- Table View
- List View
Advanced Molecularly Imprinting Materials (Advanced Material Series)
by Ashutosh Tiwari Lokman UzunMolecularly imprinted polymers (MIPs) are an important functional material because of their potential implications in diverse research fields. The materials have been developed for a range of uses including separation, environmental, biomedical and sensor applications. In this book, the chapters are clustered into two main sections: Strategies to be employed when using the affinity materials, and rational design of MIPs for advanced applications. In the first part, the book covers the recent advances in producing MIPs for sample design, preparation and characterizations. In the second part, the chapters demonstrate the importance and novelty of creation of recognition imprinted on the materials and surfaces for a range of microbial detection sensors in the biomedical, environmental and food safety fields as well as sensing human odor and virus monitoring systems. Part 1: Strategies of affinity materials Molecularly imprinted polymers MIP nanomaterials Micro- and nanotraps for solid phase extraction Carbonaceous affinity nanomaterials Fluorescent MIPs MIP-based fiber optic sensors Part 2: Rational design of MIP for advanced applications MIP-based biomedical and environmental sensors Affinity adsorbents for environmental biotechnology MIP in food safety MIP-based virus monitoring MIP-based drug delivery and controlled release Biorecognition imprints on the biosensor surfaces MIP-based sensing of volatile organic compounds in human body odour MIP-based microcantilever sensor system
Advanced MR Neuroimaging: From Theory to Clinical Practice (Series in Medical Physics and Biomedical Engineering)
by Ioannis TsougosOver the last decade, some of the greatest achievements in the field of neuroimaging have been related to remarkable advances in magnetic resonance techniques, including diffusion, perfusion, magnetic resonance spectroscopy, and functional MRI. Such techniques have provided valuable insights into tissue microstructure, microvasculature, metabolism and brain connectivity. Previously available mostly in research environments, these techniques are now becoming part of everyday clinical practice in a plethora of clinical MR systems. Nevertheless, despite growing interest and wider acceptance, there remains a lack of a comprehensive body of knowledge on the subject, exploring the intrinsic complexity and physical difficulty of the techniques. This book focuses on the basic principles and theories of diffusion, perfusion, magnetic resonance spectroscopy, and functional MRI. It also explores their clinical applications and places emphasis on the associated artifacts and pitfalls with a comprehensive and didactic approach. This book aims to bridge the gap between research applications and clinical practice. It will serve as an educational manual for neuroimaging researchers and radiologists, neurologists, neurosurgeons, and physicists with an interest in advanced MR techniques. It will also be a useful reference text for experienced clinical scientists who wish to optimize their multi-parametric imaging approach.
Advanced Multifunctional Materials from Fibrous Structures (Advanced Structured Materials #201)
by Jiří Militký Mohanapriya VenkataramanThis book highlights some aspects of processing, microstructure, and properties of materials in fibrous form, or from fibers, with wide applications for textile-oriented and technically oriented advanced products. Emphasis is placed on the physical and chemical nature of the processes, describing the behavior and properties of the investigated materials. The chapters describing the state and expected trends in selected areas summarize not only the published works but also the original results and the critical evaluation and generalization of basic knowledge. In addition to the preparation of materials with new effects, attention is focused on the development of new testing principles, the construction of special devices, and metrological aspects. Research activities cover all types of fibers with a clear shift toward synthetic and specialty fibers for non-clothing applications. This is in line with the current development trend in the field of high-performance fibers, mainly for use as reinforcement in various composite materials and functional fibers for smart textiles. The area of fibrous materials covered in this book is indeed very large. Compressing the basic available information in a reasonable space was therefore a difficult task. The goal in writing this book was to provide a broad area of different results so that the book is suitable for anyone who is generally interested in fibrous materials and their applications for various purposes.
Advanced Multipoles for Accelerator Magnets: Theoretical Analysis and Their Measurement (Springer Tracts in Modern Physics #277)
by Pierre SchnizerThis monograph presents research on the transversal beam dynamics of accelerators and evaluates and describes the respective magnetic field homogeneity. The widely used cylindrical circular multipoles have disadvantages for elliptical apertures or curved trajectories, and the book also introduces new types of advanced multipole magnets, detailing their application, as well as the numerical data and measurements obtained. The research presented here provides more precise descriptions of the field and better estimates of the beam dynamics. Moreover, the effects of field inhomogeneity can be estimated with higher precision than before. These findings are further elaborated to demonstrate their usefulness for real magnets and accelerator set ups, showing their advantages over cylindrical circular multipoles. The research findings are complemented with data obtained from the new superconducting beam guiding magnet models (SIS100) for the FAIR (Facility for Antiproton and Ion Research) project. Lastly, the book offers a comprehensive survey of error propagation in multipole measurements and an appendix with Mathematica scripts to calculate advanced magnetic coil designs.
