Browse Results

Showing 2,401 through 2,425 of 28,206 results

An Introduction to the Theory of Linear Spaces (Dover Books on Mathematics)

by Richard A. Silverman Georgi E. Shilov

This introduction to linear algebra and functional analysis offers a clear expository treatment, viewing algebra, geometry, and analysis as parts of an integrated whole rather than separate subjects. All abstract ideas receive a high degree of motivation, and numerous examples illustrate many different fields of mathematics. Abundant problems include hints or answers.

An Introduction to the Theory of Reproducing Kernel Hilbert Spaces

by Vern I. Paulsen Mrinal Raghupathi

Reproducing kernel Hilbert spaces have developed into an important tool in many areas, especially statistics and machine learning, and they play a valuable role in complex analysis, probability, group representation theory, and the theory of integral operators. This unique text offers a unified overview of the topic, providing detailed examples of applications, as well as covering the fundamental underlying theory, including chapters on interpolation and approximation, Cholesky and Schur operations on kernels, and vector-valued spaces. Self-contained and accessibly written, with exercises at the end of each chapter, this unrivalled treatment of the topic serves as an ideal introduction for graduate students across mathematics, computer science, and engineering, as well as a useful reference for researchers working in functional analysis or its applications.

An Introduction to the Topological Derivative Method (SpringerBriefs in Mathematics)

by Antonio André Novotny Jan Sokołowski

This book presents the topological derivative method through selected examples, using a direct approach based on calculus of variations combined with compound asymptotic analysis. This new concept in shape optimization has applications in many different fields such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena. In particular, the topological derivative is used here in numerical methods of shape optimization, with applications in the context of compliance structural topology optimization and topology design of compliant mechanisms. Some exercises are offered at the end of each chapter, helping the reader to better understand the involved concepts.

An Introductory Course in Functional Analysis (Universitext)

by Adam Bowers Nigel J. Kalton

Based on a graduate course by the celebrated analyst Nigel Kalton, this well-balanced introduction to functional analysis makes clear not only how, but why, the field developed. All major topics belonging to a first course in functional analysis are covered. However, unlike traditional introductions to the subject, Banach spaces are emphasized over Hilbert spaces, and many details are presented in a novel manner, such as the proof of the Hahn-Banach theorem based on an inf-convolution technique, the proof of Schauder's theorem, and the proof of the Milman-Pettis theorem. With the inclusion of many illustrative examples and exercises, An Introductory Course in Functional Analysis equips the reader to apply the theory and to master its subtleties. It is therefore well-suited as a textbook for a one- or two-semester introductory course in functional analysis or as a companion for independent study.

An Introductory Course in Lebesgue Spaces (CMS Books in Mathematics)

by Rene Erlin Castillo Humberto Rafeiro

This book is devoted exclusively to Lebesgue spaces and their direct derived spaces. Unique in its sole dedication, this book explores Lebesgue spaces, distribution functions and nonincreasing rearrangement. Moreover, it also deals with weak, Lorentz and the more recent variable exponent and grand Lebesgue spaces with considerable detail to the proofs. The book also touches on basic harmonic analysis in the aforementioned spaces. An appendix is given at the end of the book giving it a self-contained character. This work is ideal for teachers, graduate students and researchers.

