Browse Results

Showing 2,851 through 2,875 of 27,829 results

Bayesian Modeling in Bioinformatics (Chapman & Hall/CRC Biostatistics Series)

by Dipak K. Dey Samiran Ghosh Bani K. Mallick

Bayesian Modeling in Bioinformatics discusses the development and application of Bayesian statistical methods for the analysis of high-throughput bioinformatics data arising from problems in molecular and structural biology and disease-related medical research, such as cancer. It presents a broad overview of statistical inference, clustering, and c

Bayesian Modeling of Spatio-Temporal Data with R (Chapman & Hall/CRC Interdisciplinary Statistics)

by Sujit Sahu

Applied sciences, both physical and social, such as atmospheric, biological, climate, demographic, economic, ecological, environmental, oceanic and political, routinely gather large volumes of spatial and spatio-temporal data in order to make wide ranging inference and prediction. Ideally such inferential tasks should be approached through modelling, which aids in estimation of uncertainties in all conclusions drawn from such data. Unified Bayesian modelling, implemented through user friendly software packages, provides a crucial key to unlocking the full power of these methods for solving challenging practical problems. Key features of the book: • Accessible detailed discussion of a majority of all aspects of Bayesian methods and computations with worked examples, numerical illustrations and exercises • A spatial statistics jargon buster chapter that enables the reader to build up a vocabulary without getting clouded in modeling and technicalities • Computation and modeling illustrations are provided with the help of the dedicated R package bmstdr, allowing the reader to use well-known packages and platforms, such as rstan, INLA, spBayes, spTimer, spTDyn, CARBayes, CARBayesST, etc • Included are R code notes detailing the algorithms used to produce all the tables and figures, with data and code available via an online supplement • Two dedicated chapters discuss practical examples of spatio-temporal modeling of point referenced and areal unit data • Throughout, the emphasis has been on validating models by splitting data into test and training sets following on the philosophy of machine learning and data science This book is designed to make spatio-temporal modeling and analysis accessible and understandable to a wide audience of students and researchers, from mathematicians and statisticians to practitioners in the applied sciences. It presents most of the modeling with the help of R commands written in a purposefully developed R package to facilitate spatio-temporal modeling. It does not compromise on rigour, as it presents the underlying theories of Bayesian inference and computation in standalone chapters, which would be appeal those interested in the theoretical details. By avoiding hard core mathematics and calculus, this book aims to be a bridge that removes the statistical knowledge gap from among the applied scientists.

Bayesian Modeling Using WinBUGS

by Ioannis Ntzoufras

A hands-on introduction to the principles of Bayesian modeling using WinBUGSBayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles.The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including:Markov Chain Monte Carlo algorithms in Bayesian inferenceGeneralized linear modelsBayesian hierarchical modelsPredictive distribution and model checkingBayesian model and variable evaluationComputational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all data sets and code are available on the book's related Web site.Requiring only a working knowledge of probability theory and statistics, Bayesian Modeling Using WinBUGS serves as an excellent book for courses on Bayesian statistics at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of statistics, actuarial science, medicine, and the social sciences who use WinBUGS in their everyday work.

Bayesian Models of Perception and Action: An Introduction

by Wei Ji Ma Konrad Paul Kording Daniel Goldreich

An accessible introduction to constructing and interpreting Bayesian models of perceptual decision-making and action.Many forms of perception and action can be mathematically modeled as probabilistic—or Bayesian—inference, a method used to draw conclusions from uncertain evidence. According to these models, the human mind behaves like a capable data scientist or crime scene investigator when dealing with noisy and ambiguous data. This textbook provides an approachable introduction to constructing and reasoning with probabilistic models of perceptual decision-making and action. Featuring extensive examples and illustrations, Bayesian Models of Perception and Action is the first textbook to teach this widely used computational framework to beginners.Introduces Bayesian models of perception and action, which are central to cognitive science and neuroscienceBeginner-friendly pedagogy includes intuitive examples, daily life illustrations, and gradual progression of complex conceptsBroad appeal for students across psychology, neuroscience, cognitive science, linguistics, and mathematicsWritten by leaders in the field of computational approaches to mind and brain