Advanced Nano-Bio Technologies for Water and Soil Treatment (Applied Environmental Science and Engineering for a Sustainable Future)
by Jan Filip Tomáš Cajthaml Petra Najmanová Miroslav Černík Radek ZbořilWe are proposing this comprehensive volume aimed at bridging and bonding of the theory and practical experiences for the elimination of a broad range of pollutants from various types of water and soil utilizing innovative nanotechnologies, biotechnologies and their possible combinations. Nowadays, a broad range of contaminants are emerging from the industry (and also representing old ecological burdens). Accidents and improper wastewater treatment requires a fast, efficient and cost-effective approach. Therefore, several innovative technologies of water and soil treatments have been invented and suggested in a number of published papers. Out of these, some nanotechnologies and biotechnologies (and possibly also their mutual combinations) turned out to be promising for practical utilization – i.e., based on both extensive laboratory testing and pilot-scale verification. With respect to the diverse character of targeted pollutants, the key technologies covered in this book will include oxidation, reduction, sorption and/or biological degradation. In relation to innovative technologies and new emerging pollutants mentioned in this proposed book, an important part will also cover the ecotoxicity of selected pollutants and novel nanomaterials used for remediation. Thus, this work will consist of 8 sections/chapters with a technical appendix as an important part of the book, where some technical details and standardized protocols will be clearly presented for their possible implementation at different contaminated sites. Although many previously published papers and books (or book chapters) are devoted to some aspects of nano-/biotechnologies, here we will bring a first complete and comprehensive treatise on the latest progress in innovative technologies with a clear demonstration of the applicability of particular methods based on results of the authors from pilot tests (i.e., based on the data collected within several applied projects, mainly national project “Environmentally friendly nanotechnologies and biotechnologies in water and soil treatment” of the Technology Agency of the Czech Republic, and 7FP project NANOREM: “Taking Nanotechnological Remediation Processes from Lab Scale to End User Applications for the Restoration of a Clean Environment”). This multidisciplinary book will be suitable for a broad audience including environmental scientists, practitioners, policymakers and toxicologists (and of course graduate students of diverse fields – material science, chemistry, biology, geology, hydrogeology, engineering etc.).
Advanced Nanocarbon Materials: Applications for Health Care
by Sarika Verma, Raju Khan, and Avanish Kumar SrivastavaThis book provides a well-focused and comprehensive overview of the history and background of nanocarbon based materials like carbon nanotubes, graphene, and fullerenes. It discusses their structure, synthesis, properties and modifications for making various advanced materials. The authors focus on their use in the health care sector as therapeutic agents in pharmacy and medicine, in diagnosis and analysis in pharmacy and medicine, as biosensors, gene and drug delivery, cancer therapy, biosensing and bioimaging, go-based antibacterial materials, and as a promising antioxidant and GO-based scaffold for cell culture. The authors also showcase the application potential of advanced nanocarbon based materials by examining the biomedical applications developed via novel advanced designing, in which the technologies will be adopted and the end users can be benefited. Finally the authors discuss the increasing research on carbon based materials, along with the challenges they are currently facing along with possible solutions that may result in the availability of the accessible, reliable and cost-efficient technology. The potential user for this book may be medical practitioners, biologists, pharmacists, and chemists.This book covers in-depth knowledge of processing parameters for making nanocarbon based material for high end applications in the biomedical and pharmaceutical fields.
