Browse Results

Showing 23,651 through 23,675 of 25,255 results

Theory of Lattice-Ordered Groups

by Michael Darnel

Provides a thorough discussion of the orderability of a group. The book details the major developments in the theory of lattice-ordered groups, delineating standard approaches to structural and permutation representations. A radically new presentation of the theory of varieties of lattice-ordered groups is offered.;This work is intended for pure and applied mathematicians and algebraists interested in topics such as group, order, number and lattice theory, universal algebra, and representation theory; and upper-level undergraduate and graduate students in these disciplines.;College or university bookstores may order five or more copies at a special student price which is available from Marcel Dekker Inc, upon request.

Theory of Linear Models

by Bent Jorgensen

Providing a self-contained exposition of the theory of linear models, this treatise strikes a compromise between theory and practice, providing a sound theoretical basis while putting the theory to work in important cases.

Theory of Linear Operators in Hilbert Space

by I. M. Glazman N. I. Akhiezer

This classic textbook by two mathematicians from the USSR's prestigious Kharkov Mathematics Institute introduces linear operators in Hilbert space, and presents in detail the geometry of Hilbert space and the spectral theory of unitary and self-adjoint operators. It is directed to students at graduate and advanced undergraduate levels, but because of the exceptional clarity of its theoretical presentation and the inclusion of results obtained by Soviet mathematicians, it should prove invaluable for every mathematician and physicist. 1961, 1963 edition.

Theory of Linear Physical Systems: Theory of physical systems from the viewpoint of classical dynamics, including Fourier methods

by Ernst A. Guillemin

An eminent electrical engineer and authority on linear system theory takes upper-level undergraduates and graduate students beyond the average introductory circuits course, providing them with additional background for understanding advanced network synthesis. This sophisticated treatise broadens students' understanding of the topological and algebraic relations for establishing equilibrium equations and transformations between sets of variables. The text further examines energy functions in both active and passive situations as well as important properties of impedance and similar characterizing functions.The treatment also explores the evaluation and prediction of approximation and truncation errors attendant upon the use of numerical methods of direct and inverse Fourier transform evaluation; the properties of partial sums; and the interpretation of limit processes. In addition, the text stresses the relation between the Fourier and Laplace methods and the approach in classical dynamics, basing the evaluation of Fourier integrals upon meaningful physical reasoning and providing an effective tool for dealing with special problems from the viewpoint of classical dynamics.

Theory of Liquids: From Excitations to Thermodynamics

by Kostya Trachenko

Of the three basic states of matter, liquid is perhaps the most complex. While its flow properties are described by fluid mechanics, its thermodynamic properties are often neglected, and for many years it was widely believed that a general theory of liquid thermodynamics was unattainable. In recent decades that view has been challenged, as new advances have finally enabled us to understand and describe the thermodynamic properties of liquids. This book explains the recent developments in theory, experiment and modelling that have enabled us to understand the behaviour of excitations in liquids and the impact of this behaviour on heat capacity and other basic properties. Presented in plain language with a focus on real liquids and their experimental properties, this book is a useful reference text for researchers and graduate students in condensed matter physics and chemistry as well as for advanced courses covering the theory of liquids.

Theory of Markov Processes (Dover Books on Mathematics)

by E. B. Dynkin D. E. Brown T. Kovary

An investigation of the logical foundations of the theory behind Markov random processes, this text explores subprocesses, transition functions, and conditions for boundedness and continuity. Rather than focusing on probability measures individually, the work explores connections between functions. An elementary grasp of the theory of Markov processes is assumed.Starting with a brief survey of relevant concepts and theorems from measure theory, the text investigates operations that permit an inspection of the class of Markov processes corresponding to a given transition function. It advances to the more complicated operations of generating a subprocess, followed by examinations of the construction of Markov processes with given transition functions, the concept of a strictly "Markov process," and the conditions required for boundedness and continuity of a Markov process. Addenda, notes, references, and indexes supplement the text.

