Browse Results

Showing 24,126 through 24,150 of 28,269 results

Stochastic Linear-Quadratic Optimal Control Theory: Open-Loop and Closed-Loop Solutions (SpringerBriefs in Mathematics)

by Jingrui Sun Jiongmin Yong

This book gathers the most essential results, including recent ones, on linear-quadratic optimal control problems, which represent an important aspect of stochastic control. It presents the results in the context of finite and infinite horizon problems, and discusses a number of new and interesting issues. Further, it precisely identifies, for the first time, the interconnections between three well-known, relevant issues – the existence of optimal controls, solvability of the optimality system, and solvability of the associated Riccati equation. Although the content is largely self-contained, readers should have a basic grasp of linear algebra, functional analysis and stochastic ordinary differential equations. The book is mainly intended for senior undergraduate and graduate students majoring in applied mathematics who are interested in stochastic control theory. However, it will also appeal to researchers in other related areas, such as engineering, management, finance/economics and the social sciences.

Stochastic Mechanics: The Unification of Quantum Mechanics with Brownian Motion (SpringerBriefs in Physics)

by Folkert Kuipers

Stochastic mechanics is a theory that holds great promise in resolving the mathematical and interpretational issues encountered in the canonical and path integral formulations of quantum theories. It provides an equivalent formulation of quantum theories, but substantiates it with a mathematically rigorous stochastic interpretation by means of a stochastic quantization prescription.The book builds on recent developments in this theory, and shows that quantum mechanics can be unified with the theory of Brownian motion in a single mathematical framework. Moreover, it discusses the extension of the theory to curved spacetime using second order geometry, and the induced Itô deformations of the spacetime symmetries.The book is self-contained and provides an extensive review of stochastic mechanics of the single spinless particle. The book builds up the theory on a step by step basis. It starts, in chapter 2, with a review of the classical particle subjected to scalar and vector potentials. In chapter 3, the theory is extended to the study of a Brownian motion in any potential, by the introduction of a Gaussian noise. In chapter 4, the Gaussian noise is complexified. The result is a complex diffusion theory that contains both Brownian motion and quantum mechanics as a special limit. In chapters 5, the theory is extended to relativistic diffusion theories. In chapter 6, the theory is further generalized to the context of pseudo-Riemannian geometry. Finally, in chapter 7, some interpretational aspects of the stochastic theory are discussed in more detail. The appendices concisely review relevant notions from probability theory, stochastic processes, stochastic calculus, stochastic differential geometry and stochastic variational calculus.The book is aimed at graduate students and researchers in theoretical physics and applied mathematics with an interest in the foundations of quantum theory and Brownian motion. The book can be used as reference material for courses on and further research in stochastic mechanics, stochastic quantization, diffusion theories on curved spacetimes and quantum gravity.

Stochastic Methods for Modeling and Predicting Complex Dynamical Systems: Uncertainty Quantification, State Estimation, and Reduced-Order Models (Synthesis Lectures on Mathematics & Statistics)

by Nan Chen

This Second Edition is an essential guide to understanding, modeling, and predicting complex dynamical systems using new methods with stochastic tools. Expanding upon the original book, the author covers a unique combination of qualitative and quantitative modeling skills, novel efficient computational methods, rigorous mathematical theory, as well as physical intuitions and thinking. The author presents mathematical tools for understanding, modeling, and predicting complex dynamical systems using various suitable stochastic tools. The book provides practical examples and motivations when introducing these tools, merging mathematics, statistics, information theory, computational science, and data science. The author emphasizes the balance between computational efficiency and modeling accuracy while equipping readers with the skills to choose and apply stochastic tools to a wide range of disciplines. This second edition includes updated discussion of combining stochastic models with machine learning and addresses several additional topics, including importance sampling, regression, and maximum likelihood estimate. The author also introduces a new chapter on optimal control.