Bayesian Natural Language Semantics and Pragmatics (Language, Cognition, and Mind #2)

by Henk Zeevat Hans-Christian Schmitz

The contributions in this volume focus on the Bayesian interpretation of natural languages, which is widely used in areas of artificial intelligence, cognitive science, and computational linguistics. This is the first volume to take up topics in Bayesian Natural Language Interpretation and make proposals based on information theory, probability theory, and related fields. The methodologies offered here extend to the target semantic and pragmatic analyses of computational natural language interpretation. Bayesian approaches to natural language semantics and pragmatics are based on methods from signal processing and the causal Bayesian models pioneered by especially Pearl. In signal processing, the Bayesian method finds the most probable interpretation by finding the one that maximizes the product of the prior probability and the likelihood of the interpretation. It thus stresses the importance of a production model for interpretation as in Grice's contributions to pragmatics or in interpretation by abduction.

Bayesian Network Modeling of Corrosion

by Narasi Sridhar

This book represents a compilation of experience from a slate of experts involved in developing and deploying Bayesian Networks (BN) for corrosion management. The contributors describe how probability distributions can be developed for corroding systems and BN can be applied as an ideal framework to deal with corrosion risk. Corrosion can develop suddenly and grow rapidly after a long incubation period and take many non-uniform aspects, including pitting and stress corrosion cracking, that cannot be mitigated by simply bulking up the system. They also describe how complex engineering structures and systems are influenced by many natural and engineering factors that come together in myriad ways. It provides a broad perspective to the reader on the potential of BN as an artificial intelligence tool for corrosion risk management and the challenges for implementing it.

Bayesian Networks

by Timo Koski John Noble

Bayesian Networks: An Introduction provides a self-contained introduction to the theory and applications of Bayesian networks, a topic of interest and importance for statisticians, computer scientists and those involved in modelling complex data sets. The material has been extensively tested in classroom teaching and assumes a basic knowledge of probability, statistics and mathematics. All notions are carefully explained and feature exercises throughout.Features include:An introduction to Dirichlet Distribution, Exponential Families and their applications.A detailed description of learning algorithms and Conditional Gaussian Distributions using Junction Tree methods.A discussion of Pearl's intervention calculus, with an introduction to the notion of see and do conditioning.All concepts are clearly defined and illustrated with examples and exercises. Solutions are provided online.This book will prove a valuable resource for postgraduate students of statistics, computer engineering, mathematics, data mining, artificial intelligence, and biology.Researchers and users of comparable modelling or statistical techniques such as neural networks will also find this book of interest.

Bayesian Networks: With Examples in R (Chapman & Hall/CRC Texts in Statistical Science #109)

by Marco Scutari Jean-Baptiste Denis

Bayesian Networks: With Examples in R, Second Edition introduces Bayesian networks using a hands-on approach. Simple yet meaningful examples illustrate each step of the modelling process and discuss side-by-side the underlying theory and its application using R code. The examples start from the simplest notions and gradually increase in complexity. In particular, this new edition contains significant new material on topics from modern machine learning practice: dynamic networks, networks with heterogeneous variables, and model validation. The first three chapters explain the whole process of Bayesian network modelling, from structure learning to parameter learning to inference. These chapters cover discrete, Gaussian, and conditional Gaussian Bayesian networks. The following two chapters delve into dynamic networks (to model temporal data) and into networks including arbitrary random variables (using Stan). The book then gives a concise but rigorous treatment of the fundamentals of Bayesian networks and offers an introduction to causal Bayesian networks. It also presents an overview of R packages and other software implementing Bayesian networks. The final chapter evaluates two real-world examples: a landmark causal protein-signaling network published in Science and a probabilistic graphical model for predicting the composition of different body parts. Covering theoretical and practical aspects of Bayesian networks, this book provides you with an introductory overview of the field. It gives you a clear, practical understanding of the key points behind this modelling approach and, at the same time, it makes you familiar with the most relevant packages used to implement real-world analyses in R. The examples covered in the book span several application fields, data-driven models and expert systems, probabilistic and causal perspectives, thus giving you a starting point to work in a variety of scenarios. Online supplementary materials include the data sets and the code used in the book, which will all be made available from https://www.bnlearn.com/book-crc-2ed/

Bayesian Networks and Influence Diagrams: A Guide To Construction And Analysis (Information Science and Statistics #22)

by Uffe B. Kjærulff Anders L. Madsen

Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new sections, in addition to fully-updated examples, tables, figures, and a revised appendix. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his or her level of understanding. The techniques and methods presented for knowledge elicitation, model construction and verification, modeling techniques and tricks, learning models from data, and analyses of models have all been developed and refined on the basis of numerous courses that the authors have held for practitioners worldwide.

Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science

by Silvia Bozza Colin Aitken Paolo Garbolino Franco Taroni Alex Biedermann

"This book should have a place on the bookshelf of every forensic scientist who cares about the science of evidence interpretation" Dr. Ian Evett, Principal Forensic Services Ltd, London, UK Continuing developments in science and technology mean that the amounts of information forensic scientists are able to provide for criminal investigations is ever increasing. The commensurate increase in complexity creates difficulties for scientists and lawyers with regard to evaluation and interpretation, notably with respect to issues of inference and decision. Probability theory, implemented through graphical methods, and specifically Bayesian networks, provides powerful methods to deal with this complexity. Extensions of these methods to elements of decision theory provide further support and assistance to the judicial system. Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science provides a unique and comprehensive introduction to the use of Bayesian decision networks for the evaluation and interpretation of scientific findings in forensic science, and for the support of decision-makers in their scientific and legal tasks. * Includes self-contained introductions to probability and decision theory. * Develops the characteristics of Bayesian networks, object-oriented Bayesian networks and their extension to decision models. * Features implementation of the methodology with reference to commercial and academically available software. * Presents standard networks and their extensions that can be easily implemented and that can assist in the reader's own analysis of real cases. * Provides a technique for structuring problems and organizing data based on methods and principles of scientific reasoning. * Contains a method for the construction of coherent and defensible arguments for the analysis and evaluation of scientific findings and for decisions based on them. * Is written in a lucid style, suitable for forensic scientists and lawyers with minimal mathematical background. * Includes a foreword by Ian Evett. The clear and accessible style of this second edition makes this book ideal for all forensic scientists, applied statisticians and graduate students wishing to evaluate forensic findings from the perspective of probability and decision analysis. It will also appeal to lawyers and other scientists and professionals interested in the evaluation and interpretation of forensic findings, including decision making based on scientific information.

Bayesian Networks in Educational Assessment (Statistics for Social and Behavioral Sciences)

by Russell G. Almond Robert J. Mislevy Linda S. Steinberg Duanli Yan David M. Williamson

Bayesian inference networks, a synthesis of statistics and expert systems, have advanced reasoning under uncertainty in medicine, business, and social sciences. This innovative volume is the first comprehensive treatment exploring how they can be applied to design and analyze innovative educational assessments. Part I develops Bayes nets' foundations in assessment, statistics, and graph theory, and works through the real-time updating algorithm. Part II addresses parametric forms for use with assessment, model-checking techniques, and estimation with the EM algorithm and Markov chain Monte Carlo (MCMC). A unique feature is the volume's grounding in Evidence-Centered Design (ECD) framework for assessment design. This "design forward" approach enables designers to take full advantage of Bayes nets' modularity and ability to model complex evidentiary relationships that arise from performance in interactive, technology-rich assessments such as simulations. Part III describes ECD, situates Bayes nets as an integral component of a principled design process, and illustrates the ideas with an in-depth look at the BioMass project: An interactive, standards-based, web-delivered demonstration assessment of science inquiry in genetics. This book is both a resource for professionals interested in assessment and advanced students. Its clear exposition, worked-through numerical examples, and demonstrations from real and didactic applications provide invaluable illustrations of how to use Bayes nets in educational assessment. Exercises follow each chapter, and the online companion site provides a glossary, data sets and problem setups, and links to computational resources.

