Browse Results

Showing 22,251 through 22,275 of 41,217 results

The Mathematical Imagination: On the Origins and Promise of Critical Theory

by Matthew Handelman

This book offers an archeology of the undeveloped potential of mathematics for critical theory. As Max Horkheimer and Theodor W. Adorno first conceived of the critical project in the 1930s, critical theory steadfastly opposed the mathematization of thought. Mathematics flattened thought into a dangerous positivism that led reason to the barbarism of World War II. The Mathematical Imagination challenges this narrative, showing how for other German-Jewish thinkers, such as Gershom Scholem, Franz Rosenzweig, and Siegfried Kracauer, mathematics offered metaphors to negotiate the crises of modernity during the Weimar Republic. Influential theories of poetry, messianism, and cultural critique, Handelman shows, borrowed from the philosophy of mathematics, infinitesimal calculus, and geometry in order to refashion cultural and aesthetic discourse.Drawn to the austerity and muteness of mathematics, these friends and forerunners of the Frankfurt School found in mathematical approaches to negativity strategies to capture the marginalized experiences and perspectives of Jews in Germany. Their vocabulary, in which theory could be both mathematical and critical, is missing from the intellectual history of critical theory, whether in the work of second generation critical theorists such as Jürgen Habermas or in contemporary critiques of technology. The Mathematical Imagination shows how Scholem, Rosenzweig, and Kracauer’s engagement with mathematics uncovers a more capacious vision of the critical project, one with tools that can help us intervene in our digital and increasingly mathematical present.

Mathematical Intelligence: A Story of Human Superiority Over Machines

by Mubeen Junaid

A fresh exploration into the 'human nature versus technology&’ argument, revealing an unexpected advantage that humans have over our future robot masters: we&’re actually good at mathematics. There&’s so much discussion about the threat posed by intelligent machines that it sometimes seems as though we should simply surrender to our robot overlords now. But Junaid Mubeen isn&’t ready to throw in the towel just yet. As far as he is concerned, we have the creative edge over computers, because of a remarkable system of thought that humans have developed over the millennia. It&’s familiar to us all, but often badly taught in schools and misrepresented in popular discourse—math. Computers are, of course, brilliant at totting up sums, pattern-seeking, and performing mindless tasks of, well, computation. For all things calculation, machines reign supreme. But Junaid identifies seven areas of intelligence where humans can retain a crucial edge. And in exploring these areas, he opens up a fascinating world where we can develop our uniquely human mathematical talents. Just a few of the fascinating subjects covered in MATHEMATICAL INTELLIGENCE include: -Humans are endowed with a natural sense of numbers that is based on approximation rather than precise calculation. Our in-built estimation skills complement the precision of computers. Interpreting the real world depends on both. -What sets humans apart from other animals is language and abstraction. We have an extraordinary ability to create powerful representations of knowledge— more diverse than the binary language of computers. -Mathematics confers the most robust, logical framework for establishing permanent truths. Reasoning shields us from the dubious claims of pure pattern-recognition systems. -All mathematical truths are derived from a starting set of assumptions, or axioms. Unlike computers, humans have the freedom to break free of convention and examine the logical consequences of our choices. Mathematics rewards our imagination with fascinating and, on occasion, applicable concepts that originate from breaking the rules. -Computers can be tasked to solve a range of problems, but which problems are worth the effort? Questioning is as vital to our repertoire of thinking skills as problem-solving itself.

