- Table View
- List View
Function Spaces, Theory and Applications (Fields Institute Communications #87)
by Ilia Binder Damir Kinzebulatov Javad MashreghiThe focus program on Analytic Function Spaces and their Applications took place at Fields Institute from July 1st to December 31st, 2021. Hilbert spaces of analytic functions form one of the pillars of complex analysis. These spaces have a rich structure and for more than a century have been studied by many prominent mathematicians. They also have several essential applications in other fields of mathematics and engineering, e.g., robust control engineering, signal and image processing, and theory of communication. The most important Hilbert space of analytic functions is the Hardy class H2. However, its close cousins, e.g. the Bergman space A2, the Dirichlet space D, the model subspaces Kt, and the de Branges-Rovnyak spaces H(b), have also been the center of attention in the past two decades. Studying the Hilbert spaces of analytic functions and the operators acting on them, as well as their applications in other parts of mathematics or engineering were the main subjects of this program. During the program, the world leading experts on function spaces gathered and discussed the new achievements and future venues of research on analytic function spaces, their operators, and their applications in other domains. With more than 250 hours of lectures by prominent mathematicians, a wide variety of topics were covered. More explicitly, there were mini-courses and workshops on Hardy Spaces, Dirichlet Spaces, Bergman Spaces, Model Spaces, Interpolation and Sampling, Riesz Bases, Frames and Signal Processing, Bounded Mean Oscillation, de Branges-Rovnyak Spaces, Operators on Function Spaces, Truncated Toeplitz Operators, Blaschke Products and Inner Functions, Discrete and Continuous Semigroups of Composition Operators, The Corona Problem, Non-commutative Function Theory, Drury-Arveson Space, and Convergence of Scattering Data and Non-linear Fourier Transform. At the end of each week, there was a high profile colloquium talk on the current topic. The program also contained two semester-long advanced courses on Schramm Loewner Evolution and Lattice Models and Reproducing Kernel Hilbert Space of Analytic Functions. The current volume features a more detailed version of some of the talks presented during the program.
Function Spaces with Uniform, Fine and Graph Topologies (Springerbriefs In Mathematics)
by Robert A. McCoy Subiman Kundu Varun JindalThis book presents a comprehensive account of the theory of spaces of continuous functions under uniform, fine and graph topologies. Besides giving full details of known results, an attempt is made to give generalizations wherever possible, enriching the existing literature. The goal of this monograph is to provide an extensive study of the uniform, fine and graph topologies on the space C(X,Y) of all continuous functions from a Tychonoff space X to a metric space (Y,d); and the uniform and fine topologies on the space H(X) of all self-homeomorphisms on a metric space (X,d). The subject matter of this monograph is significant from the theoretical viewpoint, but also has applications in areas such as analysis, approximation theory and differential topology. Written in an accessible style, this book will be of interest to researchers as well as graduate students in this vibrant research area.
Function Theory on Planar Domains: A Second Course in Complex Analysis
by Stephen D. FisherA high-level treatment of complex analysis, this text focuses on function theory on a finitely connected planar domain. Clear and complete, it emphasizes domains bounded by a finite number of disjoint analytic simple closed curves.The first chapter and parts of Chapters 2 and 3 offer background material, all of it classical and important in its own right. The remainder of the text presents results in complex analysis from the far, middle, and recent past, all selected for their interest and merit as substantive mathematics. Suitable for upper-level undergraduates and graduate students, this text is accessible to anyone with a background in complex and functional analysis. Author Stephen D. Fisher, a professor of mathematics at Northwestern University, elaborates upon and extends results with a set of exercises at the end of each chapter.