Bayesian Networks in R: with Applications in Systems Biology (Use R! #48)

by Marco Scutari Radhakrishnan Nagarajan Sophie Lèbre

Bayesian Networks in R with Applications in Systems Biology is unique as it introduces the reader to the essential concepts in Bayesian network modeling and inference in conjunction with examples in the open-source statistical environment R. The level of sophistication is also gradually increased across the chapters with exercises and solutions for enhanced understanding for hands-on experimentation of the theory and concepts. The application focuses on systems biology with emphasis on modeling pathways and signaling mechanisms from high-throughput molecular data. Bayesian networks have proven to be especially useful abstractions in this regard. Their usefulness is especially exemplified by their ability to discover new associations in addition to validating known ones across the molecules of interest. It is also expected that the prevalence of publicly available high-throughput biological data sets may encourage the audience to explore investigating novel paradigms using the approaches presented in the book.

Bayesian Nonparametric Data Analysis (Springer Series in Statistics)

by Peter Müller Fernando Andres Quintana Alejandro Jara Tim Hanson

This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book's structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages.

Bayesian Nonparametric Statistics: École d’Été de Probabilités de Saint-Flour LI - 2023 (Lecture Notes in Mathematics #2358)

by Ismaël Castillo

This up-to-date overview of Bayesian nonparametric statistics provides both an introduction to the field and coverage of recent research topics, including deep neural networks, high-dimensional models and multiple testing, Bernstein-von Mises theorems and variational Bayes approximations, many of which have previously only been accessible through research articles. Although Bayesian posterior distributions are widely applied in astrophysics, inverse problems, genomics, machine learning and elsewhere, their theory is still only partially understood, especially in complex settings such as nonparametric or semiparametric models. Here, the available theory on the frequentist analysis of posterior distributions is outlined in terms of convergence rates, limiting shape results and uncertainty quantification. Based on lecture notes for a course given at the St-Flour summer school in 2023, the book is aimed at researchers and graduate students in statistics and probability.

Bayesian Nonparametrics for Causal Inference and Missing Data (Chapman & Hall/CRC Monographs on Statistics and Applied Probability #124)

by Michael J. Daniels Antonio Linero Jason Roy

Bayesian Nonparametrics for Causal Inference and Missing Data provides an overview of flexible Bayesian nonparametric (BNP) methods for modeling joint or conditional distributions and functional relationships, and their interplay with causal inference and missing data. This book emphasizes the importance of making untestable assumptions to identify estimands of interest, such as missing at random assumption for missing data and unconfoundedness for causal inference in observational studies. Unlike parametric methods, the BNP approach can account for possible violations of assumptions and minimize concerns about model misspecification. The overall strategy is to first specify BNP models for observed data and then to specify additional uncheckable assumptions to identify estimands of interest. The book is divided into three parts. Part I develops the key concepts in causal inference and missing data and reviews relevant concepts in Bayesian inference. Part II introduces the fundamental BNP tools required to address causal inference and missing data problems. Part III shows how the BNP approach can be applied in a variety of case studies. The datasets in the case studies come from electronic health records data, survey data, cohort studies, and randomized clinical trials. Features • Thorough discussion of both BNP and its interplay with causal inference and missing data • How to use BNP and g-computation for causal inference and non-ignorable missingness • How to derive and calibrate sensitivity parameters to assess sensitivity to deviations from uncheckable causal and/or missingness assumptions • Detailed case studies illustrating the application of BNP methods to causal inference and missing data • R code and/or packages to implement BNP in causal inference and missing data problems The book is primarily aimed at researchers and graduate students from statistics and biostatistics. It will also serve as a useful practical reference for mathematically sophisticated epidemiologists and medical researchers.

Bayesian Optimization and Data Science (SpringerBriefs in Optimization)

by Francesco Archetti Antonio Candelieri

This volume brings together the main results in the field of Bayesian Optimization (BO), focusing on the last ten years and showing how, on the basic framework, new methods have been specialized to solve emerging problems from machine learning, artificial intelligence, and system optimization. It also analyzes the software resources available for BO and a few selected application areas. Some areas for which new results are shown include constrained optimization, safe optimization, and applied mathematics, specifically BO's use in solving difficult nonlinear mixed integer problems. The book will help bring readers to a full understanding of the basic Bayesian Optimization framework and gain an appreciation of its potential for emerging application areas. It will be of particular interest to the data science, computer science, optimization, and engineering communities.