Mathematical Knowledge and the Interplay of Practices

by José Ferreirós

This book presents a new approach to the epistemology of mathematics by viewing mathematics as a human activity whose knowledge is intimately linked with practice. Charting an exciting new direction in the philosophy of mathematics, José Ferreirós uses the crucial idea of a continuum to provide an account of the development of mathematical knowledge that reflects the actual experience of doing math and makes sense of the perceived objectivity of mathematical results.Describing a historically oriented, agent-based philosophy of mathematics, Ferreirós shows how the mathematical tradition evolved from Euclidean geometry to the real numbers and set-theoretic structures. He argues for the need to take into account a whole web of mathematical and other practices that are learned and linked by agents, and whose interplay acts as a constraint. Ferreirós demonstrates how advanced mathematics, far from being a priori, is based on hypotheses, in contrast to elementary math, which has strong cognitive and practical roots and therefore enjoys certainty.Offering a wealth of philosophical and historical insights, Mathematical Knowledge and the Interplay of Practices challenges us to rethink some of our most basic assumptions about mathematics, its objectivity, and its relationship to culture and science.

Mathematical Knowledge, Objects and Applications: Essays in Memory of Mark Steiner (Jerusalem Studies in Philosophy and History of Science)

by Carl J. Posy Yemima Ben-Menahem

This book provides a survey of a number of the major issues in the philosophy of mathematics, such as ontological questions regarding the nature of mathematical objects, epistemic questions about the acquisition of mathematical knowledge, and the intriguing riddle of the applicability of mathematics to the physical world. Some of these issues go back to the nascent years of mathematics itself, others are just beginning to draw the attention of scholars. In addressing these questions, some of the papers in this volume wrestle with them directly, while others use the writings of philosophers such as Hume and Wittgenstein to approach their problems by way of interpretation and critique. The contributors include prominent philosophers of science and mathematics as well as promising younger scholars. The volume seeks to share the concerns of philosophers of mathematics with a wider audience and will be of interest to historians, mathematicians and philosophers alike.

The Mathematical Legacy of Srinivasa Ramanujan

by M. Ram Murty V. Kumar Murty

Srinivasa Ramanujan was a mathematician brilliant beyond comparison who inspired many great mathematicians. There is extensive literature available on the work of Ramanujan. But what is missing in the literature is an analysis that would place his mathematics in context and interpret it in terms of modern developments. The 12 lectures by Hardy, delivered in 1936, served this purpose at the time they were given. This book presents Ramanujan's essential mathematical contributions and gives an informal account of some of the major developments that emanated from his work in the 20th and 21st centuries. It contends that his work still has an impact on many different fields of mathematical research. This book examines some of these themes in the landscape of 21st-century mathematics. These essays, based on the lectures given by the authors focus on a subset of Ramanujan's significant papers and show how these papers shaped the course of modern mathematics.

Mathematical Logic

by Stephen Cole Kleene

Undergraduate students with no prior classroom instruction in mathematical logic will benefit from this evenhanded multipart text. It begins with an elementary but thorough overview of mathematical logic of first order. The treatment extends beyond a single method of formulating logic to offer instruction in a variety of techniques: model theory (truth tables), Hilbert-type proof theory, and proof theory handled through derived rules.The second part supplements the previously discussed material and introduces some of the newer ideas and the more profound results of twentieth-century logical research. Subsequent chapters explore the study of formal number theory, with surveys of the famous incompleteness and undecidability results of Godel, Church, Turing, and others. The emphasis in the final chapter reverts to logic, with examinations of Godel's completeness theorem, Gentzen's theorem, Skolem's paradox and nonstandard models of arithmetic, and other theorems. The author, Stephen Cole Kleene, was Cyrus C. MacDuffee Professor of Mathematics at the University of Wisconsin, Madison. Preface. Bibliography. Theorem and Lemma Numbers: Pages. List of Postulates. Symbols and Notations. Index.

Mathematical Logic: Essays On Set Theory, Model Theory, Philosophical Logic And Philosophy Of Mathematics (Ontos Mathematical Logic Ser. #5)

by Roman Kossak

This book, presented in two parts, offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions. Its first part, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. The exposition does not assume any prerequisites; it is rigorous, but as informal as possible. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are used to study and classify mathematical structures. Although more advanced, this second part is accessible to the reader who is either already familiar with basic mathematical logic, or has carefully read the first part of the book. Classical developments in model theory, including the Compactness Theorem and its uses, are discussed. Other topics include tameness, minimality, and order minimality of structures. The book can be used as an introduction to model theory, but unlike standard texts, it does not require familiarity with abstract algebra. This book will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background.

