- Table View
- List View
Advanced Materials for a Sustainable Environment: Development Strategies and Applications (Emerging Materials and Technologies)
by Peter Ramashadi Makgwane Naveen KumarThis book summarizes recent and critical aspects of advanced materials for environmental protection and remediation. It explores the various development aspects related to environmental remediation, including design and development of novel and highly efficient materials, aimed at environmental sustainability. Synthesis of advanced materials with desirable physicochemical properties and applications is covered as well. Distributed across 13 chapters, the major topics covered include sensing and elimination of contaminants and hazardous materials via advanced materials along with hydrogen energy, biofuels, and CO2 capture technology. Discusses the development in design of synthesis process and materials with sustainable approach. Covers removal of biotic and abiotic wastes from the aqueous systems. Includes hydrogen energy and biofuels under green energy production. Explores removal of environmental (soil and air) contaminants with nanomaterials. Reviews advanced materials for environmental remediation in both liquid and gas phases.
Advanced Materials for Biomedical Applications (Advances in Manufacturing, Design and Computational Intelligence Techniques)
by Ashwani Kumar Yatika Gori Avinash Kumar Chandan Swaroop MeenaThe text discusses synthesis, processing, design, simulation and characterization of biomaterials for biomedical applications. It synergizes exploration related to various properties and functionalities in the biomedical field through extensive theoretical and experimental modeling. It further presents advanced integrated design and nonlinear simulation problems occurring in the biomedical engineering field. It will serve as an ideal reference text for senior undergraduate and graduate students, and academic researchers in fields including biomedical engineering, mechanical engineering, materials science, ergonomics, and human factors. The book Employs a problem-solution approach, where, in each chapter, a specific biomedical engineering problem is raised and its numerical, and experimental solutions are presented. Covers recent developments in biomaterials such as OPMF/KGG bio composites, PEEK-based biomaterials, PF/KGG biocomposites, oil palm mesocarp Fibre/KGG biocomposites, and polymeric resorbable materials for orthopedic, dentistry and shoulder arthroplasty applications. Discusses mechanical performance and corrosive analysis of biomaterials for biomedical applications in detail. Presents advanced integrated design and nonlinear simulation problems occurring in the biomedical engineering field. Presents biodegradable polymers for various biomedical applications over the last decade owing to their non-corrosion in the body, biocompatibility and superior strength in growing state. Synergizes exploration related to the various properties and functionalities in the biomedical field through extensive theoretical and experimental modeling.
Advanced Materials for Biomedical Applications: Development and Processing (Biomedical Materials for Multi-functional Applications)
by Vivek Sheel Rajput Jasdeep BhinderThis book provides an insight into the basic fundamentals of the biomaterials used for the biomedical applications, their development and processing techniques. Advanced materials are significantly utilized for the biomedical applications ranging from dental devices to cancer treatment owing to their higher biocompatibility and better interaction with tissues. This book covers the various topics that include basic biocompatibility phenomena, insight to materials science, class of different advanced materials as a biomaterials, development and processing techniques, design and analysis of the developed advanced materials, investigation of its properties and major applications. Recent information regarding the development techniques and methods for improving the properties of the advanced materials in the field of biomedical applications is highlighted in detail. The textbook offers clear explanation of the text in the chapters with self-explanatory figures and tables. It demonstrates the novel methods, opportunities and ideas for developing biomaterials in the field of biomedical applications. It also includes critical review study of the developed advanced materials for biomedical applications in a new summarized form. The inclusion of the discussions on hybrid polymer-based composites and self-healing composite materials offers a special feature in the textbook. It features a thorough overview of the simulation aspect in the biomedical applications. The book features at least 50% of its references from last three–four years’ work in the field of biomaterials and biomedical. The book content adds to the redundancy in the literature work related to biomedical and biomaterials.This book is a valuable resource for academicians, students and scholars from science and engineering background having interest in biomaterials. It is helpful to the biomedical engineering group especially in countries or location where they don’t have access to the major journals.