An Introductory Course in Summability Theory

by P. N. Natarajan Hemen Dutta Ants Aasma

An introductory course in summability theory for students, researchers, physicists, and engineers In creating this book, the authors’ intent was to provide graduate students, researchers, physicists, and engineers with a reasonable introduction to summability theory. Over the course of nine chapters, the authors cover all of the fundamental concepts and equations informing summability theory and its applications, as well as some of its lesser known aspects. Following a brief introduction to the history of summability theory, general matrix methods are introduced, and the Silverman-Toeplitz theorem on regular matrices is discussed. A variety of special summability methods, including the Nörlund method, the Weighted Mean method, the Abel method, and the (C, 1) - method are next examined. An entire chapter is devoted to a discussion of some elementary Tauberian theorems involving certain summability methods. Following this are chapters devoted to matrix transforms of summability and absolute summability domains of reversible and normal methods; the notion of a perfect matrix method; matrix transforms of summability and absolute summability domains of the Cesàro and Riesz methods; convergence and the boundedness of sequences with speed; and convergence, boundedness, and summability with speed. • Discusses results on matrix transforms of several matrix methods • The only English-language textbook describing the notions of convergence, boundedness, and summability with speed, as well as their applications in approximation theory • Compares the approximation orders of Fourier expansions in Banach spaces by different matrix methods • Matrix transforms of summability domains of regular perfect matrix methods are examined • Each chapter contains several solved examples and end-of-chapter exercises, including hints for solutions An Introductory Course in Summability Theory is the ideal first text in summability theory for graduate students, especially those having a good grasp of real and complex analysis. It is also a valuable reference for mathematics researchers and for physicists and engineers who work with Fourier series, Fourier transforms, or analytic continuation. ANTS AASMA, PhD, is Associate Professor of Mathematical Economics in the Department of Economics and Finance at Tallinn University of Technology, Estonia. HEMEN DUTTA, PhD, is Senior Assistant Professor of Mathematics at Gauhati University, India. P.N. NATARAJAN, PhD, is Formerly Professor and Head of the Department of Mathematics, Ramakrishna Mission Vivekananda College, Chennai, Tamilnadu, India.

An Introductory Course on Differentiable Manifolds

by Siavash Shahshahani

Based on author Siavash Shahshahani's extensive teaching experience, this volume presents a thorough, rigorous course on the theory of differentiable manifolds. Geared toward advanced undergraduates and graduate students in mathematics, the treatment's prerequisites include a strong background in undergraduate mathematics, including multivariable calculus, linear algebra, elementary abstract algebra, and point set topology. More than 200 exercises offer students ample opportunity to gauge their skills and gain additional insights.The four-part treatment begins with a single chapter devoted to the tensor algebra of linear spaces and their mappings. Part II brings in neighboring points to explore integrating vector fields, Lie bracket, exterior derivative, and Lie derivative. Part III, involving manifolds and vector bundles, develops the main body of the course. The final chapter provides a glimpse into geometric structures by introducing connections on the tangent bundle as a tool to implant the second derivative and the derivative of vector fields on the base manifold. Relevant historical and philosophical asides enhance the mathematical text, and helpful Appendixes offer supplementary material.

An Introductory Guide to Computational Methods for the Solution of Physics Problems (Lecture Notes in Physics #955)

by George Rawitscher Victo dos Santos Filho Thiago Carvalho Peixoto

This monograph presents fundamental aspects of modern spectral and other computational methods, which are not generally taught in traditional courses. It emphasizes concepts as errors, convergence, stability, order and efficiency applied to the solution of physical problems. The spectral methods consist in expanding the function to be calculated into a set of appropriate basis functions (generally orthogonal polynomials) and the respective expansion coefficients are obtained via collocation equations. The main advantage of these methods is that they simultaneously take into account all available information, rather only the information available at a limited number of mesh points. They require more complicated matrix equations than those obtained in finite difference methods. However, the elegance, speed, and accuracy of the spectral methods more than compensates for any such drawbacks. During the course of the monograph, the authors examine the usually rapid convergence of the spectral expansions and the improved accuracy that results when nonequispaced support points are used, in contrast to the equispaced points used in finite difference methods. In particular, they demonstrate the enhanced accuracy obtained in the solution of integral equations.The monograph includes an informative introduction to old and new computational methods with numerous practical examples, while at the same time pointing out the errors that each of the available algorithms introduces into the specific solution. It is a valuable resource for undergraduate students as an introduction to the field and for graduate students wishing to compare the available computational methods. In addition, the work develops the criteria required for students to select the most suitable method to solve the particular scientific problem that they are confronting.