Mathematical Logic: On Numbers, Sets, Structures, and Symmetry (Springer Graduate Texts in Philosophy #4)

by Roman Kossak

This textbook is a second edition of the successful, Mathematical Logic: On Numbers, Sets, Structures, and Symmetry. It retains the original two parts found in the first edition, while presenting new material in the form of an added third part to the textbook. The textbook offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions. Part I, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are usedto study and classify mathematical structures. The added Part III to the book is closer to what one finds in standard introductory mathematical textbooks. Definitions, theorems, and proofs that are introduced are still preceded by remarks that motivate the material, but the exposition is more formal, and includes more advanced topics. The focus is on the notion of countable categoricity, which analyzed in detail using examples from the first two parts of the book. This textbook is suitable for graduate students in mathematical logic and set theory and will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background.

Mathematical Logic for Computer Science

by Mordechai Ben-Ari

Mathematical Logic for Computer Science is a mathematics textbook with theorems and proofs, but the choice of topics has been guided by the needs of students of computer science. The method of semantic tableaux provides an elegant way to teach logic that is both theoretically sound and easy to understand. The uniform use of tableaux-based techniques facilitates learning advanced logical systems based on what the student has learned from elementary systems. The logical systems presented are: propositional logic, first-order logic, resolution and its application to logic programming, Hoare logic for the verification of sequential programs, and linear temporal logic for the verification of concurrent programs. The third edition has been entirely rewritten and includes new chapters on central topics of modern computer science: SAT solvers and model checking.

Mathematical Meditations (AK Peters/CRC Recreational Mathematics Series)

by Snezana Lawrence

Mathematical Meditations identifies, explores, and celebrates those aspects of mathematics that are good for you and your overall wellbeing. It is necessary for everyone to have a little time to think every so often: to contemplate, meditate, and try to understand where you are and what is going on around you. Mathematics can help you with all of that.The Meditations in this book are the product of thousands of years of mathematical discourse. As you read through the book and work through the various exercises, you will discover new mechanisms that allow you to contemplate and understand some complex mathematical principles. However, the focus will always be wider than a mere dry comprehension of theory, as you will be encouraged to meditate upon the deeper intrinsic beauty of mathematics and what it can reveal to us about the world around us.Features An original, engaging narrative format replete with novel exercises and examples Could be used in a classroom setting for liberal arts students, mathematics undergraduates, or high school teachers Accessible to anyone who wants to explore a different kind of perspective on mathematics

Mathematical Modelling Programs in Latin America: A Collaborative Context for Social Construction of Knowledge for Educational Change

by Milton Rosa Francisco Cordero Daniel Clark Orey Pablo Carranza

This book is about the unique, sophisticated, and rigorous study of mathematics in Latin America developed over centuries of cultural exchange between Europe, North, and South America. More specifically, the book explores the tradition of mathematical modelling, introduced a century ago. This modelling was adapted to assist members of distinct communities to draw information about their own realities through the elaboration of representations, which generate mathematical knowledge that deals with creativity and invention. The book provides empirical evidence that a category of mathematical modelling developed in Latin America assesses the horizontal and reciprocal relations between mathematics (school/non-school contexts) and the real world. These relations provide an epistemological and ontological change, where mathematical knowledge of the others is recognized on a horizontal plane. Further, they oblige mathematics teachers and students to understand as a community of knowledge that builds their own mathematical categories of their environment governed by the reciprocal relationships between academic knowledge and functional knowledge. The dimensions of the relationships make up a frame of reference that guides educational change in mathematics. The book presents an inquiry-based approach of three Latin American modelling programs: ethnomodelling, transversality of knowledge, and reasoned decision-making. Each one, with its respective theoretical and methodological foundations related to ethnomathematics and mathematical modelling, socioepistemology, and the attribution of meaning to learning. Undoubtedly, the three mathematical modelling programs, independently, provide educational gains, each with its levels of specificity and loyal to its philosophical, theoretical, and methodological principles. However, the book places them together, organized by axes, to define a corpus of mathematical knowledge that envisions profound educational change through the development of different approaches of mathematical modelling. The authors of the 18 chapters in this book, who represent the diversity of Latin America, are from eight countries: Argentina, Brazil, Chile, Colombia, Costa Rica, Cuba, Ecuador, Honduras, and Mexico. They were invited to share their ideas, perspectives, and discuss investigations that represent a rich sample of three Latin American perspectives on mathematical modelling.