Stochastic Methods for Pension Funds (Wiley-iste Ser.)

by Jacques Janssen Raimondo Manca Pierre Devolder

Quantitative finance has become these last years a extraordinary field of research and interest as well from an academic point of view as for practical applications. At the same time, pension issue is clearly a major economical and financial topic for the next decades in the context of the well-known longevity risk. Surprisingly few books are devoted to application of modern stochastic calculus to pension analysis. The aim of this book is to fill this gap and to show how recent methods of stochastic finance can be useful for to the risk management of pension funds. Methods of optimal control will be especially developed and applied to fundamental problems such as the optimal asset allocation of the fund or the cost spreading of a pension scheme. In these various problems, financial as well as demographic risks will be addressed and modelled.

Stochastic Methods in Scientific Computing: From Foundations to Advanced Techniques (Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series)

by Massimo D'Elia Kurt Langfeld Biagio Lucini

Stochastic Methods in Scientific Computing: From Foundations to Advanced Techniques introduces the reader to advanced concepts in stochastic modelling, rooted in an intuitive yet rigorous presentation of the underlying mathematical concepts. A particular emphasis is placed on illuminating the underpinning Mathematics, and yet have the practical applications in mind. The reader will find valuable insights into topics ranging from Social Sciences and Particle Physics to modern-day Computer Science with Machine Learning and AI in focus. The book also covers recent specialised techniques for notorious issues in the field of stochastic simulations, providing a valuable reference for advanced readers with an active interest in the field.Features Self-contained, starting from the theoretical foundations and advancing to the most recent developments in the field Suitable as a reference for post-graduates and researchers or as supplementary reading for courses in numerical methods, scientific computing, and beyond Interdisciplinary, laying a solid ground for field-specific applications in finance, physics and biosciences on common theoretical foundations Replete with practical examples of applications to classic and current research problems in various fields.

Stochastic Modeling

by Nicolas Lanchier

Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the gambler's ruin chain, branching processes, symmetric random walks, and queueing systems. The third, more research-oriented part of the text, discusses special stochastic processes of interest in physics, biology, and sociology. Additional emphasis is placed on minimal models that have been used historically to develop new mathematical techniques in the field of stochastic processes: the logistic growth process, the Wright -Fisher model, Kingman's coalescent, percolation models, the contact process, and the voter model. Further treatment of the material explains how these special processes are connected to each other from a modeling perspective as well as their simulation capabilities in C and Matlab(tm).

Stochastic Modeling and Mathematical Statistics: A Text for Statisticians and Quantitative Scientists (Chapman & Hall/CRC Texts in Statistical Science)

by Francisco J. Samaniego

Provides a Solid Foundation for Statistical Modeling and Inference and Demonstrates Its Breadth of Applicability Stochastic Modeling and Mathematical Statistics: A Text for Statisticians and Quantitative Scientists addresses core issues in post-calculus probability and statistics in a way that is useful for statistics and mathematics majors as well

Stochastic Modeling for Reliability

by Maxim Finkelstein Ji Hwan Cha

Focusing on shocks modeling, burn-in and heterogeneous populations, Stochastic Modeling for Reliability naturally combines these three topics in the unified stochastic framework and presents numerous practical examples that illustrate recent theoretical findings of the authors. The populations of manufactured items in industry are usually heterogeneous. However, the conventional reliability analysis is performed under the implicit assumption of homogeneity, which can result in distortion of the corresponding reliability indices and various misconceptions. Stochastic Modeling for Reliability fills this gap and presents the basics and further developments of reliability theory for heterogeneous populations. Specifically, the authors consider burn-in as a method of elimination of 'weak' items from heterogeneous populations. The real life objects are operating in a changing environment. One of the ways to model an impact of this environment is via the external shocks occurring in accordance with some stochastic point processes. The basic theory for Poisson shock processes is developed and also shocks as a method of burn-in and of the environmental stress screening for manufactured items are considered. Stochastic Modeling for Reliability introduces and explores the concept of burn-in in heterogeneous populations and its recent development, providing a sound reference for reliability engineers, applied mathematicians, product managers and manufacturers alike.