The Theory of Matrices in Numerical Analysis

by Alston S. Householder

This text explores aspects of matrix theory that are most useful in developing and appraising computational methods for solving systems of linear equations and for finding characteristic roots. Suitable for advanced undergraduates and graduate students, it assumes an understanding of the general principles of matrix algebra, including the Cayley-Hamilton theorem, characteristic roots and vectors, and linear dependence.An introductory chapter covers the Lanczos algorithm, orthogonal polynomials, and determinantal identities. Succeeding chapters examine norms, bounds, and convergence; localization theorems and other inequalities; and methods of solving systems of linear equations. The final chapters illustrate the mathematical principles underlying linear equations and their interrelationships. Topics include methods of successive approximation, direct methods of inversion, normalization and reduction of the matrix, and proper values and vectors. Each chapter concludes with a helpful set of references and problems.

Theory of Nonparametric Tests

by Thorsten Dickhaus

This textbook provides a self-contained presentation of the main concepts and methods of nonparametric statistical testing, with a particular focus on the theoretical foundations of goodness-of-fit tests, rank tests, resampling tests, and projection tests. The substitution principle is employed as a unified approach to the nonparametric test problems discussed. In addition to mathematical theory, it also includes numerous examples and computer implementations. The book is intended for advanced undergraduate, graduate, and postdoc students as well as young researchers. Readers should be familiar with the basic concepts of mathematical statistics typically covered in introductory statistics courses.

Theory of Np Spaces (Frontiers in Mathematics)

by Le Hai Khoi Javad Mashreghi

This monograph provides a comprehensive study of a typical and novel function space, known as the $\mathcal{N}_p$ spaces. These spaces are Banach and Hilbert spaces of analytic functions on the open unit disk and open unit ball, and the authors also explore composition operators and weighted composition operators on these spaces. The book covers a significant portion of the recent research on these spaces, making it an invaluable resource for those delving into this rapidly developing area. The authors introduce various weighted spaces, including the classical Hardy space $H^2$, Bergman space $B^2$, and Dirichlet space $\mathcal{D}$. By offering generalized definitions for these spaces, readers are equipped to explore further classes of Banach spaces such as Bloch spaces $\mathcal{B}^p$ and Bergman-type spaces $A^p$. Additionally, the authors extend their analysis beyond the open unit disk $\mathbb{D}$ and open unit ball $\mathbb{B}$ by presenting families of entire functions in the complex plane $\mathbb{C}$ and in higher dimensions. The Theory of $\mathcal{N}_p$ Spaces is an ideal resource for researchers and PhD students studying spaces of analytic functions and operators within these spaces.

Theory of Phase Transitions in Polypeptides and Proteins

by Alexander V. Yakubovich

There are nearly 100 000 different protein sequences encoded in the human genome, each with its own specific fold. Understanding how a newly formed polypeptide sequence finds its way to the correct fold is one of the greatest challenges in the modern structural biology. The aim of this thesis is to provide novel insights into protein folding by considering the problem from the point of view of statistical mechanics. The thesis starts by investigating the fundamental degrees of freedom in polypeptides that are responsible for the conformational transitions. This knowledge is then applied in the statistical mechanics description of helix coil transitions in polypeptides. Finally, the theoretical formalism is generalized to the case of proteins in an aqueous environment. The major novelty of this work lies in combining (a) a formalism based on fundamental physical properties of the system and (b) the resulting possibility of describing the folding unfolding transitions quantitatively. The clear physical nature of the formalism opens the way to further applications in a large variety of systems and processes.

A Theory of Philosophical Fallacies (Argumentation Library #26)

by Leonard Nelson

Presented as a Vorlesung in the German philosophical tradition, this book presents the most detailed account of Nelson's method of argument analysis, celebrated by many luminaries such as Karl Popper. It was written in 1921 in opposition to the relativistic, subjectivistic and nihilistic tendencies of Nelson's time. The book contains an exposition of a method that is a further development of Kant's transcendental dialectics, followed by an application to the critical analysis of arguments by many famous thinkers, including Bentham, Mill, Poincaré, Leibniz, Hegel, Einstein, Bergson, Rickert, Simmel, Brentano, Stammler, Jellinek, Dingler, and Meinong. The book presents a general theory of philosophical argumentation as seen from the viewpoint of the typical fallacies committed by anybody arguing philosophically, whether professional philosophers or philosophical laypeople. Although the nature of philosophy and philosophical argumentation is one of the most recurrent objects of reflection for philosophers, this book represents the first attempt at a general theory of philosophical fallacy. According to Nelson, it is in the shape of false dilemmas that errors in reasoning always emerge, and false dilemmas are always the result of the same mechanism--the unwitting replacement of one concept for another.

