Browse Results

Showing 25,601 through 25,625 of 25,833 results

Why Fiscal Stimulus Programs Fail, Volume 2: Statistical Tests Comparing Monetary Policy to Growth Effects

by John J. Heim

This book scientifically tests the assertion that accommodative monetary policy can eliminate the “crowd out” problem, allowing fiscal stimulus programs (such as tax cuts or increased government spending) to stimulate the economy as intended. It also tests to see if natural growth in th economy can cure the crowd out problem as well or better. The book is intended to be the largest scale scientific test ever performed on this topic. It includes about 800 separate statistical tests on the U.S. economy testing different parts or all of the period 1960 – 2010. These tests focus on whether accommodative monetary policy, which increases the pool of loanable resources, can offset the crowd out problem as well as natural growth in the economy. The book, employing the best scientific methods available to economists for this type of problem, concludes accommodate monetary policy could have, but until the quantitative easing program, Federal Reserve efforts to accommodate fiscal stimulus programs were not large enough to offset more than 23% to 44% of any one year’s crowd out problem. That provides the science part of the answer as to why accommodative monetary policy didn’t accommodate: too little of it was tried. The book also tests whether other increases in loanable funds, occurring because of natural growth in the economy or changes in the savings rate can also offset crowd out. It concludes they can, and that these changes tend to be several times as effective as accommodative monetary policy. This book’s companion volume Why Fiscal Stimulus Programs Fail explores the policy implications of these results.

Why Is There Philosophy of Mathematics At All?

by Ian Hacking

This truly philosophical book takes us back to fundamentals - the sheer experience of proof, and the enigmatic relation of mathematics to nature. It asks unexpected questions, such as 'what makes mathematics mathematics?', 'where did proof come from and how did it evolve?', and 'how did the distinction between pure and applied mathematics come into being?' In a wide-ranging discussion that is both immersed in the past and unusually attuned to the competing philosophical ideas of contemporary mathematicians, it shows that proof and other forms of mathematical exploration continue to be living, evolving practices - responsive to new technologies, yet embedded in permanent (and astonishing) facts about human beings. It distinguishes several distinct types of application of mathematics, and shows how each leads to a different philosophical conundrum. Here is a remarkable body of new philosophical thinking about proofs, applications, and other mathematical activities.

Why Life Matters

by Michael Charles Tobias Jane Gray Morrison

Dr. Michael Charles Tobias and Jane Gray Morrison are world-renowned ecological philosophers and activists, interdisciplinary social and environmental scientists and broad-ranging, deeply committed humanists. This collection of fifty essays and interviews comprises an invigorating, outspoken, provocative and eloquent overview of the ecological humanities in one highly accessible volume. The components of this collection were published in the authors' "Green Conversations" blog series, and pieces in the Eco News Network from 2011 to 2013 and feature luminaries from Jane Goodall to Ted Turner to the Secretary of the Smithsonian Institution to the former head of the UN Convention on Biological Diversity. Stunning color photographs captured by the authors and contributors make Why Life Matters: Fifty Ecosystems of the Heart and Mind a feast for the eyes as well as the mind and soul. Ethics, science, technology, ecological literacy, grass-roots renaissance thinkers, conservation innovation from the U. S. to the U. K. ; from India to Ecuador; from Bhutan to Haiti; from across Africa, the Neo-Tropics, Central Asia and Japan, to Rio, Shanghai and Manhattan - this humanistic ode to the future of life on earth is a relevant and resonating read. Michael Tobias and Jane Gray Morrison, partners who between them have authored some 50 books and written, directed and produced some 170 films, a prolific body of work that has been read, translated and/or broadcast around the world, have been married for more than a quarter-of-a-century. Their field research across the disciplines of comparative literature, anthropology, the history of science and philosophy, ecology and ethics, in over 80 countries, has served as a telling example of what two people - deeply in love with one another - can accomplish in spreading that same unconditional love to others - of all species.