Advanced Materials for Defense: Development, Analysis and Applications (Springer Proceedings in Materials #4)
by Raul Fangueiro Sohel RanaThis book is a collection of high quality research and review papers submitted to the 1st World Conference on Advanced Materials for Defense (AUXDEFENSE 2018). A wide range of topics related to the defense area such as ballistic protection, impact and energy absorption, composite materials, smart materials and structures, nanomaterials and nano structures, CBRN protection, thermoregulation, camouflage, auxetic materials, and monitoring systems is covered. Written by the leading experts in these subjects, this work discusses both technological advances in terms of materials as well as product designing, analysis as well as case studies. This volume will prove to be a valuable resource for researchers and scientists from different engineering disciplines such as materials science, chemical engineering, biological sciences, textile engineering, mechanical engineering, environmental science, and nanotechnology.
Advanced Materials for Future Terahertz Devices, Circuits and Systems (Lecture Notes in Electrical Engineering #727)
by Aritra Acharyya Palash DasThis book highlights the properties of advanced materials suitable for realizing THz devices, circuits and systems, and processing and fabrication technologies associated with those. It also discusses some measurement techniques exclusively effective for THz regime, newly explored materials and recently developed solid-state devices for efficient generation and detection of THz waves, potentiality of metamaterials for implementing THz passive circuits and bio-sensors, and finally the future of silicon as the base material of THz devices. The book especially focuses on the recent advancements and several research issues related to THz materials and devices; it also discusses theoretical, experimental, established, and validated empirical works on these topics.
Advanced Materials for Membrane Fabrication and Modification
by Stephen Gray Toshinori Tsuru Yoram Cohen Woei-Jye LauMembranes are an energy efficient separation technology that are now the basis for many water treatment and food processing applications. However, there is the potential to improve the operating performance of these separations and to extend the application of membranes to energy production, gas separations, organic solvent-based separations, and biomedical applications through novel membrane materials. This book contains 20 chapters written by leading academic researchers on membrane fabrication and modification techniques and provides a comprehensive overview on the recent developments of membrane technology. Membranes can be manufactured from a range of materials including polymeric compounds, and ceramic materials, and both these materials are considered in the book. There are 5 chapters on water and wastewater membranes that cover the fabrication of thin film (TFC) composite membranes for nanofiltration(NF)/reverse osmosis (RO)/forward osmosis (FO) applications, stimuli responsive membranes, electrospun membranes, porous ceramic membranes, and polymeric ultrafiltration (UF) manufacture and modification. There are another 6 chapters on gas separation that consider carbon membranes, zeolite membranes, silica template and metal oxide silica membranes, TFC membranes, silica membranes, and metal organic framework (MOF) membranes. Zeolite membranes are also considered for organic solvent applications, as are solvent-resistant membranes manufactured by phase inversion, ceramic-supported composite membranes, and ceramic NF membranes. The emerging areas of membranes for energy and biomedical applications have 3 and 2 chapters, respectively. Energy applications consider ion exchange membranes for use in fuel cells, membranes for electrodialysis, and membranes for use in microbial fuel cells. For biomedical applications the chapters focus on hemodialysis membranes and redox responsive membranes.
Advanced Materials for Multidisciplinary Applications
by Marinda Wu Wei Gao Lei Li Yingchun Lu Jingbo Louise LiuThis book provides an overview of recent research in the area of advanced materials for improving human healthcare, protecting the environment and alternative energy resources. The authors analyze and deliver viable technical solutions, demonstrating how chemistry and engineering can collectively solve technical and societal challenges. The book explores innovative technology for the synthesis of complex carbohydrates & glycoproteins, new drug development & delivery, theragnostics of infectious disease and cancer. It also provides insights into the nature of energy extraction, management and usage related to fossil fuels and sustainable energy. The book brings together a group of dynamic and productive scientists, engineers, and other professionals in celebration of the 40th Anniversary of Chinese American Chemical Society. It is a valuable resource for all readers interested in the study of materials to address society's increasing need for electrical and chemical energy.