Theory of Probability: A critical introductory treatment

by Bruno De Finetti

First issued in translation as a two-volume work in 1975, this classic book provides the first complete development of the theory of probability from a subjectivist viewpoint. It proceeds from a detailed discussion of the philosophical mathematical aspects to a detailed mathematical treatment of probability and statistics. De Finetti’s theory of probability is one of the foundations of Bayesian theory. De Finetti stated that probability is nothing but a subjective analysis of the likelihood that something will happen and that that probability does not exist outside the mind. It is the rate at which a person is willing to bet on something happening. This view is directly opposed to the classicist/ frequentist view of the likelihood of a particular outcome of an event, which assumes that the same event could be identically repeated many times over, and the 'probability' of a particular outcome has to do with the fraction of the time that outcome results from the repeated trials.

Theory of Probability

by Boris V. Gnedenko

This book is the sixth edition of a classic text that was first published in 1950 in the former Soviet Union. The clear presentation of the subject and extensive applications supported with real data helped establish the book as a standard for the field. To date, it has been published into more that ten languages and has gone through five editions. The sixth edition is a major revision over the fifth. It contains new material and results on the Local Limit Theorem, the Integral Law of Large Numbers, and Characteristic Functions. The new edition retains the feature of developing the subject from intuitive concepts and demonstrating techniques and theory through large numbers of examples. The author has, for the first time, included a brief history of probability and its development. Exercise problems and examples have been revised and new ones added.

The Theory of Probability

by Santosh S. Venkatesh

From classical foundations to advanced modern theory, this self-contained and comprehensive guide to probability weaves together mathematical proofs, historical context and richly detailed illustrative applications. A theorem discovery approach is used throughout, setting each proof within its historical setting and is accompanied by a consistent emphasis on elementary methods of proof. Each topic is presented in a modular framework, combining fundamental concepts with worked examples, problems and digressions which, although mathematically rigorous, require no specialised or advanced mathematical background. Augmenting this core material are over 80 richly embellished practical applications of probability theory, drawn from a broad spectrum of areas both classical and modern, each tailor-made to illustrate the magnificent scope of the formal results. Providing a solid grounding in practical probability, without sacrificing mathematical rigour or historical richness, this insightful book is a fascinating reference and essential resource, for all engineers, computer scientists and mathematicians.

Theory of Probability and Random Processes

by Yakov G. Sinai Leonid Koralov

A one-year course in probability theory and the theory of random processes, taught at Princeton University to undergraduate and graduate students, forms the core of this book. It provides a comprehensive and self-contained exposition of classical probability theory and the theory of random processes. The book includes detailed discussion of Lebesgue integration, Markov chains, random walks, laws of large numbers, limit theorems, and their relation to Renormalization Group theory. It also includes the theory of stationary random processes, martingales, generalized random processes, and Brownian motion.

The Theory of Queuing Systems with Correlated Flows

by Alexander N. Dudin Valentina I. Klimenok Vladimir M. Vishnevsky

This book is dedicated to the systematization and development of models, methods, and algorithms for queuing systems with correlated arrivals. After first setting up the basic tools needed for the study of queuing theory, the authors concentrate on complicated systems: multi-server systems with phase type distribution of service time or single-server queues with arbitrary distribution of service time or semi-Markovian service. They pay special attention to practically important retrial queues, tandem queues, and queues with unreliable servers. Mathematical models of networks and queuing systems are widely used for the study and optimization of various technical, physical, economic, industrial, and administrative systems, and this book will be valuable for researchers, graduate students, and practitioners in these domains.

Theory of Random Sets

by Ilya Molchanov

Stochastic geometry is a relatively new branch of mathematics. Although its predecessors such as geometric probability date back to the 18th century, the formal concept of a random set was developed in the beginning of the 1970s. Theory of Random Sets presents a state of the art treatment of the modern theory, but it does not neglect to recall and build on the foundations laid by Matheron and others, including the vast advances in stochastic geometry, probability theory, set-valued analysis, and statistical inference of the 1990s. The book is entirely self-contained, systematic and exhaustive, with the full proofs that are necessary to gain insight. It shows the various interdisciplinary relationships of random set theory within other parts of mathematics, and at the same time, fixes terminology and notation that are often varying in the current literature to establish it as a natural part of modern probability theory, and to provide a platform for future development.