An Introductory Path to Quantum Theory: Using Mathematics to Understand the Ideas of Physics

by Stephen Bruce Sontz

Since the 17th century, physical theories have been expressed in the language of mathematical equations. This introduction to quantum theory uses that language to enable the reader to comprehend the notoriously non-intuitive ideas of quantum physics. The mathematical knowledge needed for using this book comes from standard undergraduate mathematics courses and is described in detail in the section Prerequisites. This text is especially aimed at advanced undergraduate and graduate students of mathematics, computer science, engineering and chemistry among other disciplines, provided they have the math background even though lacking preparation in physics. In fact, no previous formal study of physics is assumed.

An Invariant Approach to Statistical Analysis of Shapes (Chapman & Hall/CRC Interdisciplinary Statistics)

by Subhash R. Lele Joan T. Richtsmeier

Natural scientists perceive and classify organisms primarily on the basis of their appearance and structure- their form , defined as that characteristic remaining invariant after translation, rotation, and possibly reflection of the object. The quantitative study of form and form change comprises the field of morphometrics. For morphometrics to suc

An Investigation of the Laws of Thought

by George Boole

George Boole was on of the greatest mathematicians of the 19th century, and one of the most influential thinkers of all time. Not only did he make important contributions to differential equations and calculus of finite differences, he also was the discoverer of invariants, and the founder of modern symbolic logic. According to Bertrand Russell, "Pure mathematics was discovered by George Boole in his work published in 1854."This work is the first extensive statement of the modern view that mathematics is a pure deductive science that can be applied to various situations. Boole first showed how classical logic could be treated with algebraic terminology and operations, and then proceeded to a general symbolic method of logical interference; he also attempted to devise a calculus of probabilities which could be applied to situations hitherto considered beyond investigation.The enormous range of this work can be seen from chapter headings: Nature and Design of This Work; Signs and Their Laws; Derivation of Laws; Division of Propositions; Principles of Symbolical Reasoning; Interpretation; Elimination; Reduction; Methods of Abbreviation; Conditions of a Perfect Method; Secondary Propositions; Methods in Secondary Propositions; Clarke and Spinoza; Analysis, Aristotelian Logic; Theory of Probabilities; General Method in Probabilities; Elementary Illustrations; Statistical Conditions; Problems on Causes; Probability of Judgments; Constitution of the Intellect. This last chapter, Constitution of the Intellect, is a very significant analysis of the psychology of discovery and scientific method.

An Invitation To Algebraic Numbers And Algebraic Functions

by Franz Halter-Koch

The author offers a thorough presentation of the classical theory of algebraic numbers and algebraic functions which both in its conception and in many details differs from the current literature on the subject. The basic features are: Field-theoretic preliminaries and a detailed presentation of Dedekind’s ideal theory including non-principal orders and various types of class groups; the classical theory of algebraic number fields with a focus on quadratic, cubic and cyclotomic fields; basics of the analytic theory including the prime ideal theorem, density results and the determination of the arithmetic by the class group; a thorough presentation of valuation theory including the theory of difference, discriminants, and higher ramification. The theory of function fields is based on the ideal and valuation theory developed before; it presents the Riemann-Roch theorem on the basis of Weil differentials and highlights in detail the connection with classical differentials. The theory of congruence zeta functions and a proof of the Hasse-Weil theorem represent the culminating point of the volume. The volume is accessible with a basic knowledge in algebra and elementary number theory. It empowers the reader to follow the advanced number-theoretic literature, and is a solid basis for the study of the forthcoming volume on the foundations and main results of class field theory. Key features: • A thorough presentation of the theory of Algebraic Numbers and Algebraic Functions on an ideal and valuation-theoretic basis.• Several of the topics both in the number field and in the function field case were not presented before in this context.• Despite presenting many advanced topics, the text is easily readable. Franz Halter-Koch is professor emeritus at the university of Graz. He is the author of “Ideal Systems” (Marcel Dekker,1998), “Quadratic Irrationals” (CRC, 2013), and a co-author of “Non-Unique Factorizations” (CRC 2006).