Functional Analysis: Theory and Applications
by R. E. Edwards"The book contains an enormous amount of information -- mathematical, bibliographical and historical -- interwoven with some outstanding heuristic discussions." -- Mathematical Reviews.In this massive graduate-level study, Emeritus Professor Edwards (Australian National University, Canberra) presents a balanced account of both the abstract theory and the applications of linear functional analysis. Written for readers with a basic knowledge of set theory, general topology, and vector spaces, the book includes an abundance of carefully chosen illustrative examples and excellent exercises at the end of each chapter.Beginning with a chapter of preliminaries on set theory and topology, Dr. Edwards then presents detailed, in-depth discussions of vector spaces and topological vector spaces, the Hahn-Banach theorem (including applications to potential theory, approximation theory, game theory, and other fields) and fixed-point theorems. Subsequent chapters focus on topological duals of certain spaces: radon measures, distribution and linear partial differential equations, open mapping and closed graph theorems, boundedness principles, duality theory, the theory of compact operators and the Krein-Milman theorem and its applications to commutative harmonic analysis. Clearly and concisely written, Dr. Edwards's book offers rewarding reading to mathematicians and physicists with an interest in the important field of functional analysis. Because of the broad scope of its coverage, this volume will be especially valuable to the reader with a basic knowledge of functional analysis who wishes to learn about parts of the subject other than his own specialties. A comprehensive 32-page bibliography supplies a rich source of references to the basic literature.
Functional Analysis
by Peter D. LaxIncludes sections on the spectral resolution and spectral representation of self adjoint operators, invariant subspaces, strongly continuous one-parameter semigroups, the index of operators, the trace formula of Lidskii, the Fredholm determinant, and more.* Assumes prior knowledge of Naive set theory, linear algebra, point set topology, basic complex variable, and real variables.* Includes an appendix on the Riesz representation theorem.
Functional Analysis
by Joseph MuscatThis textbook is an introduction to functional analysis suited to final year undergraduates or beginning graduates. Its various applications of Hilbert spaces, including least squares approximation, inverse problems, and Tikhonov regularization, should appeal not only to mathematicians interested in applications, but also to researchers in related fields. Functional Analysis adopts a self-contained approach to Banach spaces and operator theory that covers the main topics, based upon the classical sequence and function spaces and their operators. It assumes only a minimum of knowledge in elementary linear algebra and real analysis; the latter is redone in the light of metric spaces. It contains more than a thousand worked examples and exercises, which make up the main body of the book.
Functional Analysis: An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebras
by Joseph MuscatThis textbook provides an introduction to functional analysis suitable for lecture courses to final year undergraduates or beginning graduates.Starting from the very basics of metric spaces, the book adopts a self-contained approach to Banach spaces and operator theory that covers the main topics, including the spectral theorem, the Gelfand transform, and Banach algebras. Various applications, such as least squares approximation, inverse problems, and Tikhonov regularization, illustrate the theory. Over 1000 worked examples and exercises of varying difficulty present the reader with ample material for reflection.This new edition of Functional Analysis has been completely revised and corrected, with many passages rewritten for clarity, numerous arguments simplified, and a good amount of new material added, including new examples and exercises. The prerequisites, however, remain the same with only knowledge of linear algebra and real analysis of a singlevariable assumed of the reader.
Functional Analysis
by Béla Sz. Nagy Frigyes RieszClassic exposition of modern theories of differentiation and integration and principal problems and methods of handling integral equations and linear functionals and transformations. 1955 edition.
Functional Analysis
by Lawrence Narici George BachmanExcellent treatment of the subject geared toward students with background in linear algebra, advanced calculus, physics and engineering. Text covers introduction to inner-product spaces, normed and metric spaces, and topological spaces; complete orthonormal sets, the Hahn-Banach theorem and its consequences, spectral notions, square roots, a spectral decomposition theorem, and many other related subjects. Chapters conclude with exercises intended to test and reinforce reader's understanding of text material. A glossary of definitions, detailed proofs of theorems, bibliography, and index of symbols round out this comprehensive text. 1966 edition.
Functional Analysis: An Introductory Course (Universitext)
by Sergei OvchinnikovThis concise text provides a gentle introduction to functional analysis. Chapters cover essential topics such as special spaces, normed spaces, linear functionals, and Hilbert spaces. Numerous examples and counterexamples aid in the understanding of key concepts, while exercises at the end of each chapter provide ample opportunities for practice with the material. Proofs of theorems such as the Uniform Bounded Theory, the Open Mapping Theorem, and the Closed Graph Theorem are worked through step-by-step, providing an accessible avenue to understanding these important results. The prerequisites for this book are linear algebra and elementary real analysis, with two introductory chapters providing an overview of material necessary for the subsequent text. Functional Analysis offers an elementary approach ideal for the upper-undergraduate or beginning graduate student. Primarily intended for a one-semester introductory course, this text is also a perfect resource for independent study or as the basis for a reading course.