Advanced Nanocatalysts for Biodiesel Production
by Bhaskar Singh Ramesh OraonAdvanced Nanocatalysts for Biodiesel Production is a comprehensive and advanced book on practical and theoretical concepts of nanocatalysts dealing with future processing techniques towards environmental sustainability. The book critically discusses on latest emerging advanced nanocatalysts for biodiesel production aimed at reducing complexities and cost in the quest to meet future energy demands. Efforts have been made at clarifying the scope and limitations of biodiesel production in large-scale commercialization. The book discusses the size-dependent catalytic properties of nanomaterials and their working mechanisms in biodiesel production. Life cycle assessment of optimized viable feedstock from domestic as well as industrial waste is also addressed to improve the efficiency of biodiesel production. The book will be a valuable reference source for researchers and industrial professionals focusing on elementary depth analysis of nanocatalyst multifunctional technological applications in seeking key ideas for mimicking biodiesel production towards ecology and the economy.Key Features Provides a comprehensive environmental assessment of advanced nanocatalysts for biodiesel production to meet tha world’s energy demands Discusses the green platform-based nanocatalysts like metal oxides/sulphides, 2D layered material synthesis and their relevance for biodiesel production. Presents a pathway for cheaper, cleaner and more environmentally friendly processing techniques for biodiesel production
Advanced Nanoelectronics (Nano and Energy #4)
by Razali Ismail Mohammad Taghi Ahmadi Sohail AnwarWhile theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The book begins by introducing the basic ideas related to quantum theory that are needed to better understand nanoscale structures found in nanoelectronics, including graphenes, carbon nanotubes, and quantum wells, dots, and wires. It goes on to highlight some of the key concepts required to understand nanotransistors. These concepts are then applied to the carbon nanotube field effect transistor (CNTFET). Several chapters cover graphene, an unzipped form of CNT that is the recently discovered allotrope of carbon that has gained a tremendous amount of scientific and technological interest. The book discusses the development of the graphene nanoribbon field effect transistor (GNRFET) and its use as a possible replacement to overcome the CNT chirality challenge. It also examines silicon nanowire (SiNW) as a new candidate for achieving the downscaling of devices. The text describes the modeling and fabrication of SiNW, including a new top-down fabrication technique. Strained technology, which changes the properties of device materials rather than changing the device geometry, is also discussed. The book ends with a look at the technical and economic challenges that face the commercialization of nanoelectronics and what universities, industries, and government can do to lower the barriers. A useful resource for professionals, researchers, and scientists, this work brings together state-of-the-art technical and scientific information on important topics in advanced nanoelectronics.
Advanced Nanofibrous Materials Manufacture Technology based on Electrospinning
by Yanbo Liu Ce WangThis book comprehensively addresses advanced nanofiber manufacturing based on electrospinning technology. The principles, relationships between process parameters and structure, morphology and performance of electrospun nanofibers and nanomaterials, and the methods for enhanced field intensity and uniform distribution are discussed. The electric field intensity and distribution during electrospinning is also analyzed based on finite element analysis on both the needle and the needleless electrospinning. Furthermore, the modification techniques for improved nanomaterials strength are covered, aiming to provide effective avenues towards the manufacture of stronger nanofiber or nanomaterial products.
Advanced Nanomaterials (Advances in Material Research and Technology)
by Shadia Jamil IkhmayiesThis book covers synthesis, characterization, and applications of diverse types of nanomaterials. Specifically, it describes carbon, graphene, and graphene oxide-based nanomaterials and their use for environmental remediation; rare-earth ions-activated nanophosphors and their application; lanthanide-based oxides as advanced nanostructured materials for organic decontamination; and advanced functional nanomaterials for pollutant sensing and water remediation. The chapters explore the use of nanomaterials in solid-phase extraction technique, design of colorimetric sensor based on gold nanoparticles, optical sources and waveguides based on flexible 1D nanomaterials, synthesis and property characterization of 2D materials with applications, and the scale effects on the value of the surface energy of a solid. The developments of some nanomaterials such as zinc and nickel sulfides as photocatalysts and electrocatalysts, effects of reducing size and incorporation of nanoadditives, advanced carbon nanomaterials such as carbon nanotubes, carbon nanofibers, and graphene and its derivations as adsorbents, and carbon spheres and carbon soot for tribological applications are also presented in this book. In addition, nanomaterials for concrete coating applications and advances in the processing of high-entropy alloys by means of mechanical alloying are also covered. Subsequently, the use of nanomaterials in endodontics and the use of nanotechnology strategies to enhance restorative resin-based dental nanomaterials are reported.