Mathematical Notations (Elements in the Philosophy of Mathematics)

by Dirk Schlimm

This Element lays the foundation, introduces a framework, and sketches the program for a systematic study of mathematical notations. It is written for everyone who is curious about the world of symbols that surrounds us, in particular researchers and students in philosophy, history, cognitive science, and mathematics education. The main characteristics of mathematical notations are introduced and discussed in relation to the intended subject matter, the language in which the notations are verbalized, the cognitive resources needed for learning and understanding them, the tasks that they are used for, their material basis, and the historical context in which they are situated. Specific criteria for the design and assessment of notations are discussed, as well as ontological, epistemological, and methodological questions that arise from the study of mathematical notations and of their use in mathematical practice.

A Mathematical Odyssey: Journey from the Real to the Complex

by Harold R. Parks Steven G. Krantz

Mathematics is a poem. It is a lucid, sensual, precise exposition of beautiful ideas directed to specific goals. It is worthwhile to have as broad a cross-section of mankind as possible be conversant with what goes on in mathematics. Just as everyone knows that the Internet is a powerful and important tool for communication, so everyone should know that the Poincaré conjecture gives us important information about the shape of our universe. Just as every responsible citizen realizes that the mass-production automobile was pioneered by Henry Ford, so everyone should know that the P/NP problem has implications for security and data manipulation that will affect everyone. This book endeavors to tell the story of the modern impact of mathematics, of its trials and triumphs and insights, in language that can be appreciated by a broad audience. It endeavors to show what mathematics means for our lives, how it impacts all of us, and what new thoughts it should cause us to entertain. It introduces new vistas of mathematical ideas and shares the excitement of new ideas freshly minted. It discusses the significance and impact of these ideas, and gives them meaning that will travel well and cause people to reconsider their place in the universe. Mathematics is one of mankind's oldest disciplines. Along with philosophy, it has shaped the very modus of human thought. And it continues to do so. To be unaware of modern mathematics is to miss out on a large slice of life. It is to be left out of essential modern developments. We want to address this point, and do something about it. This is a book to make mathematics exciting for people of all interests and all walks of life. Mathematics is exhilarating, it is ennobling, it is uplifting, and it is fascinating. We want to show people this part of our world, and to get them to travel new paths.

Mathematical Olympiad Treasures

by Titu Andreescu Bogdan Enescu

Mathematical Olympiad Treasures aims at building a bridge between ordinary high school exercises and more sophisticated, intricate and abstract concepts in undergraduate mathematics. The book contains a stimulating collection of problems in the subjects of algebra, geometry, trigonometry, number theory and combinatorics. While it may be considered a sequel to "Mathematical Olympiad Challenges," the focus is on engaging a wider audience to apply techniques and strategies to real-world problems. Throughout the book students are encouraged to express their ideas, conjectures, and conclusions in writing. The goal is to help readers develop a host of new mathematical tools that will be useful beyond the classroom and in a number of disciplines.