Functional Analysis: Introduction to Further Topics in Analysis
by Elias M. Stein Rami ShakarchiThis is the fourth and final volume in the Princeton Lectures in Analysis, a series of textbooks that aim to present, in an integrated manner, the core areas of analysis. Beginning with the basic facts of functional analysis, this volume looks at Banach spaces, Lp spaces, and distribution theory, and highlights their roles in harmonic analysis. The authors then use the Baire category theorem to illustrate several points, including the existence of Besicovitch sets. The second half of the book introduces readers to other central topics in analysis, such as probability theory and Brownian motion, which culminates in the solution of Dirichlet's problem. The concluding chapters explore several complex variables and oscillatory integrals in Fourier analysis, and illustrate applications to such diverse areas as nonlinear dispersion equations and the problem of counting lattice points. Throughout the book, the authors focus on key results in each area and stress the organic unity of the subject. A comprehensive and authoritative text that treats some of the main topics of modern analysis A look at basic functional analysis and its applications in harmonic analysis, probability theory, and several complex variables Key results in each area discussed in relation to other areas of mathematics Highlights the organic unity of large areas of analysis traditionally split into subfields Interesting exercises and problems illustrate ideas Clear proofs provided
Functional Analysis: Fundamentals and Applications
by Michel WillemThe goal of this work is to present the principles of functional analysis in a clear and concise way. The first three chapters of Functional Analysis: Fundamentals and Applications describe the general notions of distance, integral and norm, as well as their relations. The three chapters that follow deal with fundamental examples: Lebesgue spaces, dual spaces and Sobolev spaces. Two subsequent chapters develop applications to capacity theory and elliptic problems. In particular, the isoperimetric inequality and the Pólya-Szegő and Faber-Krahn inequalities are proved by purely functional methods. The epilogue contains a sketch of the history of functional analysis, in relation with integration and differentiation. Starting from elementary analysis and introducing relevant recent research, this work is an excellent resource for students in mathematics and applied mathematics.
Functional Analysis: Fundamentals and Applications (Cornerstones)
by Michel WillemThis textbook presents the principles of functional analysis in a clear and concise way. The first three chapters describe the general notions of distance, integral, and norm, as well as their relations. Fundamental examples are provided in the three chapters that follow: Lebesgue spaces, dual spaces, and Sobolev spaces. Two subsequent chapters develop applications to capacity theory and elliptic problems. In particular, the isoperimetric inequality and the Pólya-Szegő and Faber-Krahn inequalities are proved by purely functional methods. The epilogue contains a sketch of the history of functional analysis in relation to integration and differentiation. Starting from elementary analysis and introducing relevant research, this work is an excellent resource for students in mathematics and applied mathematics. The second edition of Functional Analysis includes several improvements as well as the addition of supplementary material. Specifically, the coverage of advanced calculus and distribution theory has been completely rewritten and expanded. New proofs, theorems, and applications have been added as well for readers to explore.
Functional Analysis and Applications (Chapman And Hall/crc Research Notes In Mathematics Ser. #377)
by Abul Hasan SiddiqiThis self-contained textbook discusses all major topics in functional analysis. Combining classical materials with new methods, it supplies numerous relevant solved examples and problems and discusses the applications of functional analysis in diverse fields. The book is unique in its scope, and a variety of applications of functional analysis and operator-theoretic methods are devoted to each area of application. Each chapter includes a set of problems, some of which are routine and elementary, and some of which are more advanced. The book is primarily intended as a textbook for graduate and advanced undergraduate students in applied mathematics and engineering. It offers several attractive features making it ideally suited for courses on functional analysis intended to provide a basic introduction to the subject and the impact of functional analysis on applied and computational mathematics, nonlinear functional analysis and optimization. It introduces emerging topics like wavelets, Gabor system, inverse problems and application to signal and image processing.