Advanced Materials for Pharmaceutical Wastewater Treatment (Emerging Materials and Technologies)
by P. V. Nidheesh Aydin HassaniEffluents generated from the pharmaceutical industry contain organic and inorganic contaminants that create potential threats to human health and the environment. Pharmaceuticals cannot be effectively removed by conventional wastewater treatment plants owing to the complex composition, high concentration of organic contaminants, high salinity, and biological toxicity of pharmaceutical wastewater. This book provides an overview of the production and environmental impacts of pharmaceutical compounds and their advanced treatment methods, with a focus on advanced materials used for removing pharmaceutical contaminants from wastewater. Provides an overview of the current state of advanced research and applications of materials for pharmaceutical wastewater treatment Discusses various adsorbents, photocatalysts, and electrodes, with a special focus on carbon materials Covers advanced material synthesis and fabrication Features case studies and chapters that are fully application-oriented This book is essential reading for researchers and practitioners in materials science and engineering, environmental science and engineering, chemical engineering, and water treatment who are seeking to develop and implement advanced technologies for waste minimization and mitigation.
Advanced Materials for Sodium Ion Storage
by Lei Zhang Ranjusha RajagopalanGlobally, lithium ion batteries (LIBs) are leaders in the energy storage sector but there are concerns regarding load leveling of renewable energy sources as well as smart grids and limited availability of lithium resources resulting in cost increase. Therefore, sodium ion batteries (SIBs) are being researched as next-generation alternatives to LIBs due to their similar sustainability and electrochemistry. This book mainly focuses on the current research on electrode materials and proposes future directions for SIBs to meet the current challenges associated with the full cell aspect. Further, it provide insights into scientific and practical issues in the development of SIBs.
Advanced Materials for Solid State Lighting (Progress in Optical Science and Photonics #25)
by Vijay Kumar Vishal Sharma Hendrik C. SwartThis book highlights the synthesis, luminescence, and applications of rare earth-doped phosphors materials for solid-state lighting. Solid-state lighting is turning into a leading technology in the lighting industry, permitting improvement in the fields from architectural to domestic applications. Driven with the aid of using ongoing multi-field research, solid-state lighting needs an improvement of various technologies: efficient and reliable light-emitting devices, devices for new functionalities, and optical solutions for beam shaping. Noteworthy research endeavors were aimed to find out eco-friendly, better performance, cost, and energy-efficient phosphor materials for the application in solid-state lighting devices. Power phosphor materials with advanced optical and photoluminescence properties in a wide range of areas have shared the research efforts in this sector aimed in the direction of achieving better material features. Rare earth ion-doped phosphor materials have been the subject of scientific interest because of their significant applications in a variety of fields such as display devices, temperature sensors, solar cells, bio-imaging, and optoelectronics devices. This book covers the broad aspects of organic and inorganic materials based on phosphor materials and is beneficial to researchers involved in these areas. This book is specially designed to provide an introductory concept of luminescent materials, particularly man-made (artificial) phosphors in a language comprehensible to beginners and students. The book also includes some new materials with promising technologies and upgraded properties that expose new potential possibilities are also highlighted.