The Theory of Remainders

by Andrea Rothbart

An imaginative introduction to number theory, this unique approach employs a pair of fictional characters, Ant and Gnam. Ant leads Gnam through a variety of theories, and together, they put the theories into action--applying linear diophantine equations to football scoring, using a black-magic device to simplify problems in modular structures, and developing intriguing modifications to the rules of chess.Appropriate for anyone familiar with algebra at the high-school level, The Theory of Remainders offers a captivating introduction to both number theory and abstract algebra. Both elementary and challenging, it provides a view of mathematics as a conceptual net and illustrates the differences between conceptual and paraconceptual claims--an excellent start to expanding students' perspectives on mathematics.Exercises throughout the book form an integral part of the text, extending students' experience with the concepts under discussion and presenting opportunities to observe patterns. In addition to the exercises, a series of optional problems allows more advanced readers to further develop the concepts.

Theory of Reproducing Kernels and Applications

by Saburou Saitoh Yoshihiro Sawano

This book provides a large extension of the general theory of reproducing kernels published by N. Aronszajn in 1950, with many concrete applications. In Chapter 1, many concrete reproducing kernels are first introduced with detailed information. Chapter 2 presents a general and global theory of reproducing kernels with basic applications in a self-contained way. Many fundamental operations among reproducing kernel Hilbert spaces are dealt with. Chapter 2 is the heart of this book. Chapter 3 is devoted to the Tikhonov regularization using the theory of reproducing kernels with applications to numerical and practical solutions of bounded linear operator equations. In Chapter 4, the numerical real inversion formulas of the Laplace transform are presented by applying the Tikhonov regularization, where the reproducing kernels play a key role in the results. Chapter 5 deals with ordinary differential equations; Chapter 6 includes many concrete results for various fundamental partial differential equations. In Chapter 7, typical integral equations are presented with discretization methods. These chapters are applications of the general theories of Chapter 3 with the purpose of practical and numerical constructions of the solutions. In Chapter 8, hot topics on reproducing kernels are presented; namely, norm inequalities, convolution inequalities, inversion of an arbitrary matrix, representations of inverse mappings, identifications of nonlinear systems, sampling theory, statistical learning theory and membership problems. Relationships among eigen-functions, initial value problems for linear partial differential equations, and reproducing kernels are also presented. Further, new fundamental results on generalized reproducing kernels, generalized delta functions, generalized reproducing kernel Hilbert spaces, andas well, a general integral transform theory are introduced. In three Appendices, the deep theory of Akira Yamada discussing the equality problems in nonlinear norm inequalities, Yamada's unified and generalized inequalities for Opial's inequalities and the concrete and explicit integral representation of the implicit functions are presented.

Theory of Ridge Regression Estimation with Applications (Wiley Series in Probability and Statistics)

by A. K. Saleh Mohammad Arashi Golam Kibria

A guide to the systematic analytical results for ridge, LASSO, preliminary test, and Stein-type estimators with applications Theory of Ridge Regression Estimation with Applications offers a comprehensive guide to the theory and methods of estimation. Ridge regression and LASSO are at the center of all penalty estimators in a range of standard models that are used in many applied statistical analyses. Written by noted experts in the field, the book contains a thorough introduction to penalty and shrinkage estimation and explores the role that ridge, LASSO, and logistic regression play in the computer intensive area of neural network and big data analysis. Designed to be accessible, the book presents detailed coverage of the basic terminology related to various models such as the location and simple linear models, normal and rank theory-based ridge, LASSO, preliminary test and Stein-type estimators. The authors also include problem sets to enhance learning. This book is a volume in the Wiley Series in Probability and Statistics series that provides essential and invaluable reading for all statisticians. This important resource: Offers theoretical coverage and computer-intensive applications of the procedures presented Contains solutions and alternate methods for prediction accuracy and selecting model procedures Presents the first book to focus on ridge regression and unifies past research with current methodology Uses R throughout the text and includes a companion website containing convenient data sets Written for graduate students, practitioners, and researchers in various fields of science, Theory of Ridge Regression Estimation with Applications is an authoritative guide to the theory and methodology of statistical estimation.