Mathematical Papers (Dover Books on Mathematics)

by George Green N. M. Ferrers

An almost entirely self-taught mathematical genius, George Green (1793 -1841) is best known for Green's theorem, which is used in almost all computer codes that solve partial differential equations. He also published influential essays, or papers, in the fields of hydrodynamics, electricity, and magnetism. This collection comprises his most significant works.The first paper, "An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism," which is also the longest and perhaps the most Important, appeared In 1828. It introduced the term potential as designating the result obtained by adding together the masses of all the particles of a system, each divided by its distance from a given point. Its three-part treatment first considers the properties of this function and then applies them, in the second and third parts, to the theories of magnetism and electricity.The following paper, "Mathematical Investigations concerning the Laws of the Equilibrium of Fluids analogous to the Electric Fluid," exhibits great analytical power, as does the next, "On the Determination of the Exterior and Interior Attractions of Ellipsoids of Variable Densities." Other highlights include the brief but absorbing paper, "On the Motion of Waves in a variable canal of small depth and width," and two of his most valuable memoirs, "On the Laws of Reflexlon and Refraction of Sound" and "On the Reflexlon and Refraction of Light at the common surface of two non-crystallized Media," which should be studied together.

Mathematical Pluralism (Elements in the Philosophy of Mathematics)

by Graham Priest

Mathematical pluralism is the view that there is an irreducible plurality of pure mathematical structures, each with their own internal logics; and that qua pure mathematical structures they are all equally legitimate. Mathematical pluralism is a relatively new position on the philosophical landscape. This Element provides an introduction to the position.

A Mathematical Prelude to the Philosophy of Mathematics

by Stephen Pollard

This book is based on two premises: one cannot understand philosophy of mathematics without understanding mathematics and one cannot understand mathematics without doing mathematics. It draws readers into philosophy of mathematics by having them do mathematics. It offers 298 exercises, covering philosophically important material, presented in a philosophically informed way. The exercises give readers opportunities to recreate some mathematics that will illuminate important readings in philosophy of mathematics. Topics include primitive recursive arithmetic, Peano arithmetic, Gödel's theorems, interpretability, the hierarchy of sets, Frege arithmetic and intuitionist sentential logic. The book is intended for readers who understand basic properties of the natural and real numbers and have some background in formal logic.

Mathematical Proofs: A Transition To Advanced Mathematics (Third Edition)

by Gary Chartrand Albert D. Polimeni Ping Zhang

Mathematical Proofs: A Transition to Advanced Mathematics, Third Edition, prepares students for the more abstract mathematics courses that follow calculus. Appropriate for self-study or for use in the classroom, this text introduces students to proof techniques, analyzing proofs, and writing proofs of their own. Written in a clear, conversational style, this book provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as the theoretical aspects of fields such as number theory, abstract algebra, and group theory. It is also a great reference text that students can look back to when writing or reading proofs in their more advanced courses.

Mathematical Puzzles: Revised Edition (AK Peters/CRC Recreational Mathematics Series)

by Peter Winkler

Research in mathematics is much more than solving puzzles, but most people will agree that solving puzzles is not just fun: it helps focus the mind and increases one's armory of techniques for doing mathematics. Mathematical Puzzles makes this connection explicit by isolating important mathematical methods, then using them to solve puzzles and prove a theorem.This Revised Edition has been thoroughly edited to correct errors and provide clarifications, and includes some totally different solutions, modified puzzles, and one entirely new puzzle.Features A collection of the world’s best mathematical puzzles Each chapter features a technique for solving mathematical puzzles, examples, and finally a genuine theorem of mathematics that features that technique in its proof Puzzles that are entertaining, mystifying, paradoxical, and satisfying; they are not just exercises or contest problems.

Mathematical Reasoning: The History and Impact of the DReaM Group

by Greg Michaelson

This collection of essays examines the key achievements and likely developments in the area of automated reasoning. In keeping with the group ethos, Automated Reasoning is interpreted liberally, spanning underpinning theory, tools for reasoning, argumentation, explanation, computational creativity, and pedagogy. Wider applications including secure and trustworthy software, and health care and emergency management. The book starts with a technically oriented history of the Edinburgh Automated Reasoning Group, written by Alan Bundy, which is followed by chapters from leading researchers associated with the group. Mathematical Reasoning: The History and Impact of the DReaM Group will attract considerable interest from researchers and practitioners of Automated Reasoning, including postgraduates. It should also be of interest to those researching the history of AI.