Advanced Nanomaterials and Nanotechnology: Proceedings of the 2nd International Conference on Advanced Nanomaterials and Nanotechnology, Dec 8-10, 2011, Guwahati, India (Springer Proceedings in Physics #143)
by A. Perumal D. K. Goswami P. K. GiriNanoscale science and technology have occupied centre stage globally in modern scientific research and discourses in the early twenty first century. The enabling nature of the technology makes it important in modern electronics, computing, materials, healthcare, energy and the environment. This volume contains selected articles presented (as Invited/Oral/Poster presentations) at the 2nd international conference on advanced materials and nanotechnology (ICANN-2011) held recently at the Indian Institute of Technology Guwahati, during Dec 8-10, 2011. The list of topics covered in this proceedings include: Synthesis and self assembly of nanomaterials Nanoscale characterisation Nanophotonics & Nanoelectronics Nanobiotechnology Nanocomposites F Nanomagnetism Nanomaterials for Energy Computational Nanotechnology Commercialization of Nanotechnology The conference was represented by around 400 participants from several countries including delegates invited from USA, Germany, Japan, UK, Taiwan, Italy, Singapore, India etc.
Advanced Nanomaterials for Detection of CBRN (NATO Science for Peace and Security Series A: Chemistry and Biology)
by Janez Bonča Sergei KruchininThis book is devoted to advanced materials and perspective sensors, which is one of the most important problems in nanotechnology and security. This book is useful for researchers, scientist and graduate students in the fields of solid state physics, nanotechnology and security.
Advanced Nanomaterials for Wastewater Remediation (Advances in Water and Wastewater Transport and Treatment)
by Ravindra Kumar Gautam and Mahesh Chandra ChattopadhyayaContamination of aqueous environments by hazardous chemical compounds is the direct cause of the decline of safe clean water supply throughout the globe. The use of unconventional water sources such as treated wastewater will be a new norm. Emerging nanotechnological innovations have great potential for wastewater remediation processes. Applications that use smart nanomaterials of inorganic and organic origin improve treatment efficiency and lower energy requirements. This book describes the synthesis, fabrication, and application of advanced nanomaterials in water treatment processes; their adsorption, transformation into low toxic forms, or degradation phenomena, and the adsorption and separation of hazardous dyes, organic pollutants, heavy metals and metalloids from aqueous solutions. It explains the use of different categories of nanomaterials for various pollutants and enhances understanding of nanotechnology-based water remediation to make it less toxic and reusable.
Advanced Nanomaterials in Biomedical, Sensor and Energy Applications
by Rohit Srivastava Jayeeta ChattopadhyayThis book is aimed at all those who are interested to understand the current research going on in nanomaterial science from the perspectives of biomedical, sensorial and energy applications including all aspects of physical chemist, chemical engineers and material scientist. Nanoscience and nanotechnology are at the forefront of modern research. The fast growing economy in this area requires experts with outstanding knowledge of nanoscience in combination with the skills to apply this knowledge in new products. A multidisciplinary scientific education is crucial to provide industry and research institutes with top quality experts who have a generic background in the different sub disciplines such as electronics, physics, chemistry, material science, biotechnology. The book covers recent advancement in nanoscience and nanotechnology particularly highlights the utilization of different types of nanomaterials in biomedical field, sensor and in the energy application. On the other hand, it leads the reader to the most significant recent developments in research. It provides a broad and in-depth coverage of the nanoscale materials and its depth significant applications.
Advanced Nanoscale ULSI Interconnects: Fundamentals And Applications
by Madhav Datta Yosi Shacham-Diamand Takayuki Ohba Tetsuya OsakaThis book presents one of the new frontiers of modern electrochemistry science and technology: electrochemical processes for Ultra-large-Scale Integration (ULSI) technology for Integrated Circuits (ICs) applications. This is a field which influences our day to day life and still presents major technological and scientific challenges. This book reviews ULSI technology in light of all the novel electrochemical processes which make ULSI technology possible. The book will focus on sub-100 nm CMOS technology, mainly on copper-based metallization.
Advanced Nanotechnologies for Detection and Defence against CBRN Agents (NATO Science For Peace And Security Series B: Physics and Biophysics)
by Wilhelm Kulisch Cyril Popov Plamen Petkov Dumitru TsiulyanuProvides an up-to-date overview on various nanostructured materials and nanotechnologies for different security and safety related areas. <P><P>The content spans synthesis, characterization and diverse applications of nanoscaled materials.<P> Includes contributions from physicists, chemists, material scientists, engineers and biologists.<P>This volume gives a broad overview of advanced technologies for detection and defence against chemical, biological, radiological and nuclear (CBRN) agents. It provides chapters addressing the preparation and characterization of different nanoscale materials (metals, oxides, glasses, polymers, carbon-based, etc.) and their applications in fields related to security and safety. In addition, it presents an interdisciplinary approach as the contributors come from different areas of research, such as physics, chemistry, engineering, materials science and biology. A major feature of the book is the combination of longer chapters introducing the basic knowledge on a certain topic, and shorter contributions highlighting specific applications in different security areas.