An Invitation to Abstract Algebra (Textbooks in Mathematics)

by Steven J. Rosenberg

Studying abstract algebra can be an adventure of awe-inspiring discovery. The subject need not be watered down nor should it be presented as if all students will become mathematics instructors. This is a beautiful, profound, and useful field which is part of the shared language of many areas both within and outside of mathematics. To begin this journey of discovery, some experience with mathematical reasoning is beneficial. This text takes a fairly rigorous approach to its subject, and expects the reader to understand and create proofs as well as examples throughout. The book follows a single arc, starting from humble beginnings with arithmetic and high-school algebra, gradually introducing abstract structures and concepts, and culminating with Niels Henrik Abel and Evariste Galois’ achievement in understanding how we can—and cannot—represent the roots of polynomials. The mathematically experienced reader may recognize a bias toward commutative algebra and fondness for number theory. The presentation includes the following features: Exercises are designed to support and extend the material in the chapter, as well as prepare for the succeeding chapters. The text can be used for a one, two, or three-term course. Each new topic is motivated with a question. A collection of projects appears in Chapter 23. Abstract algebra is indeed a deep subject; it can transform not only the way one thinks about mathematics, but the way that one thinks—period. This book is offered as a manual to a new way of thinking. The author’s aim is to instill the desire to understand the material, to encourage more discovery, and to develop an appreciation of the subject for its own sake.

An Invitation to Abstract Mathematics (Undergraduate Texts in Mathematics)

by Béla Bajnok

This undergraduate textbook is intended primarily for a transition course into higher mathematics, although it is written with a broader audience in mind. The heart and soul of this book is problem solving, where each problem is carefully chosen to clarify a concept, demonstrate a technique, or to enthuse. The exercises require relatively extensive arguments, creative approaches, or both, thus providing motivation for the reader. With a unified approach to a diverse collection of topics, this text points out connections, similarities, and differences among subjects whenever possible. This book shows students that mathematics is a vibrant and dynamic human enterprise by including historical perspectives and notes on the giants of mathematics, by mentioning current activity in the mathematical community, and by discussing many famous and less well-known questions that remain open for future mathematicians. Ideally, this text should be used for a two semester course, where the first course has no prerequisites and the second is a more challenging course for math majors; yet, the flexible structure of the book allows it to be used in a variety of settings, including as a source of various independent-study and research projects.

An Invitation to Abstract Mathematics (Undergraduate Texts in Mathematics)

by Béla Bajnok

This undergraduate textbook promotes an active transition to higher mathematics. Problem solving is the heart and soul of this book: each problem is carefully chosen to demonstrate, elucidate, or extend a concept. More than 300 exercises engage the reader in extensive arguments and creative approaches, while exploring connections between fundamental mathematical topics.Divided into four parts, this book begins with a playful exploration of the building blocks of mathematics, such as definitions, axioms, and proofs. A study of the fundamental concepts of logic, sets, and functions follows, before focus turns to methods of proof. Having covered the core of a transition course, the author goes on to present a selection of advanced topics that offer opportunities for extension or further study. Throughout, appendices touch on historical perspectives, current trends, and open questions, showing mathematics as a vibrant and dynamic human enterprise.This second edition has been reorganized to better reflect the layout and curriculum of standard transition courses. It also features recent developments and improved appendices. An Invitation to Abstract Mathematics is ideal for those seeking a challenging and engaging transition to advanced mathematics, and will appeal to both undergraduates majoring in mathematics, as well as non-math majors interested in exploring higher-level concepts.From reviews of the first edition:Bajnok’s new book truly invites students to enjoy the beauty, power, and challenge of abstract mathematics. … The book can be used as a text for traditional transition or structure courses … but since Bajnok invites all students, not just mathematics majors, to enjoy the subject, he assumes very little background knowledge. Jill Dietz, MAA ReviewsThe style of writing is careful, but joyously enthusiastic…. The author’s clear attitude is that mathematics consists of problem solving, and that writing a proof falls into this category. Students of mathematics are, therefore, engaged in problem solving, and should be given problems to solve, rather than problems to imitate. The author attributes this approach to his Hungarian background … and encourages students to embrace the challenge in the same way an athlete engages in vigorous practice. John Perry, zbMATH

An Invitation to Alexandrov Geometry: CAT(0) Spaces (SpringerBriefs in Mathematics)

by Stephanie Alexander Vitali Kapovitch Anton Petrunin

Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.

