Browse Results

Showing 8,651 through 8,675 of 24,589 results

Fractals: Applications in Biological Signalling and Image Processing

by Dinesh Kumar Sridhar P. Arjunan Behzad Aliahmad

The book provides an insight into the advantages and limitations of the use of fractals in biomedical data. It begins with a brief introduction to the concept of fractals and other associated measures and describes applications for biomedical signals and images. Properties of biological data in relations to fractals and entropy, and the association with health and ageing are also covered. The book provides a detailed description of new techniques on physiological signals and images based on the fractal and chaos theory. The aim of this book is to serve as a comprehensive guide for researchers and readers interested in biomedical signal and image processing and feature extraction for disease risk analyses and rehabilitation applications. While it provides the mathematical rigor for those readers interested in such details, it also describes the topic intuitively such that it is suitable for audience who are interested in applying the methods to healthcare and clinical applications. The book is the outcome of years of research by the authors and is comprehensive and includes other reported outcomes.

Fractals Everywhere: New Edition

by Michael F. Barnsley

"Difficult concepts are introduced in a clear fashion with excellent diagrams and graphs." — Alan E. Wessel, Santa Clara University"The style of writing is technically excellent, informative, and entertaining." — Robert McCartyThis new edition of a highly successful text constitutes one of the most influential books on fractal geometry. An exploration of the tools, methods, and theory of deterministic geometry, the treatment focuses on how fractal geometry can be used to model real objects in the physical world. Two sixteen-page full-color inserts contain fractal images, and a bonus CD of an IFS Generator provides an excellent software tool for designing iterated function systems codes and fractal images. Suitable for undergraduates and graduate students of many backgrounds, the treatment starts with an introduction to basic topological ideas. Subsequent chapters examine transformations on metric spaces, dynamics on fractals, fractal dimension and interpolation, Julia sets, and parameter spaces. A final chapter introduces measures on fractals and measures in general. Problems and tools emphasize fractal applications, and an answers section contains solutions and hints.

Fractals, Googols, and Other Mathematical Tales

by Theoni Pappas

A treasure trove of stories that make mathematical ideas come to life. Explores math concepts and topics such as real numbers, exponents, dimensions, the golden rectangle in both serious and humorous ways. Stories such as the parable of p, the number line that fell apart, Leonhard the magic turtle and many others offer an amusing and entertaining way to explore and share mathematical ideas regardless of age or background. The reference section following each story is designed as enrichment information for the concepts presented in each story.

Fractals in Engineering: Theoretical Aspects and Numerical Approximations (SEMA SIMAI Springer Series #8)

by Maria Rosaria Lancia Anna Rozanova-Pierrat

Fractal structures or geometries currently play a key role in all models for natural and industrial processes that exhibit the formation of rough surfaces and interfaces. Computer simulations, analytical theories and experiments have led to significant advances in modeling these phenomena across wild media. Many problems coming from engineering, physics or biology are characterized by both the presence of different temporal and spatial scales and the presence of contacts among different components through (irregular) interfaces that often connect media with different characteristics. This work is devoted to collecting new results on fractal applications in engineering from both theoretical and numerical perspectives. The book is addressed to researchers in the field.

Fractals, Wavelets, and their Applications

by Christoph Bandt Michael Barnsley Robert Devaney Kenneth J. Falconer V. Kannan Vinod Kumar P.B.

Fractals and wavelets are emerging areas of mathematics with many common factors which can be used to develop new technologies. This volume contains the selected contributions from the lectures and plenary and invited talks given at the International Workshop and Conference on Fractals and Wavelets held at Rajagiri School of Engineering and Technology, India from November 9-12, 2013. Written by experts, the contributions hope to inspire and motivate researchers working in this area. They provide more insight into the areas of fractals, self similarity, iterated function systems, wavelets and the applications of both fractals and wavelets. This volume will be useful for the beginners as well as experts in the fields of fractals and wavelets.

Fraction Action

by Loreen Leedy

Animal students explore fraction problems and answers.

Fraction Fun

by David A. Adler

Would you rather eat 1/4 of a pizza or 1/8 of a pizza? Find 3/4 of a dollar or 1/10 of a dollar? Confused? You don't have to be! Fractions are made easy in this simple and hands-on math concept book. You'll learn what the top and bottom numbers are called, and what they mean. You will also find out how to recognize and compare different fractions. Just follow the clear instructions and you will learn the most important thing of all -- that fractions can be fun!