Advanced Materials for Sustainable Energy and Engineering: Selected Proceedings of the 2023 International Conference on Advanced Materials for Sustainable Energy and Engineering (ICAMSEE) (Springer Proceedings in Energy)
by Konstantinos Termentzidis El Mehdi Elkhattabi Mourad Boutahir Kohji Nakamura Abdelhai RahmaniThis book presents selected peer-reviewed proceedings from the International Conference on Advanced Materials, Sustainable Energy, and Engineering (ICAMSEE2023), held at Ecole Normale Supérieure, University Moulay Ismail Meknes, Morocco, from November 27 to 29, 2023. The conference served as an exceptional platform for international and national scientists, professors, students, and industry professionals to convene and exchange knowledge in the fields of materials science, microscopy, engineering, technology, and energy. The book features contributions from researchers and experts, including keynote speakers, special sessions, posters, and tutorials, showcasing the latest advancements and developments in these areas of research.The topics covered in this book span a wide array of subjects within the realm of advanced materials, sustainable energy, and engineering. The forefront of materials science is explored, including nanomaterials, carbon nanotubes, graphene,materials for various applications, environmental protection, advanced optical materials, thermoelectric and magnetic materials, and additive manufacturing. Addressing the energy demands of today, the focus extends to novel materials for solar cells, energy storage, electronic devices, solar and wind energy, advanced thermal management materials, and materials for advanced water treatment and desalination. Sustainable energy and engineering topics encompass energy policy, clean energy production technologies, carbon capture and utilization, biomass energy, building energy efficiency, smart systems for climate change, and energy efficiency in mineral processing. Additionally, the book covers modeling and numerical simulations in material science, encompassing model development, computational techniques, and simulations in both material science and energy fields.
Advanced Materials for Thermal Management of Electronic Packaging (Springer Series in Advanced Microelectronics #30)
by Xingcun Colin TongThe need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry's ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility with the die and electronic packaging. In response to critical needs, there have been revolutionary advances in thermal management materials and technologies for active and passive cooling that promise integrable and cost-effective thermal management solutions. This book meets the need for a comprehensive approach to advanced thermal management in electronic packaging, with coverage of the fundamentals of heat transfer, component design guidelines, materials selection and assessment, air, liquid, and thermoelectric cooling, characterization techniques and methodology, processing and manufacturing technology, balance between cost and performance, and application niches. The final chapter presents a roadmap and future perspective on developments in advanced thermal management materials for electronic packaging.
Advanced Materials for Wastewater Treatment
by Shahid Ul-IslamOver the past few decades, rapid industrialization, fast urban encroachment, and improved agricultural operations have introduced substantial amounts of potentially toxic organic substances into the atmosphere and into the aquatic and terrestrial environments. Advanced Materials for Wastewater Treatment brings together innovative methodologies and research strategies to remove toxic effluents from wastewaters.With contributions from leading scientists from all around the world, the book provides a comprehensive coverage of the current literature, up-to-date overviews of all aspects of toxic chemical remediation including the role of nanomaterials.
Advanced Materials for Wastewater Treatment and Desalination: Fundamentals to Applications (Emerging Materials and Technologies)
by Pei Sean Goh Hasrinah Hasbullah Farhana Aziz Ahmad Fauzi IsmailAdvanced Materials for Wastewater Treatment and Desalination: Fundamentals to Applications offers a comprehensive overview of current progress in the development of advanced materials used in wastewater treatment and desalination. The book is divided into two major sections, covering both fundamentals and applications. This book: Describes the synthesis and modification of advanced materials, including metal oxides, carbonaceous materials, perovskite-based materials, polymer-based materials, and advanced nanocomposites Examines relevant synthesis routes and mechanisms as well as correlates materials' properties with their characterization Details new fabrication techniques including green synthesis, solvent-free, and energy-saving synthesis approaches Highlights various applications, such as removal of organic contaminants, discoloration of dye wastewater, petrochemical wastewater treatment, and electrochemically-enhanced water treatment With chapters written by leading researchers from around the world, this book will be of interest to chemical, materials, and environmental engineers working on progressing materials applications to improve water treatment technologies.
Advanced Materials in Engineering Applications: Proceedings of International Conference on Advanced Materials in Engineering Sciences
by N. V. R. Naidu G. M. Madhu Nagaraju Kottam G. N. Anil KumarThe formability features of sheets made of the alloy Al 8011 are examined experimentally and the results are compared with the numerical ones in this research. Through an axisymmetric finite element simulation of the Erichsen cupping test, formability characteristics were evaluated. The Erichsen cupping test was used to exam□ine the effects of several factors, including friction at the punch-sheet contact and sheet thickness. The nonlinear finite element method is used to calculate the dome height, stress, and strain values for the aluminum sheet, and the results are then compared to the numerical ones. The findings demonstrated that the Al 8011 alloy’s form□ability greatly rises with increasing sheet thickness. The formability is significantly impacted by the lubricant. The application of the finite element technique to forecast the formability of Al 8011 alloy.
