is directed toward the production of competitive equipment for fabrication of various mechanical parts having enhanced materials and physical properties in combination with a low cost of production and maintenance. This book is an ideal resource for any student or practicing engineer working with the roll stamping process.

Theory, Formulation and Realization of Artifacts Science: 3M&I-Body System (SpringerBriefs in Business)

by Masayuki Matsui

This book considers and builds on the main propositions regarding body similarity and the principles of nature versus artifacts in science. It also explores the design (matrix) power of the human, Material/Machine, Money & Information (3M&I) body with respect to productivity/gross domestic product (GDP). The book begins in 2009 with Weiner’s cybernetics and describes Matsui’s theory and dynamism concerning the basic equation of W = ZL and artifact formulation using matrix methods, such as Matsui’s matrix equation (Matsui’s ME). In his book Fundamentals and Principles of Artifacts Science: 3M&I-Body System, published by Springer in 2016, the author championed the white-box approach for 3M&I artifacts in contrast to Simon’s artificial approach from 1969. Two principles, the Sandwich (waist) and Balancing theories, and their fundamental problems, were identified. This book now proposes a third principle: the fractal/harmonic-like structure of the cosmos and life types in space and time. The book further elaborates on the complexity of the 3M&I system and management in terms of enterprises, economics, nature, and other applications. Also, the domain of nature versus artifacts is highlighted, demonstrating the possibility of a white-box cybernetics-type robot. This fosters the realization of humanized and harmonic worlds that combine increased happiness and social productivity in an age increasingly dominated by technology.

Theory, Numerics and Applications of Hyperbolic Problems I: Aachen, Germany, August 2016 (Springer Proceedings in Mathematics & Statistics #236)

by Christian Klingenberg Michael Westdickenberg

The first of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.

Theory, Numerics and Applications of Hyperbolic Problems II: Aachen, Germany, August 2016 (Springer Proceedings in Mathematics & Statistics #237)

by Christian Klingenberg Michael Westdickenberg

The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.

Theory of Affine Projection Algorithms for Adaptive Filtering

by Kazuhiko Ozeki

This book focuses on theoretical aspects of the affine projection algorithm (APA) for adaptive filtering. The APA is a natural generalization of the classical, normalized least-mean-squares (NLMS) algorithm. The book first explains how the APA evolved from the NLMS algorithm, where an affine projection view is emphasized. By looking at those adaptation algorithms from such a geometrical point of view, we can find many of the important properties of the APA, e. g. , the improvement of the convergence rate over the NLMS algorithm especially for correlated input signals. After the birth of the APA in the mid-1980s, similar algorithms were put forward by other researchers independently from different perspectives. This book shows that they are variants of the APA, forming a family of APAs. Then it surveys research on the convergence behavior of the APA, where statistical analyses play important roles. It also reviews developments of techniques to reduce the computational complexity of the APA, which are important for real-time processing. It covers a recent study on the kernel APA, which extends the APA so that it is applicable to identification of not only linear systems but also nonlinear systems. The last chapter gives an overview of current topics on variable parameter APAs. The book is self-contained, and is suitable for graduate students and researchers who are interested in advanced theory of adaptive filtering.

Theory of Agglomerative Hierarchical Clustering (Behaviormetrics: Quantitative Approaches to Human Behavior #15)

by Sadaaki Miyamoto

This book discusses recent theoretical developments in agglomerative hierarchical clustering. The general understanding of agglomerative hierarchical clustering is that its theory was completed long ago and there is no room for further methodological studies, at least in its fundamental structure. This book has been planned counter to that view: it will show that there are possibilities for further theoretical studies and they will be not only for methodological interests but also for usefulness in real applications. When compared with traditional textbooks, the present book has several notable features. First, standard linkage methods and agglomerative procedure are described by a general algorithm in which dendrogram output is expressed by a recursive subprogram. That subprogram describes an abstract tree structure, which is used for a two-stage linkage method for a greater number of objects. A fundamental theorem for single linkage using a fuzzy graph is proved, which uncovers several theoretical features of single linkage. Other theoretical properties such as dendrogram reversals are discussed. New methods using positive-definite kernels are considered, and some properties of the Ward method using kernels are studied. Overall, theoretical features are discussed, but the results are useful as well for application-oriented users of agglomerative clustering.

The Theory of Algebraic Numbers (Dover Books on Mathematics #9)

by Harry Pollard Harold G. Diamond

An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

Theory of Algebraic Surfaces (SpringerBriefs in Mathematics)

by Kunihiko Kodaira

This is an English translation of the book in Japanese, published as the volume 20 in the series of Seminar Notes from The University of Tokyo that grew out of a course of lectures by Professor Kunihiko Kodaira in 1967. It serves as an almost self-contained introduction to the theory of complex algebraic surfaces, including concise proofs of Gorenstein's theorem for curves on a surface and Noether's formula for the arithmetic genus. It also discusses the behavior of the pluri-canonical maps of surfaces of general type as a practical application of the general theory. The book is aimed at graduate students and also at anyone interested in algebraic surfaces, and readers are expected to have only a basic knowledge of complex manifolds as a prerequisite.