Advanced Nanotechnology and Application of Supercritical Fluids (Nanotechnology in the Life Sciences)
by Inamuddin Abdullah M. AsiriGlobalization and industrialization involve a number of reactions, products, extractions, and separations that require the use of organic solvents. These solvents are responsible for a number of ecological concerns, including atmospheric and land toxicity. Conventional organic solvents are regarded as volatile organic compounds; some are even limited due to their potential for ozone layer depletion. While supercritical liquids exhibit physical properties that could make them ideal substitutes for these volatile compounds, there is particular interest in the use of carbon dioxide as a solvent of crude material. In particular, carbon dioxide has apparent ‘green’ properties, like its noncombustible nature, the fact that it is generally nonpoisonous, and its relative inertness. Thus, the use of supercritical carbon dioxide can provide practical improvements to the sustainability of industrial products and processes. This book provides in-depth literature in the area of industrial green processes, focusing on the separation, purification, and extraction of compounds utilizing supercritical carbon dioxide as a green solvent.
Advanced Nanotechnology in Plants: Methods and Applications
by Jen-Tsung ChenNanotechnology uses nanomaterials/nanoparticles that can penetrate plant cells and interact with intracellular organelles and metabolites impacting plant growth, development, physiology, and biochemistry. Advanced Nanotechnology in Plants: Methods and Applications explores emerging plant nanotechnology, covering advanced methods and applications with an emphasis on the mitigation of plant diseases and environmental stressors. This technology can lead to the improvement of crop quality and yield to face the challenge of global climate change with an expanding global population.Features: Summarizes advanced methods and current applications of nanotechnology to mitigate plant stress Supports the Paris Agreement, which tackles three main objectives for sustainably increasing agricultural productivity and incomes, adapting and building resilience to climate change, and reducing and/or removing greenhouse gas emissions Discusses potential uses and future directions in green nanotechnology for smart and sustainable agriculture The content fits the goals of the UN SDGs contributing to goals 12 and 15 for responsible consumption and production and sustainable use of terrestrial ecosystems Provides current research findings of engineered nanoparticles for phytoremediation This book is a reference for students, researchers, and scientists in the field of plant sciences and nanotechnology. It is also useful for those in green chemistry, and environmental sciences, and can be a practical handbook for academics, including teachers, students, and agricultural experts.
Advanced Newtonian Rigid Dynamics
by Rajnikant SinhaThis book discusses topics on D’Alembert’s principle, virtual work, Eulerian angles, Lagrange’s equation in generalized coordinates and motion of a top. Momental ellipsoid of a point of a rigid body and conservation principle of angular momentum are discussed in detail. This is an essential textbook on Newtonian rigid dynamics, useful for advanced undergraduate and graduate students of physics, mathematics and engineering. This book contains solutions to more than 350 examples as well as more than 350 figures, which are nicely explaining the concept of rigid dynamics. Necessary mathematics have been created at the spot where they are needed.
Advanced Non-Thermal Power Generation Systems (Sustainable Energy Strategies)
by Yatish T. ShahGenerally, sources for power generation are broken down into two categories: thermal and non-thermal. Thermal sources for power generation include combustion, geothermal, solar, nuclear, and waste heat, which essentially provide heat as a means for power generation. This book examines non-thermal (mechanical, electrochemical, nanoscale self-powered, and hybrid) sources of power generation and emphasizes recent advances in distributed power generation systems. Key Features Details recent advances made in wind power, including onshore, offshore, fixed and floating platform, and air wind energy systems, and offers detailed assessments of progress Covers advances in generation of hydropower, exploring dam hydropower, novel wave energy converters, and novel systems and turbines for hydrokinetic energy conversion to power Examines all types of fuel cells and their multi-functional roles, along with hybrid fuel cell systems in complete detail Explores advances in the development of self-powered nanogenerators for use in portable, wearable, and implantable power electronics Focuses on technologies with the best commercial possibilities and provides perspectives on future challenges that need to be solved This book will be of value to all researchers in academia, industry, and government interested in pursuing power generation technologies and seeking a comprehensive understanding of available and emerging non-thermal power generation sources. Readers who are interested in learning about thermal power generation sources can find it in the author’s companion text Advanced Power Generation Systems: Thermal Sources (2023).