Functional Analysis and Applications (Industrial and Applied Mathematics #377)
by Abul Hasan SiddiqiThis self-contained textbook discusses all major topics in functional analysis. Combining classical materials with new methods, it supplies numerous relevant solved examples and problems and discusses the applications of functional analysis in diverse fields. The book is unique in its scope, and a variety of applications of functional analysis and operator-theoretic methods are devoted to each area of application. Each chapter includes a set of problems, some of which are routine and elementary, and some of which are more advanced. The book is primarily intended as a textbook for graduate and advanced undergraduate students in applied mathematics and engineering. It offers several attractive features making it ideally suited for courses on functional analysis intended to provide a basic introduction to the subject and the impact of functional analysis on applied and computational mathematics, nonlinear functional analysis and optimization. It introduces emerging topics like wavelets, Gabor system, inverse problems and application to signal and image processing.
Functional Analysis and Applied Optimization in Banach Spaces
by Fabio BotelhoThis book introduces the basic concepts of real and functional analysis. It presents the fundamentals of the calculus of variations, convex analysis, duality, and optimization that are necessary to develop applications to physics and engineering problems. The book includes introductory and advanced concepts in measure and integration, as well as an introduction to Sobolev spaces. The problems presented are nonlinear, with non-convex variational formulation. Notably, the primal global minima may not be attained in some situations, in which cases the solution of the dual problem corresponds to an appropriate weak cluster point of minimizing sequences for the primal one. Indeed, the dual approach more readily facilitates numerical computations for some of the selected models. While intended primarily for applied mathematicians, the text will also be of interest to engineers, physicists, and other researchers in related fields.
Functional Analysis and Continuous Optimization: In Honour of Juan Carlos Ferrando's 65th Birthday, Elche, Spain, June 16–17, 2022 (Springer Proceedings in Mathematics & Statistics #424)
by Manuel López-Pellicer José M. Amigó María J. Cánovas Marco A. López-CerdáThe book includes selected contributions presented at the "International Meeting on Functional Analysis and Continuous Optimization" held in Elche (Spain) on June 16–17, 2022. Its contents cover very recent results in functional analysis, continuous optimization and the interplay between these disciplines. Therefore, this book showcases current research on functional analysis and optimization with individual contributions, as well as new developments in both areas. As a result, the reader will find useful information and stimulating ideas.
Functional Analysis and Operator Theory (Problem Books in Mathematics)
by Alexander Kukush Yuliya Mishura Volodymyr Brayman Andrii Chaikovskyi Oleksii Konstantinov Oleksii NesterenkoThe book contains a collection of more than 800 problems from all main chapters of functional analysis, with theoretical background and solutions. It is mostly intended for undergraduate students who are starting to study the course of functional analysis. The book will also be useful for graduate and post- graduate students and researchers who wish to refresh their knowledge and deepen their understanding of the subject, as well as for teachers of functional analysis and related disciplines. It can be used for independent study as well. It is assumed that the reader has mastered standard courses of calculus and measure theory and has basic knowledge of linear algebra, analytic geometry, and differential equations. This collection of problems can help students of different levels of training and different areas of specialization to learn how to solve problems in functional analysis. Each chapter of the book has similar structure and consists of the following sections: Theoretical Background, Examples of Problems with Solutions, and Problems to Solve. The book contains theoretical preliminaries to ensure that the reader understands the statements of problems and is able to successfully solve them. Then examples of typical problems with detailed solutions are included, and this is relevant not only for those students who have significant difficulties in studying this subject, but also for other students who due to various circumstances сcould be deprived of communication with a teacher. There are problems for independent solving, and the corresponding selection of problems reflects all the main plot lines that relate to a given topic. The number of problems is sufficient both for a teacher to give practical lessons, to set homework, to prepare tasks for various forms of control, and for those students who want to study the discipline more deeply. Problems of a computational nature are provided with answers, while theoretical problems, the solutions ofwhich require non-trivial ideas or new techniques, are provided with detailed hints or solutions to introduce the reader to the corresponding ideas or techniques.
Functional Analysis and Optimization Methods in Hadron Physics (SpringerBriefs in Physics)
by Irinel CapriniThis book begins with a brief historical review of the early applications of standard dispersion relations in particle physics. It then presents the modern perspective within the Standard Model, emphasizing the relation of analyticity together with alternative tools applied to strong interactions, such as perturbative and lattice quantum chromodynamics (QCD), as well as chiral perturbation theory. The core of the book argues that, in order to improve the prediction of specific hadronic observables, it is often necessary to resort to methods of complex analysis more sophisticated than the simple Cauchy integral. Accordingly, a separate mathematical chapter is devoted to solving several functional analysis optimization problems. Their applications to physical amplitudes and form factors are discussed in the following chapters, which also demonstrate how to merge the analytic approach with statistical analysis tools. Given its scope, the book offers a valuable guide for researchers working in precision hadronic physics, as well as graduate students who are new to the field.