Why Machines Learn: The Elegant Math Behind Modern AI

by Anil Ananthaswamy

A rich, narrative explanation of the mathematics that has brought us machine learning and the ongoing explosion of artificial intelligence Machine learning systems are making life-altering decisions for us: approving mortgage loans, determining whether a tumor is cancerous, or deciding if someone gets bail. They now influence developments and discoveries in chemistry, biology, and physics—the study of genomes, extrasolar planets, even the intricacies of quantum systems. And all this before large language models such as ChatGPT came on the scene. We are living through a revolution in machine learning-powered AI that shows no signs of slowing down. This technology is based on relatively simple mathematical ideas, some of which go back centuries, including linear algebra and calculus, the stuff of seventeenth- and eighteenth-century mathematics. It took the birth and advancement of computer science and the kindling of 1990s computer chips designed for video games to ignite the explosion of AI that we see today. In this enlightening book, Anil Ananthaswamy explains the fundamental math behind machine learning, while suggesting intriguing links between artificial and natural intelligence. Might the same math underpin them both? As Ananthaswamy resonantly concludes, to make safe and effective use of artificial intelligence, we need to understand its profound capabilities and limitations, the clues to which lie in the math that makes machine learning possible.

The Why of Things: Causality in Science, Medicine, and Life

by Peter Rabins

Why was there a meltdown at the Fukushima power plant? Why do some people get cancer and not others? Why is global warming happening? Why does one person get depressed in the face of life's vicissitudes while another finds resilience? Questions like these—questions of causality—form the basis of modern scientific inquiry, posing profound intellectual and methodological challenges for researchers in the physical, natural, biomedical, and social sciences. In this groundbreaking book, noted psychiatrist and author Peter Rabins offers a conceptual framework for analyzing daunting questions of causality. Navigating a lively intellectual voyage between the shoals of strict reductionism and relativism, Rabins maps a three-facet model of causality and applies it to a variety of questions in science, medicine, economics, and more. Throughout this book, Rabins situates his argument within relevant scientific contexts, such as quantum mechanics, cybernetics, chaos theory, and epigenetics. A renowned communicator of complex concepts and scientific ideas, Rabins helps readers stretch their minds beyond the realm of popular literary tipping points, blinks, and freakonomic explanations of the world.

Why Pi? (Big Questions)

by Johnny Ball

This entertaining follow-up to DK's popular Go Figure!, Why Pi? presents even more mind-bending ways to think about numbers. This time, author Johnny Ball focuses on how people have used numbers to measure things through the ages, from the ways the ancient Egyptians measured the pyramids to how modern scientists measure time and space. Johnny Ball has hosted more than 20 UK children's television series about math and science. He is known for making math not just easy to understand, but genuinely fun and fascinating. His shows and videos earned him a New York international EMMY nomination, a BAFTA, and 10 other awards. He has written five children's books, including DK's Go Figure!, and an educational musical. His academic credentials include three honorary science doctorates and fellowship of the British Mathematical Association.

Why Prove it Again?

by John W. Dawson

This monograph considers several well-known mathematical theorems and asks the question, "Why prove it again?" while examining alternative proofs. It explores the different rationales mathematicians may have for pursuing and presenting new proofs of previously established results, as well as how they judge whether two proofs of a given result are different. While a number of books have examined alternative proofs of individual theorems, this is the first that presents comparative case studies of other methods for a variety of different theorems. The author begins by laying out the criteria for distinguishing among proofs and enumerates reasons why new proofs have, for so long, played a prominent role in mathematical practice. He then outlines various purposes that alternative proofs may serve. Each chapter that follows provides a detailed case study of alternative proofs for particular theorems, including the Pythagorean Theorem, the Fundamental Theorem of Arithmetic, Desargues' Theorem, the Prime Number Theorem, and the proof of the irreducibility of cyclotomic polynomials. Why Prove It Again? will appeal to a broad range of readers, including historians and philosophers of mathematics, students, and practicing mathematicians. Additionally, teachers will find it to be a useful source of alternative methods of presenting material to their students.

Why Race Still Matters

by Alana Lentin

'Why are you making this about race?' This question is repeated daily in public and in the media. Calling someone racist in these times of mounting white supremacy seems to be a worse insult than racism itself. In our supposedly post-racial society, surely it’s time to stop talking about race? This powerful refutation is a call to notice not just when and how race still matters but when, how and why it is said not to matter. Race critical scholar Alana Lentin argues that society is in urgent need of developing the skills of racial literacy, by jettisoning the idea that race is something and unveiling what race does as a key technology of modern rule, hidden in plain sight. Weaving together international examples, she eviscerates misconceptions such as reverse racism and the newfound acceptability of 'race realism', bursts the 'I’m not racist, but' justification, complicates the common criticisms of identity politics and warns against using concerns about antisemitism as a proxy for antiracism. Dominant voices in society suggest we are talking too much about race. Lentin shows why we actually need to talk about it more and how in doing so we can act to make it matter less.