Advanced Materials in Smart Building Skins for Sustainability: From Nano to Macroscale
by Julian Wang Donglu Shi Yehao SongConventional building skins are constructed as static structures upon the typical design conditions in terms of external climate and internal occupant activities. This generates dissociation between the envelope structure and its environment. With the emerging advanced materials, such as chromic-based materials, spectrally selective coatings, and transparent photovoltaic, more dynamic and smarter building skins are now achievable and constructible. This book updates readers on the key areas of smart building skins embodied in the novel advanced materials with unique structures and smart properties that enable multiple functions in energy efficiency, solar harvesting, and environmental greenness. It synergistically integrates the topics and knowledge of material design and experimental studies, theoretical analyses of building energy-saving mechanisms and solar energy utilization, and new design methodologies and processes taking advanced materials into account at different scales - from nano to the macroscale.
Advanced Materials Modelling for Mechanical, Medical and Biological Applications (Advanced Structured Materials #155)
by Holm Altenbach Victor A. Eremeyev Alexander Galybin Andrey VasilievThe book is devoted to the 70th birthday of Prof. Sergey M. Aizikovich, which will celebrated on August 2nd 2021. His scientific interests are related to the following topics: Mechanics of contact interactions, Functionally graded materials, Mechanics of fracture, Integral equations of mathematical physics, Inverse problems of the theory of elasticity, and Applications of elasticity to biological and medical problems of mechanics of materials. The papers, collected in the book, are contributions of authors from 10 countries.
Advanced Materials Modelling for Structures: With Multi-scale Effects Or Under Multi-field Actions (Advanced Structured Materials #19)
by Holm Altenbach Serge KruchThis volume presents the major outcome of the IUTAM symposium on "Advanced Materials Modeling for Structures". It discusses advances in high temperature materials research, and also to provides a discussion the new horizon of this fundamental field of applied mechanics. The topics cover a large domain of research but place a particular emphasis on multiscale approaches at several length scales applied to non linear and heterogeneous materials. Discussions of new approaches are emphasised from various related disciplines, including metal physics, micromechanics, mathematical and computational mechanics.
Advanced Mathematical Methods for Finance
by Giulia Di Nunno Bernt ØksendalThis book presents innovations in the mathematical foundations of financial analysis and numerical methods for finance and applications to the modeling of risk. The topics selected include measures of risk, credit contagion, insider trading, information in finance, stochastic control and its applications to portfolio choices and liquidation, models of liquidity, pricing, and hedging. The models presented are based on the use of Brownian motion, Lévy processes and jump diffusions. Moreover, fractional Brownian motion and ambit processes are also introduced at various levels. The chosen blend of topics gives an overview of the frontiers of mathematics for finance. New results, new methods and new models are all introduced in different forms according to the subject. Additionally, the existing literature on the topic is reviewed. The diversity of the topics makes the book suitable for graduate students, researchers and practitioners in the areas of financial modeling and quantitative finance. The chapters will also be of interest to experts in the financial market interested in new methods and products. This volume presents the results of the European ESF research networking program Advanced Mathematical Methods for Finance.
Advanced Mathematics and Mechanics Applications Using MATLAB
by David Halpern Howard B. Wilson Louis H. TurcotteAdvanced Mathematics and Mechanics Applications Using MATLAB, Third Edition features extensive revisions that bring this best-selling text in line with MATLAB 6.x, especially its graphics and animation capabilities. It incorporates material on time dependent solutions of linear partial differential equations, a chapter on eigenvalue problems, and more than 300 pages of MATLAB solutions to important applications. The authors provide an abundance of additional physical examples related to heat conduction, inviscid fluid flow, geometrical properties, stress analysis, and multi-dimensional optimizations. The source code for all of the programs presented is freely available for download from the CRC website.