Stochastic Modeling of Scientific Data (Chapman & Hall/CRC Texts in Statistical Science)

by Peter Guttorp

Stochastic Modeling of Scientific Data combines stochastic modeling and statistical inference in a variety of standard and less common models, such as point processes, Markov random fields and hidden Markov models in a clear, thoughtful and succinct manner. The distinguishing feature of this work is that, in addition to probability theory, it contains statistical aspects of model fitting and a variety of data sets that are either analyzed in the text or used as exercises. Markov chain Monte Carlo methods are introduced for evaluating likelihoods in complicated models and the forward backward algorithm for analyzing hidden Markov models is presented. The strength of this text lies in the use of informal language that makes the topic more accessible to non-mathematicians. The combinations of hard science topics with stochastic processes and their statistical inference puts it in a new category of probability textbooks. The numerous examples and exercises are drawn from astronomy, geology, genetics, hydrology, neurophysiology and physics.

Stochastic Modeling: Analysis and Simulation (Dover Books on Mathematics)

by Barry L. Nelson

A coherent introduction to the techniques for modeling dynamic stochastic systems, this volume also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Suitable for advanced undergraduates and graduate-level industrial engineers and management science majors, it proposes modeling systems in terms of their simulation, regardless of whether simulation is employed for analysis. Beginning with a view of the conditions that permit a mathematical-numerical analysis, the text explores Poisson and renewal processes, Markov chains in discrete and continuous time, semi-Markov processes, and queuing processes. Each chapter opens with an illustrative case study, and comprehensive presentations include formulation of models, determination of parameters, analysis, and interpretation of results. Programming language-independent algorithms appear for all simulation and numerical procedures. Solutions to the exercises are available upon request from the publisher at editors@doverpublications.com.

Stochastic Modelling for Systems Biology, Third Edition (Chapman & Hall/CRC Computational Biology Series)

by Darren J. Wilkinson

Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Having been thoroughly updated to reflect this, this third edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. New methods and applications are included in the book, and the use of R for practical illustration of the algorithms has been greatly extended. There is a brand new chapter on spatially extended systems, and the statistical inference chapter has also been extended with new methods, including approximate Bayesian computation (ABC). Stochastic Modelling for Systems Biology, Third Edition is now supplemented by an additional software library, written in Scala, described in a new appendix to the book. New in the Third Edition New chapter on spatially extended systems, covering the spatial Gillespie algorithm for reaction diffusion master equation models in 1- and 2-d, along with fast approximations based on the spatial chemical Langevin equation Significantly expanded chapter on inference for stochastic kinetic models from data, covering ABC, including ABC-SMC Updated R package, including code relating to all of the new material New R package for parsing SBML models into simulatable stochastic Petri net models New open-source software library, written in Scala, replicating most of the functionality of the R packages in a fast, compiled, strongly typed, functional language Keeping with the spirit of earlier editions, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.

Stochastic Modelling of Big Data in Finance (Chapman and Hall/CRC Financial Mathematics Series)

by Anatoliy Swishchuk

Stochastic Modelling of Big Data in Finance provides a rigorous overview and exploration of sto- chastic modelling of big data in finance (BDF). The book describes various stochastic models, including multivariate models, to deal with big data in finance. This includes data in high-frequency and algorithmic trading, specifically in limit order books (LOB), and shows how those models can be applied to different datasets to describe the dynamics of LOB, and to figure out which model is the best with respect to a specific data set. The results of the book may be used to also solve acquisition, liquidation and market making problems, and other optimization problems in finance.Features• Self-contained book suitable for graduate students and post-doctoral fellows in financial math- ematics and data science, as well as for practitioners working in the financial industry who deal with big data• All results are presented visually to aid in understanding of concepts Dr. Anatoliy Swishchuk is a Professor in Mathematical Finance at the Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada. He got his B.Sc. and M.Sc. degrees from Kyiv State University, Kyiv, Ukraine. He earned two doctorate degrees in Mathematics and Physics (PhD and DSc) from the prestigious National Academy of Sciences of Ukraine (NASU), Kiev, Ukraine, and is a recipient of NASU award for young scientist with a gold medal for series of research publica- tions in random evolutions and their applications.Dr. Swishchuk is a chair and organizer of finance and energy finance seminar ‘Lunch at the Lab’ at the Department of Mathematics and Statistics. Dr. Swishchuk is a Director of Mathematical and Compu- tational Finance Laboratory at the University of Calgary. He was a steering committee member of the Professional Risk Managers International Association (PRMIA), Canada (2006-2015), and is a steer- ing committee member of Global Association of Risk Professionals (GARP), Canada (since 2015).Dr. Swishchuk is a creator of mathematical finance program at the Department of Mathematics & Sta- tistics. He is also a proponent for a new specialization “Financial and Energy Markets Data Modelling” in the Data Science and Analytics program. His research areas include financial mathematics, ran- dom evolutions and their applications, biomathematics, stochastic calculus, and he serves on editorial boards for four research journals. He is the author of more than 200 publications, including 15 books and more than 150 articles in peer-reviewed journals. In 2018 he received a Peak Scholar award.