Why Stock Markets Crash: Critical Events in Complex Financial Systems

by Didier Sornette

The scientific study of complex systems has transformed a wide range of disciplines in recent years, enabling researchers in both the natural and social sciences to model and predict phenomena as diverse as earthquakes, global warming, demographic patterns, financial crises, and the failure of materials. In this book, Didier Sornette boldly applies his varied experience in these areas to propose a simple, powerful, and general theory of how, why, and when stock markets crash. Most attempts to explain market failures seek to pinpoint triggering mechanisms that occur hours, days, or weeks before the collapse. Sornette proposes a radically different view: the underlying cause can be sought months and even years before the abrupt, catastrophic event in the build-up of cooperative speculation, which often translates into an accelerating rise of the market price, otherwise known as a "bubble." Anchoring his sophisticated, step-by-step analysis in leading-edge physical and statistical modeling techniques, he unearths remarkable insights and some predictions--among them, that the "end of the growth era" will occur around 2050. Sornette probes major historical precedents, from the decades-long "tulip mania" in the Netherlands that wilted suddenly in 1637 to the South Sea Bubble that ended with the first huge market crash in England in 1720, to the Great Crash of October 1929 and Black Monday in 1987, to cite just a few. He concludes that most explanations other than cooperative self-organization fail to account for the subtle bubbles by which the markets lay the groundwork for catastrophe. Any investor or investment professional who seeks a genuine understanding of looming financial disasters should read this book. Physicists, geologists, biologists, economists, and others will welcome Why Stock Markets Crash as a highly original "scientific tale," as Sornette aptly puts it, of the exciting and sometimes fearsome--but no longer quite so unfathomable--world of stock markets.

Why String Theory?

by Joseph Conlon

Physics World's 'Book of the Year' for 2016 An Entertaining and Enlightening Guide to the Who, What, and Why of String Theory, now also available in an updated reflowable electronic format compatible with mobile devices and e-readers. During the last 50 years, numerous physicists have tried to unravel the secrets of string theory. Yet why do these scientists work on a theory lacking experimental confirmation? Why String Theory? provides the answer, offering a highly readable and accessible panorama of the who, what, and why of this large aspect of modern theoretical physics. The author, a theoretical physics professor at the University of Oxford and a leading string theorist, explains what string theory is and where it originated. He describes how string theory fits into physics and why so many physicists and mathematicians find it appealing when working on topics from M-theory to monsters and from cosmology to superconductors.

Why We're Wrong About Nearly Everything: A Theory of Human Misunderstanding

by Bobby Duffy

A leading social researcher explains why humans so consistently misunderstand the outside world How often are women harassed? What percentage of the population are immigrants? How bad is unemployment? These questions are important, but most of us get the answers wrong. Research shows that people often wildly misunderstand the state of the world, regardless of age, sex, or education. And though the internet brings us unprecedented access to information, there's little evidence we're any better informed because of it. We may blame cognitive bias or fake news, but neither tells the complete story. In Why We're Wrong About Nearly Everything, Bobby Duffy draws on his research into public perception across more than forty countries, offering a sweeping account of the stubborn problem of human delusion: how society breeds it, why it will never go away, and what our misperceptions say about what we really believe. We won't always know the facts, but they still matter. Why We're Wrong About Nearly Everything is mandatory reading for anyone interested making humankind a little bit smarter.

Why Write in Math Class?

by Linda Dacey Rebeka Eston Salemi Kathleen O'Connell Hopping

To help students communicate their mathematical thinking, many teachers have created classrooms where math talk has become a successful and joyful instructional practice. Building on that success, the ideas in Why Write in Math Class? help students construct, explore, represent, refine, connect, and reflect on mathematical ideas. Writing also provides teachers with a window into each student's thinking and informs instructional decisions.Focusing on five types of writing in math (exploratory, explanatory, argumentative, creative, and reflective), Why Write in Math Class? offers a variety of ways to integrate writing into the math class. The ideas in this book will help you make connections to what you already know about the teaching of writing within literacy instruction and build on what you've learned about the development of classroom communities that support math talk.The authors offer practical advice about how to support writing in math, as well as many specific examples of writing prompts and tasks that require high-cognitive demand. Extensive stories and samples of student work from K-5 classrooms give a vision of how writing in math class can successfully unfold.