Fractional Brownian Motion: Approximations and Projections (Lecture Notes in Mathematics #1929)

by Oksana Banna Yuliya Mishura Kostiantyn Ralchenko Sergiy Shklyar

This monograph studies the relationships between fractional Brownian motion (fBm) and other processes of more simple form. In particular, this book solves the problem of the projection of fBm onto the space of Gaussian martingales that can be represented as Wiener integrals with respect to a Wiener process. It is proved that there exists a unique martingale closest to fBm in the uniform integral norm. Numerical results concerning the approximation problem are given. The upper bounds of distances from fBm to the different subspaces of Gaussian martingales are evaluated and the numerical calculations are involved. The approximations of fBm by a uniformly convergent series of Lebesgue integrals, semimartingales and absolutely continuous processes are presented. As auxiliary but interesting results, the bounds from below and from above for the coefficient appearing in the representation of fBm via the Wiener process are established and some new inequalities for Gamma functions, and even for trigonometric functions, are obtained.

Fractional Calculus: ICFDA 2018, Amman, Jordan, July 16-18 (Springer Proceedings in Mathematics & Statistics #303)

by Praveen Agarwal Dumitru Baleanu YangQuan Chen Shaher Momani José António Tenreiro Machado

This book collects papers presented at the International Conference on Fractional Differentiation and its Applications (ICFDA), held at the University of Jordan, Amman, Jordan, on 16–18 July 2018. Organized into 13 chapters, the book discusses the latest trends in various fields of theoretical and applied fractional calculus. Besides an essential mathematical interest, its overall goal is a general improvement of the physical world models for the purpose of computer simulation, analysis, design and control in practical applications. It showcases the development of fractional calculus as an acceptable tool for a large number of diverse scientific communities due to more adequate modeling in various fields of mechanics, electricity, chemistry, biology, medicine, economics, control theory, as well as signal and image processing. The book will be a valuable resource for graduate students and researchers of mathematics and engineering.

Fractional Calculus: High-Precision Algorithms and Numerical Implementations

by Dingyü Xue Lu Bai

Fractional calculus and its applications are fascinating research areas in many engineering disciplines. This book is a comprehensive collection of research from the author's group, which is one of the most active in the fractional calculus community worldwide and is the birthplace of one of the four MATLAB toolboxes in fractional calculus, the FOTF Toolbox. The book presents high-precision solution algorithms for a variety of fractional-order differential equations, including nonlinear, delay, and boundary value equations. Currently, there are no other universal solvers available for the latter two types of equations. Through this book, readers can systematically study the mathematics and solution methods in the field of fractional calculus and apply these concepts to different engineering fields, particularly control systems engineering.This book is a translation of an original German edition. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation.

Fractional Calculus and Fractional Differential Equations (Trends in Mathematics)

by Varsha Daftardar-Gejji

This book provides a broad overview of the latest developments in fractional calculus and fractional differential equations (FDEs) with an aim to motivate the readers to venture into these areas. It also presents original research describing the fractional operators of variable order, fractional-order delay differential equations, chaos and related phenomena in detail. Selected results on the stability of solutions of nonlinear dynamical systems of the non-commensurate fractional order have also been included. Furthermore, artificial neural network and fractional differential equations are elaborated on; and new transform methods (for example, Sumudu methods) and how they can be employed to solve fractional partial differential equations are discussed.The book covers the latest research on a variety of topics, including: comparison of various numerical methods for solving FDEs, the Adomian decomposition method and its applications to fractional versions of the classical Poisson processes, variable-order fractional operators, fractional variational principles, fractional delay differential equations, fractional-order dynamical systems and stability analysis, inequalities and comparison theorems in FDEs, artificial neural network approximation for fractional operators, and new transform methods for solving partial FDEs. Given its scope and level of detail, the book will be an invaluable asset for researchers working in these areas.