Theory of Approximation (Dover Books on Mathematics)

by N. I. Achieser

A pioneer of many modern developments in approximation theory, N. I. Achieser designed this graduate-level text from the standpoint of functional analysis. The first two chapters address approximation problems in linear normalized spaces and the ideas of P. L. Tchebysheff. Chapter III examines the elements of harmonic analysis, and Chapter IV, integral transcendental functions of the exponential type. The final two chapters explore the best harmonic approximation of functions and Wiener's theorem on approximation. Professor Achieser concludes this exemplary text with an extensive section of problems and applications (elementary extremal problems, Szego's theorem, the Carathéodory-Fejér problem, and more).

Theory of Besov Spaces (Developments in Mathematics #56)

by Yoshihiro Sawano

This is a self-contained textbook of the theory of Besov spaces and Triebel–Lizorkin spaces oriented toward applications to partial differential equations and problems of harmonic analysis. These include a priori estimates of elliptic differential equations, the T1 theorem, pseudo-differential operators, the generator of semi-group and spaces on domains, and the Kato problem. Various function spaces are introduced to overcome the shortcomings of Besov spaces and Triebel–Lizorkin spaces as well. The only prior knowledge required of readers is familiarity with integration theory and some elementary functional analysis.Illustrations are included to show the complicated way in which spaces are defined. Owing to that complexity, many definitions are required. The necessary terminology is provided at the outset, and the theory of distributions, L^p spaces, the Hardy–Littlewood maximal operator, and the singular integral operators are called upon. One of the highlights is that the proof of the Sobolev embedding theorem is extremely simple. There are two types for each function space: a homogeneous one and an inhomogeneous one. The theory of function spaces, which readers usually learn in a standard course, can be readily applied to the inhomogeneous one. However, that theory is not sufficient for a homogeneous space; it needs to be reinforced with some knowledge of the theory of distributions. This topic, however subtle, is also covered within this volume. Additionally, related function spaces—Hardy spaces, bounded mean oscillation spaces, and Hölder continuous spaces—are defined and discussed, and it is shown that they are special cases of Besov spaces and Triebel–Lizorkin spaces.

The Theory of Collusion and Competition Policy

by Joseph E. Harrington

A review of the theoretical research on unlawful collusion, focusing on the impact and optimal design of competition law and enforcement. Collusion occurs when firms in a market coordinate their behavior for the purpose of producing a supracompetitive outcome. The literature on the theory of collusion is deep and broad but most of that work does not take account of the possible illegality of collusion. Recently, there has been a growing body of research that explicitly focuses on collusion that runs afoul of competition law and thereby makes firms potentially liable for penalties. This book, by an expert on the subject, reviews the theoretical research on unlawful collusion, with a focus on two issues: the impact of competition law and enforcement on whether, how long, and how much firms collude; and the optimal design of competition law and enforcement.The book begins by discussing general issues that arise when models of collusion take into account competition law and enforcement. It goes on to consider game-theoretic models that encompass the probability of detection and penalties incurred when convicted, and examines how these policy instruments affect the frequency of cartels, cartel duration, cartel participation, and collusive prices. The book then considers the design of competition law and enforcement, examining such topics as the formula for penalties and leniency programs. The book concludes with suggested future lines of inquiry into illegal collusion.

Theory of Computation

by George Tourlakis

Learn the skills and acquire the intuition to assess the theoretical limitations of computer programming Offering an accessible approach to the topic, Theory of Computation focuses on the metatheory of computing and the theoretical boundaries between what various computational models can do and not do--from the most general model, the URM (Unbounded Register Machines), to the finite automaton. A wealth of programming-like examples and easy-to-follow explanations build the general theory gradually, which guides readers through the modeling and mathematical analysis of computational phenomena and provides insights on what makes things tick and also what restrains the ability of computational processes. Recognizing the importance of acquired practical experience, the book begins with the metatheory of general purpose computer programs, using URMs as a straightforward, technology-independent model of modern high-level programming languages while also exploring the restrictions of the URM language. Once readers gain an understanding of computability theory--including the primitive recursive functions--the author presents automata and languages, covering the regular and context-free languages as well as the machines that recognize these languages. Several advanced topics such as reducibilities, the recursion theorem, complexity theory, and Cook's theorem are also discussed. Features of the book include: A review of basic discrete mathematics, covering logic and induction while omitting specialized combinatorial topics A thorough development of the modeling and mathematical analysis of computational phenomena, providing a solid foundation of un-computability The connection between un-computability and un-provability: Gödel's first incompleteness theorem The book provides numerous examples of specific URMs as well as other programming languages including Loop Programs, FA (Deterministic Finite Automata), NFA (Nondeterministic Finite Automata), and PDA (Pushdown Automata). Exercises at the end of each chapter allow readers to test their comprehension of the presented material, and an extensive bibliography suggests resources for further study. Assuming only a basic understanding of general computer programming and discrete mathematics, Theory of Computation serves as a valuable book for courses on theory of computation at the upper-undergraduate level. The book also serves as an excellent resource for programmers and computing professionals wishing to understand the theoretical limitations of their craft.