Stochastic Models for Carcinogenesis (Statistics: A Series Of Textbooks And Monographs)

by Wai-Yuan Tan

An up-to-date survey of mathematical models of carcinogenesis, providing the most recent findings of cancer biology as evidence of the models, as well as extensive bibliographies of cancer biology and in-depth mathematical analyses for each of the models. May be used as a reference for biostaticians, biometricians, mathematical and molecular biologists, applied mathematicians, oncologists, cancer and toxicology researchers, environmental scientists, and graduate students in these fields.

Stochastic Models for Fault Tolerance

by Katinka Wolter

As modern society relies on the fault-free operation of complex computing systems, system fault-tolerance has become an indispensable requirement. Therefore, we need mechanisms that guarantee correct service in cases where system components fail, be they software or hardware elements. Redundancy patterns are commonly used, for either redundancy in space or redundancy in time. Wolter's book details methods of redundancy in time that need to be issued at the right moment. In particular, she addresses the so-called "timeout selection problem", i.e., the question of choosing the right time for different fault-tolerance mechanisms like restart, rejuvenation and checkpointing. Restart indicates the pure system restart, rejuvenation denotes the restart of the operating environment of a task, and checkpointing includes saving the system state periodically and reinitializing the system at the most recent checkpoint upon failure of the system. Her presentation includes a brief introduction to the methods, their detailed stochastic description, and also aspects of their efficient implementation in real-world systems. The book is targeted at researchers and graduate students in system dependability, stochastic modeling and software reliability. Readers will find here an up-to-date overview of the key theoretical results, making this the only comprehensive text on stochastic models for restart-related problems.

Stochastic Models for Prices Dynamics in Energy and Commodity Markets: An Infinite-Dimensional Perspective (Springer Finance)

by Fred Espen Benth Paul Krühner

This monograph presents a theory for random field models in time and space, viewed as stochastic processes with values in a Hilbert space, to model the stochastic dynamics of forward and futures prices in energy, power, and commodity markets. In this book, the well-known Heath–Jarrow–Morton approach from interest rate theory is adopted and extended into an infinite-dimensional framework, allowing for flexible modeling of price stochasticity across time and along the term structure curve. Various models are introduced based on stochastic partial differential equations with infinite-dimensional Lévy processes as noise drivers, emphasizing random fields described by low-dimensional parametric covariance functions instead of classical high-dimensional factor models. The Filipović space, a separable Hilbert space of Sobolev type, is found to be a convenient state space for the dynamics of forward and futures term structures. The monograph provides a classification of important operators in this space, covering covariance operators and the stochastic modeling of volatility term structures, including the Samuelson effect. Fourier methods are employed to price many derivatives of interest in energy, power, and commodity markets, and sensitivity 'delta' expressions can be derived. Additionally, the monograph covers forward curve smoothing, the connection between forwards with fixed delivery and delivery period, as well as the classical theory of forward and futures pricing. This monograph will appeal to researchers and graduate students interested in mathematical finance and stochastic analysis applied in the challenging markets of energy, power, and commodities. Practitioners seeking sophisticated yet flexible and analytically tractable risk models will also find it valuable.