Wie berechenbar ist unsere Welt: Herausforderungen Für Mathematik, Informatik Und Philosophie Im Zeitalter Der Digitalisierung (Essentials)

by Klaus Mainzer

Klaus Mainzer legt in diesem essential dar, dass die Zukunft von KI und Digitalisierung eine nüchterne Analyse erfordert, die Grundlagenforschung mit Anwendung verbindet. Berechenbarkeits- und Beweistheorie können dazu beitragen, Big Data und Machine Learning sicherer zu bewältigen. Dabei zeigt sich, dass die komplexen Herausforderungen der digitalen und analogen Welt in Grundlagenfragen der Mathematik, Informatik und Philosophie tief verwurzelt sind.

Wie der Mensch rechnen lernt(e): Evolutionäre und psychologische Grundlagen der Mathematik

by Frieder Hermann

Warum kann jeder Mensch aber kein Tier lernen mit exakten Zahlen zu rechnen? Und warum hat sich die mathematische Begabung des Menschen im Verlauf der Evolution überhaupt herausgebildet? In seinem spannend und auch für Nichtexperten leicht lesbaren Überblick skizziert der Mathematiker Frieder Hermann den derzeitigen Stand unseres Wissens über diese Fragen. Er stellt nicht nur mehrere konkurrierende Theorien vor, sondern auch viele faszinierende psychologische Experimente. Das Themenspektrum reicht von Platons Gedankenexperiment über die mathematischen Fähigkeiten eines ungebildeten Sklaven bis hin zu neuesten Erkenntnissen der Autismus-Forschung.

Wie kommt man darauf?: Einführung in das mathematische Aufgabenlösen

by Merlin Carl

Das Buch soll Studierende der Mathematik und verwandter Disziplinen in grundlegende Techniken und Prinzipien des selbstst#65533;ndigen mathematischen Aufgabenl#65533;sens einf#65533;hren. Dazu werden zun#65533;chst konkrete Beweisprinzipien wie das Schubfachprinzip, Invarianten, Induktion oder R#65533;ckw#65533;rtsarbeiten anhand von Beispielen und ausf#65533;hrlichen Erl#65533;uterungen eingef#65533;hrt, ehe zu allgemeineren Strategien wie Beobachtung und Mustererkennung, Verallgemeinerung, Spezialisierung und Analogie #65533;bergegangen wird. Bei den L#65533;sungen zu den zahlreichen Beispielaufgaben liegt der Schwerpunkt auf der Erkl#65533;rung, wie man auf die jeweiligen Beweisschritte selbst h#65533;tte kommen k#65533;nnen. Die so erlernten Strategien werden dann in verschiedenen mathematischen Gebieten erprobt, n#65533;mlich der elementaren Zahlentheorie, der Graphentheorie, der endlichen Kombinatorik, der linearen Algebra und der Analysis. Jedes Kapitel schlie#65533;t mit zahlreichen #65533;bungsaufgaben.

Wie macht man Karriere in der Wissenschaft

by Rainer Meckenstock Jan Frösler

Dieser Karriereratgeber liefert Transparenz im Dschungel des Wissenschaftssystems. Der erfahrene Wissenschaftler Rainer Meckenstock gibt konkrete Tipps für den eigenen Weg – vom Studium über die Doktoranden- und Postdoc-Zeit bis hin zur ersten Professur: Nach welchen Kriterien sollen sich angehende Forscher ihre Arbeitsgruppe aussuchen? Wie bauen sie ein Profil aus wissenschaftlicher und technischer Kompetenz auf? Welche Ziele sollten Jungforscher für die wissenschaftliche Arbeit im Auge behalten? Die Antworten werden mit Zeichnungen von Jan Frösler illustriert. Das Buch regt die Diskussion zwischen Nachwuchskräften und erfahrenen Wissenschaftlern oder Mentoren an und dient als Inspiration für ein Coaching. Es richtet sich an alle Wissenschaftler, um entweder die eigene Karriere oder die Ausbildung des Nachwuchses zu fördern. Ergänzend zeigen sieben Professorinnen und Professoren anhand ihrer Lebensläufe, wie vielfältig die Karrierewege in der Wissenschaft sein können, und geben ihre eigenen Erfolgsratschläge.