Bayesian Optimization for Materials Science (SpringerBriefs in the Mathematics of Materials #3)

by Daniel Packwood

This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian optimization is outlined in Chapter 2. Finally, Chapter 3 discusses an application of Bayesian optimization to a complicated structure optimization problem in computational surface science. Bayesian optimization is a promising global optimization technique that originates in the field of machine learning and is starting to gain attention in materials science. For the purpose of materials design, Bayesian optimization can be used to predict new materials with novel properties without extensive screening of candidate materials. For the purpose of computational materials science, Bayesian optimization can be incorporated into first-principles calculations to perform efficient, global structure optimizations. While research in these directions has been reported in high-profile journals, until now there has been no textbook aimed specifically at materials scientists who wish to incorporate Bayesian optimization into their own research. This book will be accessible to researchers and students in materials science who have a basic background in calculus and linear algebra.

Bayesian Optimization with Application to Computer Experiments (SpringerBriefs in Statistics)

by Tony Pourmohamad Herbert K. H. Lee

This book introduces readers to Bayesian optimization, highlighting advances in the field and showcasing its successful applications to computer experiments. R code is available as online supplementary material for most included examples, so that readers can better comprehend and reproduce methods. Compact and accessible, the volume is broken down into four chapters. Chapter 1 introduces the reader to the topic of computer experiments; it includes a variety of examples across many industries. Chapter 2 focuses on the task of surrogate model building and contains a mix of several different surrogate models that are used in the computer modeling and machine learning communities. Chapter 3 introduces the core concepts of Bayesian optimization and discusses unconstrained optimization. Chapter 4 moves on to constrained optimization, and showcases some of the most novel methods found in the field. This will be a useful companion to researchers and practitioners working with computer experiments and computer modeling. Additionally, readers with a background in machine learning but minimal background in computer experiments will find this book an interesting case study of the applicability of Bayesian optimization outside the realm of machine learning.

Bayesian Phylogenetics: Methods, Algorithms, and Applications (Chapman & Hall/CRC Computational Biology Series)

by Ming-Hui Chen Lynn Kuo Paul O. Lewis

Offering a rich diversity of models, Bayesian phylogenetics allows evolutionary biologists, systematists, ecologists, and epidemiologists to obtain answers to very detailed phylogenetic questions. Suitable for graduate-level researchers in statistics and biology, Bayesian Phylogenetics: Methods, Algorithms, and Applications presents a snapshot of c

Bayesian Precision Medicine (Chapman & Hall/CRC Biostatistics Series)

by Peter F. Thall

Bayesian Precision Medicine presents modern Bayesian statistical models and methods for identifying treatments tailored to individual patients using their prognostic variables and predictive biomarkers. The process of evaluating and comparing treatments is explained and illustrated by practical examples, followed by a discussion of causal analysis and its relationship to statistical inference. A wide array of modern Bayesian clinical trial designs are presented, including applications to many oncology trials. The later chapters describe Bayesian nonparametric regression analyses of datasets arising from multistage chemotherapy for acute leukemia, allogeneic stem cell transplantation, and targeted agents for treating advanced breast cancer.Features: Describes the connection between causal analysis and statistical inference Reviews modern personalized Bayesian clinical trial designs for dose-finding, treatment screening, basket trials, enrichment, incorporating historical data, and confirmatory treatment comparison, illustrated by real-world applications Presents adaptive methods for clustering similar patient subgroups to improve efficiency Describes Bayesian nonparametric regression analyses of real-world datasets from oncology Provides pointers to software for implementation Bayesian Precision Medicine is primarily aimed at biostatisticians and medical researchers who desire to apply modern Bayesian methods to their own clinical trials and data analyses. It also might be used to teach a special topics course on precision medicine using a Bayesian approach to postgraduate biostatistics students. The main goal of the book is to show how Bayesian thinking can provide a practical scientific basis for tailoring treatments to individual patients.

Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks: Online Environmental Field Reconstruction in Space and Time (SpringerBriefs in Electrical and Computer Engineering)

by Jongeun Choi Yunfei Xu Sarat Dass Tapabrata Maiti

This brief introduces a class of problems and models for the prediction of the scalar field of interest from noisy observations collected by mobile sensor networks. It also introduces the problem of optimal coordination of robotic sensors to maximize the prediction quality subject to communication and mobility constraints either in a centralized or distributed manner. To solve such problems, fully Bayesian approaches are adopted, allowing various sources of uncertainties to be integrated into an inferential framework effectively capturing all aspects of variability involved. The fully Bayesian approach also allows the most appropriate values for additional model parameters to be selected automatically by data, and the optimal inference and prediction for the underlying scalar field to be achieved. In particular, spatio-temporal Gaussian process regression is formulated for robotic sensors to fuse multifactorial effects of observations, measurement noise, and prior distributions for obtaining the predictive distribution of a scalar environmental field of interest. New techniques are introduced to avoid computationally prohibitive Markov chain Monte Carlo methods for resource-constrained mobile sensors. Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks starts with a simple spatio-temporal model and increases the level of model flexibility and uncertainty step by step, simultaneously solving increasingly complicated problems and coping with increasing complexity, until it ends with fully Bayesian approaches that take into account a broad spectrum of uncertainties in observations, model parameters, and constraints in mobile sensor networks. The book is timely, being very useful for many researchers in control, robotics, computer science and statistics trying to tackle a variety of tasks such as environmental monitoring and adaptive sampling, surveillance, exploration, and plume tracking which are of increasing currency. Problems are solved creatively by seamless combination of theories and concepts from Bayesian statistics, mobile sensor networks, optimal experiment design, and distributed computation.

Bayesian Probability Theory

by Wolfgang Von Der Linden Volker Dose Udo Von Toussaint

From the basics to the forefront of modern research, this book presents all aspects of probability theory, statistics and data analysis from a Bayesian perspective for physicists and engineers. The book presents the roots, applications and numerical implementation of probability theory, and covers advanced topics such as maximum entropy distributions, stochastic processes, parameter estimation, model selection, hypothesis testing and experimental design. In addition, it explores state-of-the art numerical techniques required to solve demanding real-world problems. The book is ideal for students and researchers in physical sciences and engineering.

Bayesian Process Monitoring, Control and Optimization

by Bianca M. Colosimo Enrique Del Castillo

Although there are many Bayesian statistical books that focus on biostatistics and economics, there are few that address the problems faced by engineers. Bayesian Process Monitoring, Control and Optimization resolves this need, showing you how to oversee, adjust, and optimize industrial processes.Bridging the gap between application and dev

Bayesian Programming (Chapman & Hall/CRC Machine Learning & Pattern Recognition)

by Pierre Bessiere Emmanuel Mazer Juan Ahuactzin Kamel Mekhnacha

A new modeling methodology, new inference algorithms, new programming languages, and new hardware are all needed to create a complete Bayesian computing framework. Focusing on the methodology and algorithms, this book describes the first steps toward reaching that goal. It emphasizes probability as an alternative to Boolean logic, covering new methods to build probabilistic programs for real-world applications. The book encourages readers to explore emerging areas and develop new programming languages and hardware architectures. A Python package is available on a supplementary website.

Bayesian Psychometric Modeling (Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences)

by Roy Levy Robert J. Mislevy

A Single Cohesive Framework of Tools and Procedures for Psychometrics and AssessmentBayesian Psychometric Modeling presents a unified Bayesian approach across traditionally separate families of psychometric models. It shows that Bayesian techniques, as alternatives to conventional approaches, offer distinct and profound advantages in achieving many goals of psychometrics.Adopting a Bayesian approach can aid in unifying seemingly disparate—and sometimes conflicting—ideas and activities in psychometrics. This book explains both how to perform psychometrics using Bayesian methods and why many of the activities in psychometrics align with Bayesian thinking.The first part of the book introduces foundational principles and statistical models, including conceptual issues, normal distribution models, Markov chain Monte Carlo estimation, and regression. Focusing more directly on psychometrics, the second part covers popular psychometric models, including classical test theory, factor analysis, item response theory, latent class analysis, and Bayesian networks. Throughout the book, procedures are illustrated using examples primarily from educational assessments. A supplementary website provides the datasets, WinBUGS code, R code, and Netica files used in the examples.

Refine Search

Showing 2,851 through 2,875 of 27,829 results