An Invitation to Applied Category Theory: Seven Sketches in Compositionality

by David I. Spivak Brendan Fong

Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.

An Invitation to Coarse Groups (Lecture Notes in Mathematics #2339)

by Arielle Leitner Federico Vigolo

This book lays the foundation for a theory of coarse groups: namely, sets with operations that satisfy the group axioms “up to uniformly bounded error”. These structures are the group objects in the category of coarse spaces, and arise naturally as approximate subgroups, or as coarse kernels.The first aim is to provide a standard entry-level introduction to coarse groups. Extra care has been taken to give a detailed, self-contained and accessible account of the theory. The second aim is to quickly bring the reader to the forefront of research. This is easily accomplished, as the subject is still young, and even basic questions remain unanswered. Reflecting its dual purpose, the book is divided into two parts. The first part covers the fundamentals of coarse groups and their actions. Here the theory of coarse homomorphisms, quotients and subgroups is developed, with proofs of coarse versions of the isomorphism theorems, and it is shown how coarse actions are related to fundamental aspects of geometric group theory. The second part, which is less self-contained, is an invitation to further research, where each thread leads to open questions of varying depth and difficulty. Among other topics, it explores coarse group structures on set-groups, groups of coarse automorphisms and spaces of controlled maps. The main focus is on connections between the theory of coarse groups and classical subjects, including: number theory; the study of bi-invariant metrics on groups; quasimorphisms and stable commutator length; groups of outer automorphisms; and topological groups and their actions. The book will primarily be of interest to researchers and graduate students in geometric group theory, topology, category theory and functional analysis, but some parts will also be accessible to advanced undergraduates.

An Invitation to General Algebra and Universal Constructions (Universitext #351)

by George M. Bergman

Rich in examples and intuitive discussions, this book presents General Algebra using the unifying viewpoint of categories and functors. Starting with a survey, in non-category-theoretic terms, of many familiar and not-so-familiar constructions in algebra (plus two from topology for perspective), the reader is guided to an understanding and appreciation of the general concepts and tools unifying these constructions. Topics include: set theory, lattices, category theory, the formulation of universal constructions in category-theoretic terms, varieties of algebras, and adjunctions. A large number of exercises, from the routine to the challenging, interspersed through the text, develop the reader's grasp of the material, exhibit applications of the general theory to diverse areas of algebra, and in some cases point to outstanding open questions. Graduate students and researchers wishing to gain fluency in important mathematical constructions will welcome this carefully motivated book.

An Invitation to Geomathematics (Lecture Notes in Geosystems Mathematics and Computing)

by Willi Freeden M. Zuhair Nashed Clemens Heine

The authors introduce geomathematics as an active research area to a wider audience. Chapter 1 presents an introduction to the Earth as a system to apply scientific methods. Emphasis is laid on transfers from virtual models to reality and vice versa. In the second chapter geomathematics is introduced as a new scientific area which nevertheless has its roots in antiquity. The modern conception of geomathematics is outlined from different points of view and its challenging nature is described as well as its interdisciplinarity. Geomathematics is shown as the bridge between the real world and the virtual world. The complex mathematical tools are shown from a variety of fields necessary to tackle geoscientific problems in the mathematical language. Chapter 3 contains some exemplary applications as novel exploration methods. Particular importance is laid on the change of language when it comes to translate measurements to mathematical models. New solution methods like the multiscale mollifier technique are presented. Further applications discussed are aspects of reflection seismics. Chapter 4 is devoted to the short description of recent activities in geomathematics. The Appendix (Chapter 5) is devoted to the GEM – International Journal on Geomathematics founded ten years ago. Besides a detailed structural analysis of the editorial goals an index of all papers published in former issues is given.