Wie Mathematiker ticken

by David Ruelle

Der renommierte mathematische Physiker David Ruelle schildert in dem Buch seine persönlichen Erfahrungen mit berühmten Mathematikern, deren Eigenarten und persönliche Tragödien - aber auch die erhabene Schönheit ihrer Entdeckungen. Jedes Kapitel stellt eine herausragende mathematische Idee und den visionären Verstand dahinter vor. Dabei gibt der Autor Einblick in die einzigartige Denkweise von Mathematikern und zeigt, weshalb er ihre Herangehensweise, um Fragen nach Sinn, Schönheit und Natur der Wirklichkeit zu diskutieren, für die beste hält.

Wie potenziell mathematisch begabte Kinder argumentieren: Eine Längsschnittstudie mit Kindern der Klassenstufen 3 bis 6 im Rahmen des Enrichmentprogramms „Junge Mathe-Adler Frankfurt“

by Simone Jablonski

In einer qualitativen Längsschnittstudie untersucht Simone Jablonski Veränderungen beim mündlichen Argumentieren von potenziell mathematisch begabten Kindern. Dazu entwickelt sie ein Analyseschema, das die Kategorien Struktur, Inhalt, Gültigkeit, Schlussweise und Eigenständigkeit berücksichtigt. Mithilfe aufgabenbasierter Interviews aus dem Bereich der Arithmetik werden 37 Kinder der Klassenstufen 3 bis 6 über anderthalb Jahre wiederholt befragt. Die Analyse der dabei entstandenen Argumentationsprodukte ergibt sechs verschiedene Argumentationstypen, die die Veränderungen beim Argumentieren einerseits und die Unterschiede zwischen den Kindern andererseits deutlich machen. Letztlich können auf Basis der gebildeten Typen Konsequenzen für die Förderung mathematisch begabter Kinder abgeleitet werden.

Wiley CPAexcel® Exam Review Practice Questions 2021 Auditing and Attestation

by Donald E. Tidrick Robert A. Prentice

This Wiley CPAexcel® Exam Review PRACTICE QUESTIONS 2021 AUDITING AND ATTESTATION includes Multiple Choice Questions, Ethics, Professional Responsibilities, and General Principles, Assessing Risk and Developing a Planned Response and much more.

Wiley-Schnellkurs Analysis (Wiley Schnellkurs)

by Christoph Maas

Ob in Wirtschafts-, Natur-, oder Ingenieurswissenschaften, sobald Sie sich mit Mathematik beschäftigen müssen, kommen Sie an der Analysis nicht vorbei. Leider wird die ab einem gewissen Niveau recht abstrakt und ist auf Anhieb nicht immer leicht zu verstehen. Christoph Maas erklärt Ihnen in diesem Buch zügig, was Sie über Analysis wissen sollten: von Funktionen mit einer oder mehreren Variablen, über Ableitungen bis zu Integralen. Mit zahlreichen Beispielen und Übungsaufgaben mit Lösungen können Sie Ihr Wissen testen und festigen. So hilft Ihnen dieses Buch besonders, wenn es etwas mehr als die übliche Schulmathematik sein soll.

Wiley-Schnellkurs Bioinformatik für Anwender (Wiley Schnellkurs)

by Röbbe Wünschiers

Die digitale Datenverarbeitung wird auch für Lebenswissenschaftler immer wichtiger. Hier setzt dieser Schnellkurs an. Röbbe Wünschiers erklärt Ihnen, wie Sie mit Sequenz-, Struktur- und anderen Daten umgehen sollten. Er erläutert, wie Sie Linux als virtuelle Maschine installieren und wie Ihnen Linuxtools wie Sed oder die einfache Programmiersprache AWK bei der Datenanalyse helfen können. Außerdem führt er Sie knapp in weitere Bereiche ein, die Ihnen das digitale Leben erleichtern können: das Datenbanksystem MariaDB/MySQL, die Programmierumgebung R für statistisches Rechnen und Datenvisualisierung, die Textsatzsprache LaTeX und einiges mehr. Ausgearbeitete Beispiele aus den Lebenswissenschaften und Übungsaufgaben samt Lösungen helfen Ihnen Ihr Wissen zu festigen und zu überprüfen. Auf der Webseite datenmassen.de finden sich alle Daten und Abbildungen zum Download.