Fractional Calculus for Scientists and Engineers

by Manuel Duarte Ortigueira

This book gives a practical overview of Fractional Calculus as it relates to Signal Processing

Fractional Calculus for Skeptics I: The Fractal Paradigm (Fractional Order Thinking in Exploring the Frontiers of STEM)

by Bruce J. West YangQuan Chen

This book is the first of its kind on fractional calculus (FC), dedicated to advocating for FC in STEM education and research.Fractional calculus is increasingly used today, but there remains a core population of skeptics regarding the utility of this "new" calculus. This book is intended for those who are skeptical about the need for fractional calculus to describe dynamic complex networks and must be convinced of its use on a case-by-case basis. It is a one-stop resource to rapidly read and replace the appropriate skepticism with new knowledge. It offers compelling reasons from the perspectives of the physical, social, and life sciences as to why fractional calculus is needed when addressing the complexity of an underlying STEM phenomenon. The six chapters are accompanied by useful and essential appendices and chapter-end references. Each includes new (fractional-order) ways of thinking about statistics, complexity dynamics, and what constitutes a solution to a complexity science problem.The book will appeal to students and researchers in all STEM-related fields, such as engineering, physics, biology and biomedicine, climate change, big data, and machine learning. It is also suitable for general readers interested in these fields.

Fractional Calculus in Medical and Health Science (Mathematics and its Applications)

by Devendra Kumar Jagdev Singh

This book covers applications of fractional calculus used for medical and health science. It offers a collection of research articles built into chapters on classical and modern dynamical systems formulated by fractional differential equations describing human diseases and how to control them. The mathematical results included in the book will be helpful to mathematicians and doctors by enabling them to explain real-life problems accurately. The book will also offer case studies of real-life situations with an emphasis on describing the mathematical results and showing how to apply the results to medical and health science, and at the same time highlighting modeling strategies. The book will be useful to graduate level students, educators and researchers interested in mathematics and medical science.

Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles

by Teodor M. Atanackovic Stevan Pilipovic Bogoljub Stankovic Dusan Zorica

The books Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes and Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles contain various applications of fractional calculus to the fields of classical mechanics. Namely, the books study problems in fields such as viscoelasticity of fractional order, lateral vibrations of a rod of fractional order type, lateral vibrations of a rod positioned on fractional order viscoelastic foundations, diffusion-wave phenomena, heat conduction, wave propagation, forced oscillations of a body attached to a rod, impact and variational principles of a Hamiltonian type. The books will be useful for graduate students in mechanics and applied mathematics, as well as for researchers in these fields.Part 1 of this book presents an introduction to fractional calculus. Chapter 1 briefly gives definitions and notions that are needed later in the book and Chapter 2 presents definitions and some of the properties of fractional integrals and derivatives.Part 2 is the central part of the book. Chapter 3 presents the analysis of waves in fractional viscoelastic materials in infinite and finite spatial domains. In Chapter 4, the problem of oscillations of a translatory moving rigid body, attached to a heavy, or light viscoelastic rod of fractional order type, is studied in detail. In Chapter 5, the authors analyze a specific engineering problem of the impact of a viscoelastic rod against a rigid wall. Finally, in Chapter 6, some results for the optimization of a functional containing fractional derivatives of constant and variable order are presented.

Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes

by Teodor M. Atanackovic Stevan Pilipovic Bogoljub Stankovic Dusan Zorica

This book contains mathematical preliminaries in which basic definitions of fractional derivatives and spaces are presented. The central part of the book contains various applications in classical mechanics including fields such as: viscoelasticity, heat conduction, wave propagation and variational Hamilton–type principles. Mathematical rigor will be observed in the applications. The authors provide some problems formulated in the classical setting and some in the distributional setting. The solutions to these problems are presented in analytical form and these solutions are then analyzed numerically. Theorems on the existence of solutions will be presented for all examples discussed. In using various constitutive equations the restrictions following from the second law of thermodynamics will be implemented. Finally, the physical implications of obtained solutions will be discussed in detail.