Stochastic Models for Structured Populations

by Sylvie Meleard Vincent Bansaye

In this contribution, several probabilistic tools to study population dynamics are developed. The focus is on scaling limits of qualitatively different stochastic individual based models and the long time behavior of some classes of limiting processes. Structured population dynamics are modeled by measure-valued processes describing the individual behaviors and taking into account the demographic and mutational parameters, and possible interactions between individuals. Many quantitative parameters appear in these models and several relevant normalizations are considered, leading to infinite-dimensional deterministic or stochastic large-population approximations. Biologically relevant questions are considered, such as extinction criteria, the effect of large birth events, the impact of environmental catastrophes, the mutation-selection trade-off, recovery criteria in parasite infections, genealogical properties of a sample of individuals. These notes originated from a lecture series on Structured Population Dynamics at Ecole polytechnique (France). Vincent Bansaye and Sylvie Méléard are Professors at Ecole Polytechnique (France). They are a specialists of branching processes and random particle systems in biology. Most of their research concerns the applications of probability to biodiversity, ecology and evolution.

Stochastic Models for Time Series (Mathématiques et Applications #80)

by Paul Doukhan

This book presents essential tools for modelling non-linear time series. The first part of the book describes the main standard tools of probability and statistics that directly apply to the time series context to obtain a wide range of modelling possibilities. Functional estimation and bootstrap are discussed, and stationarity is reviewed. The second part describes a number of tools from Gaussian chaos and proposes a tour of linear time series models. It goes on to address nonlinearity from polynomial or chaotic models for which explicit expansions are available, then turns to Markov and non-Markov linear models and discusses Bernoulli shifts time series models. Finally, the volume focuses on the limit theory, starting with the ergodic theorem, which is seen as the first step for statistics of time series. It defines the distributional range to obtain generic tools for limit theory under long or short-range dependences (LRD/SRD) and explains examples of LRD behaviours. More general techniques (central limit theorems) are described under SRD; mixing and weak dependence are also reviewed. In closing, it describes moment techniques together with their relations to cumulant sums as well as an application to kernel type estimation.The appendix reviews basic probability theory facts and discusses useful laws stemming from the Gaussian laws as well as the basic principles of probability, and is completed by R-scripts used for the figures. Richly illustrated with examples and simulations, the book is recommended for advanced master courses for mathematicians just entering the field of time series, and statisticians who want more mathematical insights into the background of non-linear time series.

Stochastic Models in Life Insurance

by Michael Koller

The book provides a sound mathematical base for life insurance mathematics and applies the underlying concepts to concrete examples. Moreover the models presented make it possible to model life insurance policies by means of Markov chains. Two chapters covering ALM and abstract valuation concepts on the background of Solvency II complete this volume. Numerous examples and a parallel treatment of discrete and continuous approaches help the reader to implement the theory directly in practice.

Stochastic Models in Reliability

by Terje Aven Uwe Jensen

This book provides a comprehensive up-to-date presentation of some of the classical areas of reliability, based on a more advanced probabilistic framework using the modern theory of stochastic processes. This framework allows analysts to formulate general failure models, establish formulae for computing various performance measures, as well as determine how to identify optimal replacement policies in complex situations. In this second edition of the book, two major topics have been added to the original version: copula models which are used to study the effect of structural dependencies on the system reliability; and maintenance optimization which highlights delay time models under safety constraints. Terje Aven is Professor of Reliability and Risk Analysis at University of Stavanger, Norway. Uwe Jensen is working as a Professor at the Institute of Applied Mathematics and Statistics of the University of Hohenheim in Stuttgart, Germany. Review of first edition: "This is an excellent book on mathematical, statistical and stochastic models in reliability. The authors have done an excellent job of unifying some of the stochastic models in reliability. The book is a good reference book but may not be suitable as a textbook for students in professional fields such as engineering. This book may be used for graduate level seminar courses for students who have had at least the first course in stochastic processes and some knowledge of reliability mathematics. It should be a good reference book for researchers in reliability mathematics." --Mathematical Reviews (2000)