Functional Analysis and Summability
by P.N. NatarajanThere are excellent books on both functional analysis and summability. Most of them are very terse. In Functional Analysis and Summability, the author makes a sincere attempt for a gentle introduction of these topics to students. In the functional analysis component of the book, the Hahn–Banach theorem, Banach–Steinhaus theorem (or uniform boundedness principle), the open mapping theorem, the closed graph theorem, and the Riesz representation theorem are highlighted. In the summability component of the book, the Silverman–Toeplitz theorem, Schur’s theorem, the Steinhaus theorem, and the Steinhaus-type theorems are proved. The utility of functional analytic tools like the uniform boundedness principle to prove some results in summability theory is also pointed out. Features A gentle introduction of the topics to the students is attempted. Basic results of functional analysis and summability theory and their applications are highlighted. Many examples are provided in the text. Each chapter ends with useful exercises. This book will be useful to postgraduate students, pre-research level students, and research scholars in mathematics. Students of physics and engineering will also find this book useful since topics in the book also have applications in related areas.
Functional Analysis and the Feynman Operator Calculus
by Tepper L. Gill Woodford W. ZacharyThis book provides the mathematical foundations forFeynman's operator calculus and for the Feynman path integral formulation ofquantum mechanics as a natural extension of analysis and functional analysis tothe infinite-dimensional setting. In one application, the resultsare used to prove the last two remaining conjectures of Freeman Dyson forquantum electrodynamics. In another application, the results are used tounify methods and weaken domain requirements for non-autonomous evolutionequations. Other applications include a general theory of Lebesguemeasure on Banach spaces with a Schauder basis and a new approach to thestructure theory of operators on uniformly convex Banach spaces. This book isintended for advanced graduate students and researchers.
Functional Analysis and Valuation Theory (Chapman & Hall/CRC Pure and Applied Mathematics)
by Lawrence NariciThis book presents functional analysis over arbitrary valued fields and investigates normed spaces and algebras over fields with valuation, with attention given to the case when the norm and the valuation are nonarchimedean. It considers vector spaces over fields with nonarchimedean valuation.
Functional Analysis, Calculus of Variations and Numerical Methods for Models in Physics and Engineering
by Fabio Silva BotelhoThe book discusses basic concepts of functional analysis, measure and integration theory, calculus of variations and duality and its applications to variational problems of non-convex nature, such as the Ginzburg-Landau system in superconductivity, shape optimization models, dual variational formulations for micro-magnetism and others. Numerical Methods for such and similar problems, such as models in flight mechanics and the Navier-Stokes system in fluid mechanics have been developed through the generalized method of lines, including their matrix finite dimensional approximations. It concludes with a review of recent research on Riemannian geometry applied to Quantum Mechanics and Relativity. The book will be of interest to applied mathematicians and graduate students in applied mathematics. Physicists, engineers and researchers in related fields will also find the book useful in providing a mathematical background applicable to their respective professional areas.
Functional Analysis, Calculus of Variations and Optimal Control
by Francis ClarkeFunctional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.
Functional Analysis for the Applied Mathematician (Textbooks in Mathematics)
by null Todd Arbogast null Jerry L. BonaFunctional Analysis for the Applied Mathematician is a self-contained volume providing a rigorous introduction to functional analysis and its applications. Students from mathematics, science, engineering, and certain social science and interdisciplinary programs will benefit from the material. It is accessible to graduate and advanced undergraduate students with a solid background in undergraduate mathematics and an appreciation of mathematical rigor. Students are called upon to actively engage with the material, to the point of proving some of the basic results or their straightforward generalizations, both within the text and within the generous set of exercises.Features: Replete with exercises and examples Suitable for graduate students and advanced undergraduates Develops the basics of functional analysis, exploring the interplay between algebraic linear space theory and topology Presents a variety of applications, often dealing with partial differential equations and their numerical approximation Doubles as a reference book with an extensive index listing the concepts and results