Theory of Sampling and Sampling Practice, Third Edition

by Francis F. Pitard

A step-by-step guide for anyone challenged by the many subtleties of sampling particulate materials. The only comprehensive document merging the famous works of P. Gy, I. Visman, and C.O. Ingamells into a single theory in a logical way - the most advanced book on sampling that can be used by all sampling practitioners around the world.

Theory of Spatial Statistics: A Concise Introduction (Chapman & Hall/CRC Texts in Statistical Science)

by M.N.M. van Lieshout

Theory of Spatial Statistics: A Concise Introduction presents the most important models used in spatial statistics, including random fields and point processes, from a rigorous mathematical point of view and shows how to carry out statistical inference. It contains full proofs, real-life examples and theoretical exercises. Solutions to the latter are available in an appendix.Assuming maturity in probability and statistics, these concise lecture notes are self-contained and cover enough material for a semester course. They may also serve as a reference book for researchers.Features* Presents the mathematical foundations of spatial statistics.* Contains worked examples from mining, disease mapping, forestry, soil and environmental science, and criminology.* Gives pointers to the literature to facilitate further study.* Provides example code in R to encourage the student to experiment.* Offers exercises and their solutions to test and deepen understanding.The book is suitable for postgraduate and advanced undergraduate students in mathematics and statistics.

The Theory of Spinors

by Élie Cartan

The French mathematician Élie Cartan (1869-1951) was one of the founders of the modern theory of Lie groups, a subject of central importance in mathematics and also one with many applications. In this volume, he describes the orthogonal groups, either with real or complex parameters including reflections, and also the related groups with indefinite metrics. He develops the theory of spinors (he discovered the general mathematical form of spinors in 1913) systematically by giving a purely geometrical definition of these mathematical entities; this geometrical origin makes it very easy to introduce spinors into Riemannian geometry, and particularly to apply the idea of parallel transport to these geometrical entities.The book is divided into two parts. The first is devoted to generalities on the group of rotations in n-dimensional space and on the linear representations of groups, and to the theory of spinors in three-dimensional space. Finally, the linear representations of the group of rotations in that space (of particular importance to quantum mechanics) are also examined. The second part is devoted to the theory of spinors in spaces of any number of dimensions, and particularly in the space of special relativity (Minkowski space). While the basic orientation of the book as a whole is mathematical, physicists will be especially interested in the final chapters treating the applications of spinors in the rotation and Lorentz groups. In this connection, Cartan shows how to derive the "Dirac" equation for any group, and extends the equation to general relativity.One of the greatest mathematicians of the 20th century, Cartan made notable contributions in mathematical physics, differential geometry, and group theory. Although a profound theorist, he was able to explain difficult concepts with clarity and simplicity. In this detailed, explicit treatise, mathematicians specializing in quantum mechanics will find his lucid approach a great value.

Theory of Spinors and Its Application in Physics and Mechanics

by Vladimir A. Zhelnorovich

This book contains a systematic exposition of the theory of spinors in finite-dimensional Euclidean and Riemannian spaces. The applications of spinors in field theory and relativistic mechanics of continuous media are considered. The main mathematical part is connected with the study of invariant algebraic and geometric relations between spinors and tensors. The theory of spinors and the methods of the tensor representation of spinors and spinor equations are thoroughly expounded in four-dimensional and three-dimensional spaces. Very useful and important relations are derived that express the derivatives of the spinor fields in terms of the derivatives of various tensor fields.The problems associated with an invariant description of spinors as objects that do not depend on the choice of a coordinate system are addressed in detail. As an application, the author considers an invariant tensor formulation of certain classes of differential spinor equations containing, in particular, the most important spinor equations of field theory and quantum mechanics. Exact solutions of the Einstein–Dirac equations, nonlinear Heisenberg’s spinor equations, and equations for relativistic spin fluids are given. The book presents a large body of factual material and is suited for use as a handbook. It is intended for specialists in theoretical physics, as well as for students and post-graduate students of physical and mathematical specialties.

Theory of Stability of Continuous Elastic Structures (Engineering Mathematics Ser.)

by Mario Como

Theory of Stability of Continuous Elastic Structures presents an applied mathematical treatment of the stability of civil engineering structures. The book's modern and rigorous approach makes it especially useful as a text in advanced engineering courses and an invaluable reference for engineers.

Refine Search

Showing 23,651 through 23,675 of 25,255 results