Stochastic Models with Power-Law Tails

by Dariusz Buraczewski Ewa Damek Thomas Mikosch

In this monograph the authors give a systematic approach to theprobabilistic properties of the fixed point equation X=AX+B. Aprobabilistic study of the stochastic recurrence equation X_t=A_tX_{{t-1}}+B_tfor real- and matrix-valued random variables A_t, where (A_t,B_t) constitute aniid sequence, is provided. The classical theory for these equations, includingthe existence and uniqueness of a stationary solution, the tail behavior withspecial emphasis on power law behavior, moments and support, is presented. Theauthors collect recent asymptotic results on extremes, point processes, partialsums (central limit theory with special emphasis on infinite variance stablelimit theory), large deviations, in the univariate and multivariate cases, andthey further touch on the related topics of smoothing transforms, regularlyvarying sequences and random iterative systems. The text gives an introduction to the Kesten-Goldie theory forstochastic recurrence equations of the type X_t=A_tX_{{t-1}}+B_t. It provides the classical results ofKesten, Goldie, Guivarc'h, and others, and gives an overview of recentresults on the topic. It presents the state-of-the-art results in the field ofaffine stochastic recurrence equations and shows relations with non-affinerecursions and multivariate regular variation.

Stochastic Models, Statistics and Their Applications

by Ansgar Steland Ewaryst Rafajłowicz Krzysztof Szajowski

This volume presents the latest advances and trends in stochastic models and related statistical procedures. Selected peer-reviewed contributions focus on statistical inference, quality control, change-point analysis and detection, empirical processes, time series analysis, survival analysis and reliability, statistics for stochastic processes, big data in technology and the sciences, statistical genetics, experiment design, and stochastic models in engineering. Stochastic models and related statistical procedures play an important part in furthering our understanding of the challenging problems currently arising in areas of application such as the natural sciences, information technology, engineering, image analysis, genetics, energy and finance, to name but a few. This collection arises from the 12th Workshop on Stochastic Models, Statistics and Their Applications, Wroclaw, Poland.

Stochastic Models, Statistics and Their Applications: Dresden, Germany, March 2019 (Springer Proceedings in Mathematics & Statistics #294)

by Ansgar Steland Ewaryst Rafajłowicz Ostap Okhrin

This volume presents selected and peer-reviewed contributions from the 14th Workshop on Stochastic Models, Statistics and Their Applications, held in Dresden, Germany, on March 6-8, 2019. Addressing the needs of theoretical and applied researchers alike, the contributions provide an overview of the latest advances and trends in the areas of mathematical statistics and applied probability, and their applications to high-dimensional statistics, econometrics and time series analysis, statistics for stochastic processes, statistical machine learning, big data and data science, random matrix theory, quality control, change-point analysis and detection, finance, copulas, survival analysis and reliability, sequential experiments, empirical processes, and microsimulations. As the book demonstrates, stochastic models and related statistical procedures and algorithms are essential to more comprehensively understanding and solving present-day problems arising in e.g. the natural sciences, machine learning, data science, engineering, image analysis, genetics, econometrics and finance.

Stochastic Multi-Stage Optimization

by Guy Cohen Michel De Lara Pierre Carpentier Jean-Philippe Chancelier

The focus of the present volume is stochastic optimization of dynamical systems in discrete time where - by concentrating on the role of information regarding optimization problems - it discusses the related discretization issues. There is a growing need to tackle uncertainty in applications of optimization. For example the massive introduction of renewable energies in power systems challenges traditional ways to manage them. This book lays out basic and advanced tools to handle and numerically solve such problems and thereby is building a bridge between Stochastic Programming and Stochastic Control. It is intended for graduates readers and scholars in optimization or stochastic control, as well as engineers with a background in applied mathematics.