Wiley-Schnellkurs Ingenieursmathematik (Wiley Schnellkurs)

by Marco Schreck Karsten Kirchgessner

Mathematik ist ein zentraler Bestandteil in der Ausbildung von Ingenieuren und Technikern. Leider sind von der Schulzeit her oft nur rudimentäre Ansätze vorhanden. Genau für diese Leser haben Marco Schreck und Karsten Kirchgessner dieses Buch geschrieben. Sie geben Ihnen eine kurze Einführung in Differenzial- und Integralrechnung, komplexe Zahlen, Vektoren und Matrizen, analytische Geometrie und vieles mehr. Viele Übungsaufgaben mit Lösungen helfen Ihnen, Ihr Wissen zu festigen und zu prüfen. So hilft Ihnen das Buch bei Ihrem Start in die Ingenieursmathematik, oder wenn Sie Ihr Wissen mehr in der Breite als in der Tiefe wieder auffrischen müssen. Schnell lernen: Der Einstiegstest: So überprüfen Sie Ihr Wissen und verbessern es gezielt. Die Lerntipps: So profitieren Sie von der Lehrerfahrung der Autoren. Die Übungsaufgaben mit Lösungen: So überprüfen und festigen Sie Ihr Wissen.

Wiley-Schnellkurs Lineare Algebra (Wiley Schnellkurs)

by Thoralf Räsch

Sie ist nicht beliebt und manchmal schwer zu verstehen: die Lineare Algebra. Aber keine Sorge: Thoralf Räsch hat ein kompaktes und verständliches Buch geschrieben, das Ihnen hilft, die Grundlagen der Linearen Algebra zu verstehen. Er erklärt Ihnen, was Sie über die algebraischen Grundlagen, Vektorräume, Lineare Gleichungssysteme und Matrizen wissen sollten. Auch die komplexen Zahlen kommen nicht zu kurz. Übungsaufgaben und Lösungen helfen Ihnen, Ihr Wissen zu festigen und zu überprüfen. So hilft Ihnen dieses Buch beim Grundverständnis der Linearen Algebra, wenn es einmal schnell gehen soll.

Wiley-Schnellkurs Lineare Algebra II (Wiley Schnellkurs)

by Thoralf Räsch

Bei etwas komplizierteren Fragestellungen kommen Sie oft mit den Grundlagen der Linearen Algebra nicht weiter. Hier hilft Ihnen dieses Buch. Thoralf Räsch erklärt Ihnen zu Beginn ganz knapp die Grundlagen, geht dann aber schnell weiter zu Koordinatentransformation, Eigenwerten und Eigenvektoren. Er erläutert zudem Determinanten von Matrizen, euklidische Vektorräume, Definiertheit von Matrizen und vieles mehr. Mit Übungsaufgaben samt Lösungen können Sie Ihr Wissen testen und festigen.

Wiley-Schnellkurs Statistik (Wiley Schnellkurs)

by Reiner Kurzhals

Es gibt nur wenige Studiengänge, in denen Sie an der Statistik vorbeikommen. Statistik gilt zudem als anspruchsvoll und sehr lernintensiv, aber Sie können auch zu sehr spannenden Ergebnissen kommen. Reiner Kurzhals erklärt Ihnen so knapp und verständlich wie möglich, was Sie über Statistik wissen müssen. Er erläutert neben den Grundbegriffen die wichtigsten Punkte der beschreibenden und der schließenden Statistik. Viele Beispiele helfen Ihnen dabei, sich die abstrakten Formeln und Begriffe besser vorstellen zu können. Mit den zahlreichen Übungsaufgaben mit Lösungen können sie Ihr Wissen festigen und prüfen.

Refine Search

Showing 25,601 through 25,625 of 25,833 results