Fractional Cauchy Transforms (Monographs and Surveys in Pure and Applied Mathematics)

by Rita A. Hibschweiler

Presenting new results along with research spanning five decades. Fractional Cauchy Transforms provides a full treatment of the topic, from its roots in classical complex analysis to its current state. Self-contained, it includes introductory material and classical results, such as those associated with complex-valued measures on the unit circle, that form the basis of the developments that follow. The authors focus on concrete analytic questions, with functional analysis providing the general framework., After examining basic properties, the authors study integral means and relationships between the fractional Cauchy transforms and the Hardy and Dirichlet spaces. They then study radial and nontangential limits, followed by chapters devoted to multipliers, composition operators, and univalent functions. The final chapter gives an analytic characterization of the family of Cauchy transforms when considered as functions defined in the complement of the unit circle.

Fractional Differential Equations: Modeling, Discretization, and Numerical Solvers (Springer INdAM Series #50)

by Angelamaria Cardone Marco Donatelli Fabio Durastante Roberto Garrappa Mariarosa Mazza Marina Popolizio

The content of the book collects some contributions related to the talks presented during the INdAM Workshop "Fractional Differential Equations: Modelling, Discretization, and Numerical Solvers", held in Rome, Italy, on July 12–14, 2021. All contributions are original and not published elsewhere. The main topic of the book is fractional calculus, a topic that addresses the study and application of integrals and derivatives of noninteger order. These operators, unlike the classic operators of integer order, are nonlocal operators and are better suited to describe phenomena with memory (with respect to time and/or space). Although the basic ideas of fractional calculus go back over three centuries, only in recent decades there has been a rapid increase in interest in this field of research due not only to the increasing use of fractional calculus in applications in biology, physics, engineering, probability, etc., but also thanks to the availability of new and more powerful numerical tools that allow for an efficient solution of problems that until a few years ago appeared unsolvable. The analytical solution of fractional differential equations (FDEs) appears even more difficult than in the integer case. Hence, numerical analysis plays a decisive role since practically every type of application of fractional calculus requires adequate numerical tools. The aim of this book is therefore to collect and spread ideas mainly coming from the two communities of numerical analysts operating in this field - the one working on methods for the solution of differential problems and the one working on the numerical linear algebra side - to share knowledge and create synergies. At the same time, the book intends to realize a direct bridge between researchers working on applications and numerical analysts. Indeed, the book collects papers on applications, numerical methods for differential problems of fractional order, and related aspects in numerical linear algebra.The target audience of the book is scholars interested in recent advancements in fractional calculus.

Fractional Differential Equations: An Approach via Fractional Derivatives (Applied Mathematical Sciences #206)

by Bangti Jin

This graduate textbook provides a self-contained introduction to modern mathematical theory on fractional differential equations. It addresses both ordinary and partial differential equations with a focus on detailed solution theory, especially regularity theory under realistic assumptions on the problem data. The text includes an extensive bibliography, application-driven modeling, extensive exercises, and graphic illustrations throughout to complement its comprehensive presentation of the field. It is recommended for graduate students and researchers in applied and computational mathematics, particularly applied analysis, numerical analysis and inverse problems.

Fractional Diffusion Equations And Anomalous Diffusion

by Luiz Roberto Evangelista Ervin Kaminski Lenzi

Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.

Fractional Dispersive Models and Applications: Recent Developments and Future Perspectives (Nonlinear Systems and Complexity #37)

by Panayotis G. Kevrekidis Jesús Cuevas-Maraver

This book explores the role of fractional calculus and associated partial differential equations in modeling multiscale phenomena and overlapping macroscopic & microscopic scales, offering an innovative and powerful tool for modeling complex systems. While integer order PDEs have a long-standing history, the novel setting of fractional PDEs opens up new possibilities for the simulation of multi-physics phenomena. The book examines a range of releavant examples that showcase the seamless transition from wave propagation to diffusion or from local to non-local dynamics in both continuum and discrete systems. These systems have been argued as being particularly relevant in contexts such as nonlinear optics, lattice nonlinear dynamical systems, and dispersive nonlinear wave phenomena, where the exploration of the potential fractionality has emerged as a highly active topic for current studies.The volume consists of contributions from a diverse group of active scholars and expertsacross different fields, providing a detailed examination of the field's past, present, and future state-of-the-art in the interplay of fractional PDEs and nonlinear wave phenomena. It is intended to be of wide interest to both seasoned researchers and beginners in the Field of Nonlinear Science. This book sets the stage for the next decade of research and beyond and is a timely and relevant reference of choice for this crucial junction of current research.

Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales

by Svetlin G. Georgiev

Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger’s basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations. Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculus and equations on time scales.

Fractional Dynamics, Anomalous Transport and Plasma Science: Lectures From Chaos2017

by Christos H. Skiadas

This book collects interrelated lectures on fractal dynamics, anomalous transport and various historical and modern aspects of plasma sciences and technology. The origins of plasma science in connection to electricity and electric charges and devices leading to arc plasma are explored in the first contribution by Jean-Marc Ginoux and Thomas Cuff. The second important historic connection with plasmas was magnetism and the magnetron. Victor J. Law and Denis P. Dowling, in the second contribution, review the history of the magnetron based on the development of thermionic diode valves and related devices. In the third chapter, Christos H Skiadas and Charilaos Skiadas present and apply diffusion theory and solution strategies to a number of stochastic processes of interest. Anomalous diffusion by the fractional Fokker-Planck equation and Lévy stable processes are studied by Johan Anderson and Sara Moradi in the fourth contribution. They consider the motion of charged particles in a 3-dimensional magnetic field in the presence of linear friction and of a stochastic electric field. Analysis of low-frequency instabilities in a low-temperature magnetized plasma is presented by Dan-Gheorghe Dimitriu, Maricel Agop in the fifth chapter. The authors refer to experimental results of the Innsbruck Q-machine and provide an analytical formulation of the related theory. In chapter six, Stefan Irimiciuc, Dan-Gheorghe Dimitriu, Maricel Agop propose a theoretical model to explain the dynamics of charged particles in a plasma discharge with a strong flux of electrons from one plasma structure to another. The theory and applications of fractional derivatives in many-particle disordered large systems are explored by Z.Z. Alisultanov, A.M. Agalarov, A.A. Potapov, G.B. Ragimkhanov. In chapter eight, Maricel Agop, Alina Gavrilut¸ and Gabriel Crumpei explore the motion of physical systems that take place on continuous but non-differentiable curves (fractal curves). Finally in the last chapter S.L. Cherkas and V.L. Kalashnikov consider the perturbations of a plasma consisting of photons, baryons, and electrons in a linearly expanding (Milne-like) universe taking into account the metric tensor and vacuum perturbations.

Fractional Equations and Models: Theory and Applications (Developments in Mathematics #61)

by Trifce Sandev Živorad Tomovski

Fractional equations and models play an essential part in the description of anomalous dynamics in complex systems. Recent developments in the modeling of various physical, chemical and biological systems have clearly shown that fractional calculus is not just an exotic mathematical theory, as it might have once seemed. The present book seeks to demonstrate this using various examples of equations and models with fractional and generalized operators. Intended for students and researchers in mathematics, physics, chemistry, biology and engineering, it systematically offers a wealth of useful tools for fractional calculus.

Fractional Fields and Applications

by Jacques Istas Serge Cohen

This book focuses mainly on fractional Brownian fields and their extensions. It has been used to teach graduate students at Grenoble and Toulouse's Universities. It is as self-contained as possible and contains numerous exercises, with solutions in an appendix. After a foreword by Stéphane Jaffard, a long first chapter is devoted to classical results from stochastic fields and fractal analysis. A central notion throughout this book is self-similarity, which is dealt with in a second chapter with a particular emphasis on the celebrated Gaussian self-similar fields, called fractional Brownian fields after Mandelbrot and Van Ness's seminal paper. Fundamental properties of fractional Brownian fields are then stated and proved. The second central notion of this book is the so-called local asymptotic self-similarity (in short lass), which is a local version of self-similarity, defined in the third chapter. A lengthy study is devoted to lass fields with finite variance. Among these lass fields, we find both Gaussian fields and non-Gaussian fields, called Lévy fields. The Lévy fields can be viewed as bridges between fractional Brownian fields and stable self-similar fields. A further key issue concerns the identification of fractional parameters. This is the raison d'être of the statistics chapter, where generalized quadratic variations methods are mainly used for estimating fractional parameters. Last but not least, the simulation is addressed in the last chapter. Unlike the previous issues, the simulation of fractional fields is still an area of ongoing research. The algorithms presented in this chapter are efficient but do not claim to close the debate.

Refine Search

Showing 8,651 through 8,675 of 24,589 results