Stochastic Narrow Escape in Molecular and Cellular Biology

by Zeev Schuss David Holcman

This book covers recent developments in the non-standard asymptotics of the mathematical narrow escape problem in stochastic theory, as well as applications of the narrow escape problem in cell biology. The first part of the book concentrates on mathematical methods, including advanced asymptotic methods in partial equations, and is aimed primarily at applied mathematicians and theoretical physicists who are interested in biological applications. The second part of the book is intended for computational biologists, theoretical chemists, biochemists, biophysicists, and physiologists. It includes a summary of output formulas from the mathematical portion of the book and concentrates on their applications in modeling specific problems in theoretical molecular and cellular biology. Critical biological processes, such as synaptic plasticity and transmission, activation of genes by transcription factors, or double-strained DNA break repair, are controlled by diffusion in structures that have both large and small spatial scales. These may be small binding sites inside or on the surface of the cell, or narrow passages between subcellular compartments. The great disparity in spatial scales is the key to controlling cell function by structure. This volume reports recent progress on resolving analytical and numerical difficulties in extracting properties from experimental data, biophysical models, and from Brownian dynamics simulations of diffusion in multi-scale structures.

Stochastic Networked Control Systems

by Tamer Başar Serdar Yüksel

Networked control systems are increasingly ubiquitous today, with applications ranging from vehicle communication and adaptive power grids to space exploration and economics. The optimal design of such systems presents major challenges, requiring tools from various disciplines within applied mathematics such as decentralized control, stochastic control, information theory, and quantization. A thorough, self-contained book, Stochastic Networked Control Systems: Stabilization and Optimization under Information Constraints aims to connect these diverse disciplines with precision and rigor, while conveying design guidelines to controller architects. Unique in the literature, it lays a comprehensive theoretical foundation for the study of networked control systems, and introduces an array of concrete tools for work in the field. Salient features included: · Characterization, comparison and optimal design of information structures in static and dynamic teams. Operational, structural and topological properties of information structures in optimal decision making, with a systematic program for generating optimal encoding and control policies. The notion of signaling, and its utilization in stabilization and optimization of decentralized control systems. · Presentation of mathematical methods for stochastic stability of networked control systems using random-time, state-dependent drift conditions and martingale methods. · Characterization and study of information channels leading to various forms of stochastic stability such as stationarity, ergodicity, and quadratic stability; and connections with information and quantization theories. Analysis of various classes of centralized and decentralized control systems. · Jointly optimal design of encoding and control policies over various information channels and under general optimization criteria, including a detailed coverage of linear-quadratic-Gaussian models. · Decentralized agreement and dynamic optimization under information constraints. This monograph is geared toward a broad audience of academic and industrial researchers interested in control theory, information theory, optimization, economics, and applied mathematics. It could likewise serve as a supplemental graduate text. The reader is expected to have some familiarity with linear systems, stochastic processes, and Markov chains, but the necessary background can also be acquired in part through the four appendices included at the end. · Characterization, comparison and optimal design of information structures in static and dynamic teams. Operational, structural and topological properties of information structures in optimal decision making, with a systematic program for generating optimal encoding and control policies. The notion of signaling, and its utilization in stabilization and optimization of decentralized control systems. · Presentation of mathematical methods for stochastic stability of networked control systems using random-time, state-dependent drift conditions and martingale methods. · Characterization and study of information channels leading to various forms of stochastic stability such as stationarity, ergodicity, and quadratic stability; and connections with information and quantization theories. Analysis of various classes of centralized and decentralized control systems. · Jointly optimal design of encoding and control policies over various information channels and under general optimization criteria, including a detailed coverage of linear-quadratic-Gaussian models. · Decentralized agreement and dynamic optimization under information constraints. This monograph is geared toward a broad audience of academic and industrial researchers interested in control theory, information theory, optimization, economics, and applied mathematics. It could likewise serve as a supplemental graduate text. The reader is expected to have some familiarity with linear systems, stochastic processes, and Markov chai...

Refine Search

Showing 24,126 through 24,150 of 28,269 results