Theory of Computational Complexity

by Ding-Zhu Du Ker-I Ko

Praise for the First Edition "...complete, up-to-date coverage of computational complexity theory...the book promises to become the standard reference on computational complexity." -Zentralblatt MATH A thorough revision based on advances in the field of computational complexity and readers' feedback, the Second Edition of Theory of Computational Complexity presents updates to the principles and applications essential to understanding modern computational complexity theory. The new edition continues to serve as a comprehensive resource on the use of software and computational approaches for solving algorithmic problems and the related difficulties that can be encountered. Maintaining extensive and detailed coverage, Theory of Computational Complexity, Second Edition, examines the theory and methods behind complexity theory, such as computational models, decision tree complexity, circuit complexity, and probabilistic complexity. The Second Edition also features recent developments on areas such as NP-completeness theory, as well as: A new combinatorial proof of the PCP theorem based on the notion of expander graphs, a research area in the field of computer science Additional exercises at varying levels of difficulty to further test comprehension of the presented material End-of-chapter literature reviews that summarize each topic and offer additional sources for further study Theory of Computational Complexity, Second Edition, is an excellent textbook for courses on computational theory and complexity at the graduate level. The book is also a useful reference for practitioners in the fields of computer science, engineering, and mathematics who utilize state-of-the-art software and computational methods to conduct research. A thorough revision based on advances in the field of computational complexity and readers' feedback, the Second Edition of Theory of Computational Complexity presents updates to the principles and applications essential to understanding modern computational complexity theory. The new edition continues to serve as a comprehensive resource on the use of software and computational approaches for solving algorithmic problems and the related difficulties that can be encountered. Maintaining extensive and detailed coverage, Theory of Computational Complexity, Second Edition, examines the theory and methods behind complexity theory, such as computational models, decision tree complexity, circuit complexity, and probabilistic complexity. The Second Edition also features recent devnd complexity at the graduate level. The book is also a useful reference for practitioners in the fields of computer science, engineering, and mathematics who utilize state-of-the-art software and computational methods to conduct research.

Theory of Control Systems Described by Differential Inclusions

by Zhengzhi Han Xiushan Cai Jun Huang

This book provides a brief introduction to the theory of finitedimensional differential inclusions, and deals in depth with control of threekinds of differential inclusion systems. The authors introduce the algebraicdecomposition of convex processes, the stabilization of polytopic systems, andobservations of Luré systems. They also introduce the elemental theory offinite dimensional differential inclusions, and the properties and designs ofthe control systems described by differential inclusions. Addressing thematerial with clarity and simplicity, the book includes recent researchachievements and spans all concepts, concluding with a critical mathematicalframework. This book is intended for researchers, teachers and postgraduatestudents in the area of automatic control engineering.

Theory Of Difference Equations Numerical Methods And Applications: Numerical Methods And Applications

by V. Lakshmikantham V. Trigiante

"Provides a clear and comprehensive overview of the fundamental theories, numerical methods, and iterative processes encountered in difference calculus. Explores classical problems such as orthological polynomials, the Euclidean algorithm, roots of polynomials, and well-conditioning."

Theory of Differential Equations in Engineering and Mechanics

by Kam Tim Chau

This gives comprehensive coverage of the essential differential equations students they are likely to encounter in solving engineering and mechanics problems across the field -- alongside a more advance volume on applications. This first volume covers a very broad range of theories related to solving differential equations, mathematical preliminaries, ODE (n-th order and system of 1st order ODE in matrix form), PDE (1st order, 2nd, and higher order including wave, diffusion, potential, biharmonic equations and more). Plus more advanced topics such as Green’s function method, integral and integro-differential equations, asymptotic expansion and perturbation, calculus of variations, variational and related methods, finite difference and numerical methods. All readers who are concerned with and interested in engineering mechanics problems, climate change, and nanotechnology will find topics covered in these books providing valuable information and mathematics background for their multi-disciplinary research and education.

Refine Search

Showing 23,601 through 23,625 of 25,255 results