Mathematical Recreations from the Tournament of the Towns (AK Peters/CRC Recreational Mathematics Series)

by Andy Liu Peter Taylor

Mathematical Recreations from the Tournament of the Towns contains the complete list of problems and solutions to the International Mathematics Tournament of the Towns from Fall 2007 to Spring 2021.The primary audience for this book is the army of recreational mathematicians united under the banner of Martin Gardner. It should also have great value to students preparing for mathematics competitions and trainers of such students. This book also provides an entry point for students in upper elementary schools. Features Huge recreational value to mathematics enthusiasts Accessible to upper-level high school students Problems classified by topics such as two-player games, weighing problems, mathematical tasks etc.

The Mathematical Representation of Physical Reality (The Frontiers Collection)

by Shahen Hacyan

​This book deals with the rise of mathematics in physical sciences, beginning with Galileo and Newton and extending to the present day. The book is divided into two parts. The first part gives a brief history of how mathematics was introduced into physics—despite its "unreasonable effectiveness" as famously pointed out by a distinguished physicist—and the criticisms it received from earlier thinkers. The second part takes a more philosophical approach and is intended to shed some light on that mysterious effectiveness. For this purpose, the author reviews the debate between classical philosophers on the existence of innate ideas that allow us to understand the world and also the philosophically based arguments for and against the use of mathematics in physical sciences. In this context, Schopenhauer’s conceptions of causality and matter are very pertinent, and their validity is revisited in light of modern physics. The final question addressed is whether the effectiveness of mathematics can be explained by its “existence” in an independent platonic realm, as Gödel believed.The book aims at readers interested in the history and philosophy of physics. It is accessible to those with only a very basic (not professional) knowledge of physics.

Mathematical Rigour and Informal Proof (Elements in the Philosophy of Mathematics)

by Fenner Stanley Tanswell

This Element looks at the contemporary debate on the nature of mathematical rigour and informal proofs as found in mathematical practice. The central argument is for rigour pluralism: that multiple different models of informal proof are good at accounting for different features and functions of the concept of rigour. To illustrate this pluralism, the Element surveys some of the main options in the literature: the 'standard view' that rigour is just formal, logical rigour; the models of proofs as arguments and dialogues; the recipe model of proofs as guiding actions and activities; and the idea of mathematical rigour as an intellectual virtue. The strengths and weaknesses of each are assessed, thereby providing an accessible and empirically-informed introduction to the key issues and ideas found in the current discussion.

Mathematical Sorcery: Revealing the Secrets of Numbers

by Calvin C. Clawson

The secret of constellations, the enigma of the golden mean, and the brilliance of a proof-these are just some of the wonders Clawson explores with unbridled delight in this recreational math book. Throughout the book he divulges the wisdom of the ancient Greeks, Sumerians, Babylonians, and Egyptians, whose stunning revelations still have deep meaning today. Transporting us beyond mere appreciation, Clawson urges us to tackle functions, tangents, and the concept of infinity. He helps us intuitively comprehend these and other building blocks of mathematics through explaining their discovery and uses. By accompanying him on his journey, we taste the fruit of knowledge that has eluded us until now.

Mathematical Structuralism (Elements in the Philosophy of Mathematics)

by Geoffrey Hellman Stewart Shapiro

The present work is a systematic study of five frameworks or perspectives articulating mathematical structuralism, whose core idea is that mathematics is concerned primarily with interrelations in abstraction from the nature of objects. The first two, set-theoretic and category-theoretic, arose within mathematics itself. After exposing a number of problems, the book considers three further perspectives formulated by logicians and philosophers of mathematics: sui generis, treating structures as abstract universals, modal, eliminating structures as objects in favor of freely entertained logical possibilities, and finally, modal-set-theoretic, a sort of synthesis of the set-theoretic and modal perspectives.

Refine Search

Showing 22,251 through 22,275 of 41,217 results