An Invitation to Hypoelliptic Operators and Hörmander's Vector Fields (SpringerBriefs in Mathematics)

by Marco Bramanti

Hörmander's operators are an important class of linear elliptic-parabolic degenerate partial differential operators with smooth coefficients, which have been intensively studied since the late 1960s and are still an active field of research. This text provides the reader with a general overview of the field, with its motivations and problems, some of its fundamental results, and some recent lines of development.

An Invitation to Knot Theory: Virtual and Classical

by Heather A. Dye

The Only Undergraduate Textbook to Teach Both Classical and Virtual Knot Theory An Invitation to Knot Theory: Virtual and Classical gives advanced undergraduate students a gentle introduction to the field of virtual knot theory and mathematical research. It provides the foundation for students to research knot theory and read journal articles on their own. Each chapter includes numerous examples, problems, projects, and suggested readings from research papers. The proofs are written as simply as possible using combinatorial approaches, equivalence classes, and linear algebra. The text begins with an introduction to virtual knots and counted invariants. It then covers the normalized f-polynomial (Jones polynomial) and other skein invariants before discussing algebraic invariants, such as the quandle and biquandle. The book concludes with two applications of virtual knots: textiles and quantum computation.

An Invitation to Mathematical Biology

by David G Costa Paul J Schulte

The textbook is designed to provide a "non-intimidating" entry to the field of mathematical biology. It is also useful for those wishing to teach an introductory course. Although there are many good mathematical biology texts available, most books are too advanced mathematically for most biology majors. Unlike undergraduate math majors, most biology major students possess a limited math background. Given that computational biology is a rapidly expanding field, more students should be encouraged to familiarize themselves with this powerful approach to understand complex biological phenomena. Ultimately, our goal with this undergraduate textbook is to provide an introduction to the interdisciplinary field of mathematical biology in a way that does not overly terrify an undergraduate biology major, thereby fostering a greater appreciation for the role of mathematics in biology

An Invitation to Mathematical Logic (Graduate Texts in Mathematics #301)

by David Marker

In addition to covering the essentials, the author’s intention in writing this text is to entice the reader to further study mathematical logic. There is no current “standard text” for a first graduate course in mathematical logic and this book will fill that gap. While there is more material than could be covered in a traditional one semester course, an instructor can cover the basics and still have the flexibility to choose several weeks’ worth of interesting advanced topics that have been introduced. The text can and will be used by people in various courses with different sorts of perspectives. This versatility is one of the many appealing aspects of this book. A list of suggested portions to be covered in a single course is provided as well as a useful chart which maps chapter dependencies. Additionally, a motivated student will have ample material for further reading. New definitions, formalism, and syntax have been streamlined to engage thereader quickly into the heart of logic and to more sophisticated topics. Part I and Part IV center on foundational questions, while Part III establishes the fundamentals of computability. Part II develops model theory, highlighting the model theory of the fields of real and complex numbers. The interplay between logic and other areas of mathematics, notably algebra, number theory, and combinatorics, are illustrated in Chapters 5, 6, 8, 14, and 16. For most of the text, the only prerequisite is mathematical maturity. The material should be accessible to first year graduate students or advanced undergraduates in mathematics, graduate students in philosophy with a solid math background, or students in computer science who want a mathematical introduction to logic. Prior exposure to logic is helpful but not assumed.

An Invitation to Mathematical Physics and Its History

by Jont Allen

This state of the art book takes an applications based approach to teaching mathematics to engineering and applied sciences students. The book lays emphasis on associating mathematical concepts with their physical counterparts, training students of engineering in mathematics to help them learn how things work. The book covers the concepts of number systems, algebra equations and calculus through discussions on mathematics and physics, discussing their intertwined history in a chronological order. The book includes examples, homework problems, and exercises. This book can be used to teach a first course in engineering mathematics or as a refresher on basic mathematical physics. Besides serving as core textbook, this book will also appeal to undergraduate students with cross-disciplinary interests as a supplementary text or reader.

Refine Search

Showing 2,401 through 2,425 of 28,206 results