Advanced Noncontact Cutting and Joining Technologies: Micro- And Nano-manufacturing (Mechanical Engineering)
by Rasheedat Modupe Mahamood Esther Titilayo AkinlabiThis book illuminates advanced cutting and joining processes, what they are used for, and the capabilities of these manufacturing techniques, especially in micro- and nano-fabrication. The authors illustrate the use of water jets and lasers that can be used to cut highly complex shapes without leaving burrs of heat affected zones, as well as friction stir welding processes that were not possible in the past. Rounding out their examination, the authors describe in detail the use of additive manufacturing for fabrication of micro and nano-scale components and the direction of future research. Incorporating many examples from industry, the book is ideal for professional engineers, technicians, and fabrication managers in multiple industries.
Advanced Nondestructive Detection Technologies in Food
by Quansheng Chen Hao Lin Jiewen ZhaoThis book comprehensively introduces non-destructive methods for food quality (i.e. external, internal, sensory, components, and microbiological indicators) detection, through optics, acoustics, chemistry, imaging, and bionic sensing. It highlights in-situ detection of food quality and safety, including principles, signal processing, and analysis of data, non-destructive detection system, and application in the food industry for each method. First, this book introduces the principles and characteristics of various food non-destructive methods. As non-destructive measurements always involve obtaining big data for each testing, this book also describes in detail the signal and big data processing for each non-destructive method. The chapters also introduce the rapid portable detection equipment for food and agricultural products developed in recent years, as well as the intelligent monitoring equipment in the process of food processing. Relevant application cases are provided to help readers better understanding how to apply non-destructive technology for food quality detection. In the noninvasive measurement of food quality, this book has a systematic introduction of the detection principle, data processing, and rapid detection system, in-field detection case studies. This book is novel and practical and can be used as a professional textbook for undergraduates majoring in food science and engineering. It can also be used as a reference book for scientific research and technical personnel engaged in the field of food quality and safety detection.
Advanced Optical and Optoelectronic Fibers (Advances in Optics and Optoelectronics)
by Lei WeiThis book highlights the recent scientific and technological innovations of various optical and optoelectronic fibers based on different functional structures and materials. Advanced optical and optoelectronic fibers locate at the intersection of many disciplines ranging from optical waveguides, optoelectronics, material engineering, micro/nanofabrication, and neural interfaces to wearable devices. The book covers the major developments on fiber materials, such as semiconductors, metals, polymers, and soft glasses, as well as novel in-fiber structures. Different functionalities are also summarized, including sensing, light guidance, lasing, and material engineering toward full system integration. The book is a valuable resource for researchers, engineers, and graduate students engaged in the study of optical and optoelectronic fibers.
Advanced Optical Flow Cytometry: Methods and Disease Diagnoses
by Valery V. TuchinA detailed look at the latest research in non-invasive in vivo cytometry and its applications, with particular emphasis on novel biophotonic methods, disease diagnosis, and monitoring of disease treatment at single cell level in stationary and flow conditions. This book thus covers the spectrum ranging from fundamental interactions between light, cells, vascular tissue, and cell labeling particles, to strategies and opportunities for preclinical and clinical research. General topics include light scattering by cells, fast video microscopy, polarization, laser-scanning, fluorescence, Raman, multi-photon, photothermal, and photoacoustic methods for cellular diagnostics and monitoring of disease treatment in living organisms. Also presented are discussions of advanced methods and techniques of classical flow cytometry.
Advanced Optical Spectroscopy Techniques for Semiconductors: Raman, Infrared, and Cathodoluminescence Spectroscopy
by Masanobu YoshikawaThis book focuses on advanced optical spectroscopy techniques for the characterization of cutting-edge semiconductor materials. It covers a wide range of techniques such as Raman, infrared, photoluminescence, and cathodoluminescence (CL) spectroscopy, including an introduction to their physical fundamentals and best operating principles. Aimed at professionals working in the research and development of semiconductors and semiconductor materials, this book looks at a broad class of materials such as silicon and silicon dioxide, nano-diamond thin films, quantum dots, and gallium oxide. In addition to the spectroscopic techniques covered, this book features a chapter devoted to the use of a scanning electron transmission microscope as an excitation source for CL spectroscopy. Written by a practicing industry expert in the field, this book is an ideal source of reference and best-practices guide for physicists, as well as materials scientists and engineers involved in the area of spectroscopy of semiconductor materials. Further, this book introduces the cutting-edge spectroscopy such as optical photothermal IR and Raman spectroscopy or terahertz time-domain spectroscopy (THz-TDS) etc.