Advanced Mechanics and General Relativity
by Joel FranklinAimed at advanced undergraduates with background knowledge of classical mechanics and electricity and magnetism, this textbook presents both the particle dynamics relevant to general relativity, and the field dynamics necessary to understand the theory. Focusing on action extremization, the book develops the structure and predictions of general relativity by analogy with familiar physical systems. Topics ranging from classical field theory to minimal surfaces and relativistic strings are covered in a homogeneous manner. Nearly 150 exercises and numerous examples throughout the textbook enable students to test their understanding of the material covered. A tensor manipulation package to help students overcome the computational challenge associated with general relativity is available on a site hosted by the author. A link to this and to a solutions manual can be found at www. cambridge. org/9780521762458.
Advanced Mechanics of Structures
by Demeter G. FertisThis work details general theories and reliable analysis techniques for solving real-world problems in linear and non-linear mechanics. This book looks at the structural and mechanical behaviour of components such as beams, frames and plates of both uniform and variable stiffness in terms of both stress and deformation. It also emphasizes the challenging demands of industry. College or university bookstores may order five or more copies at a special student price, available on request from Marcel Dekker, Inc.
Advanced Membrane Technology and Applications
by Norman N Li W. S. Ho Takeshi Matsuura Anthony G. FaneAdvanced membranes-from fundamentals and membrane chemistry to manufacturing and applicationsA hands-on reference for practicing professionals, Advanced Membrane Technology and Applications covers the fundamental principles and theories of separation and purification by membranes, the important membrane processes and systems, and major industrial applications. It goes far beyond the basics to address the formulation and industrial manufacture of membranes and applications.This practical guide: Includes coverage of all the major types of membranes: ultrafiltration; microfiltration; nanofiltration; reverse osmosis (including the recent high-flux and low-pressure membranes and anti-fouling membranes); membranes for gas separations; and membranes for fuel cell uses Addresses six major topics: membranes and applications in water and wastewater; membranes for biotechnology and chemical/biomedical applications; gas separations; membrane contractors and reactors; environmental and energy applications; and membrane materials and characterization Includes discussions of important strategic issues and the future of membrane technologyWith chapters contributed by leading experts in their specific areas and a practical focus, this is the definitive reference for professionals in industrial manufacturing and separations and research and development; practitioners in the manufacture and applications of membranes; scientists in water treatment, pharmaceutical, food, and fuel cell processing industries; process engineers; and others. It is also an excellent resource for researchers in industry and academia and graduate students taking courses in separations and membranes and related fields.
Advanced methods for fault diagnosis and fault-tolerant control
by Steven X. DingThe major objective of this book is to introduce advanced design and (online) optimization methods for fault diagnosis and fault-tolerant control from different aspects. Under the aspect of system types, fault diagnosis and fault-tolerant issues are dealt with for linear time-invariant and time-varying systems as well as for nonlinear and distributed (including networked) systems. From the methodological point of view, both model-based and data-driven schemes are investigated.To allow for a self-contained study and enable an easy implementation in real applications, the necessary knowledge as well as tools in mathematics and control theory are included in this book. The main results with the fault diagnosis and fault-tolerant schemes are presented in form of algorithms and demonstrated by means of benchmark case studies. The intended audience of this book are process and control engineers, engineering students and researchers with control engineering background.
Advanced Methods for Human Biometrics (Smart Sensors, Measurement and Instrumentation #40)
by Nabil Derbel Olfa KanounThe book highlights recent developments in human biometrics, covering a wide range of methods based on biological signals, image processing, and measurements of human characteristics such as fingerprints and iris or medical characteristics. Human Biometrics is becoming increasingly crucial in forensics security and medicine. They provide a solid basis for identifying individuals based on unique physical characteristics or diseases based on characteristic biomedical measurements. As such, the book offers an essential reference guide about biometry methods for students, engineers, designers, and technicians.